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1 Results on DomainNet
Owing to the limits of space, we present a summary of results on DomainNet in the paper. The full
comparison is presented here in Table 1. The results for the prior arts are reported from [9].

Table 1: Results on the DomainNet [9] dataset.
Method →Clp →Inf →Pnt →Qdr →Rel →Skt Avg

SB

Source Only 39.6±0.5 8.2±0.7 33.9±0.6 11.8±0.6 41.6±0.8 23.1±0.7 26.4±0.7
DAN [5] 39.1±0.5 11.4±0.8 33.3±0.6 16.2±0.3 42.1±0.7 29.7±0.9 28.6±0.6
RTN [7] 35.3±0.7 10.7±0.6 31.7±0.8 13.1±0.6 40.6±0.5 26.5±0.7 26.3±0.7
JAN [6] 35.3±0.7 9.1±0.6 32.5±0.6 14.3±0.6 43.1±0.7 25.7±0.6 26.7±0.6

ADDA [12] 39.5±0.8 14.5±0.6 29.1±0.7 14.9±0.5 41.9±0.8 30.7±0.6 28.4±0.7
MCD [11] 42.6±0.3 19.6±0.7 42.6±0.9 3.8±0.6 50.5±0.4 33.8±0.8 32.2±0.6

SC

Source Only 47.6±0.5 13.0±0.4 38.1±0.4 13.3±0.3 51.9±0.8 33.7±0.5 32.9±0.5
DAN [5] 45.4±0.4 12.8±0.8 36.2±0.5 15.3±0.3 48.6±0.7 34.0±0.5 32.1±0.5
RTN [7] 44.2±0.5 12.6±0.7 35.3±0.5 14.6±0.7 48.4±0.6 31.7±0.7 31.1±0.6
JAN [6] 40.9±0.4 11.1±0.6 35.4±0.5 12.1±0.6 45.8±0.5 32.3±0.6 29.6±0.5

ADDA [12] 47.5±0.7 11.4±0.6 36.7±0.5 14.7±0.5 49.1±0.8 33.5±0.4 32.2±0.6
MCD [11] 54.3±0.6 22.1±0.7 45.7±0.6 7.6±0.4 58.4±0.6 43.5±0.5 38.5±0.6

M
S

DCTN [13] 48.6±0.7 23.5±0.5 48.8±0.6 7.2±0.4 53.5±0.5 47.3±0.4 38.2±0.5
M3SDA [9] 57.2±0.9 24.2±1.2 51.6±0.4 5.2±0.4 61.6±0.8 49.6±0.5 41.5±0.7

M3SDA-β [9] 58.6±0.5 26.0± 0.8 52.3±0.5 6.3±0.5 62.7±0.5 49.5±0.7 42.6±0.6
SImpAl101 66.4±0.8 26.5±0.5 56.6±0.7 18.9±0.8 68.0±0.5 55.5±0.3 48.6±0.6

2 Further Analysis on Implicit Alignment

In this section present further analysis on implicit alignment. First, we show wider trends for implicit
alignment under category-shift. Then, we present ablations on the training objective (with and without
classifier agreement, single classifier head). Finally, we study thresholding schemes.

2.1 Implicit Alignment under Category-shift
We find that SImpAl works well even under category-shift. In Fig. 4c of the paper, we compare the
relative drop (%) in accuracy under category-shift which is obtained as,

relative drop =
(Avanilla −Acategory−shift)

Avanilla
× 100 (1)
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Figure 1: Pre-classifier space (f -output) t-SNE showing the alignment of features under the category-shift
settings Overlap (top) and Disjoint (bottom) on the Office-Caltech dataset for the task A, D, W→C. Note the
alignment of selected clusters (shared classes among the source domains) in the Overlap scenario, while none
of the source clusters align in the Disjoint scenario. Best viewed in color.
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Figure 2: Pre-classifier space t-SNE showing the alignment of features under the category-shift settings Overlap
(top) and Disjoint (bottom) on the ImageCLEF dataset for the task I, P→C. Best viewed in color.

Our approach exhibits a relatively lower drop in accuracy. To understand this better, we further
investigate the latent space alignment of the domains after adaptation using SImpAl. We show two
t-SNE plots, 1) Sources-only, i.e. showing alignment among the source domains, and 2) Sources +
Target, i.e. showing the alignment among all the domains, corresponding to an adapted model.

Fig. 1 shows the latent space alignment for the task A, D, W→C for the Office-Caltech dataset. For
the Overlap scenario, we set the number of shared categories to 2, while the number of source-private
categories are 3, 3, 2 for the sources Amazon (A), DSLR (D) and Webcam (W) respectively. Clearly,
alignment among the sources is observed only for the two shared categories (annotated in Fig. 1).
In contrast, for the Disjoint scenario, the source domains A, D, W contain 3, 3, 4 unique classes
respectively. Here, none of the source clusters align as expected (since each source has a distinct set
of classes). However, in both scenarios, we find that the target domain aligns with at least one source
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Figure 3: Pre-classifier space t-SNE showing the alignment of features under the category-shift settings Overlap
(top) and Disjoint (bottom) on the Office-31 dataset for the task A, D→W (in line with Fig. 4c of the paper).
Source clusters corresponding to the shared classes are encircled. Best viewed in color.

domain (multiple sources if categories are shared). We find a similar trend across other datasets as
shown in Fig. 2 for the I, P→C task of ImageCLEF (Overlap: 4 shared and 4, 4 source-private
classes; Disjoint: 6, 6 source-private classes), and in Fig. 3 for the A, D→W task of Office-31
(Overlap: 11 shared and 10, 10 source-private classes; Disjoint: 16, 15 source-private classes).

These results support the observation that implicit alignment can be leveraged even under category-
shift. Note that, in methods such as moment matching [9] or adversarial alignment [2], there is
usually no enforcement of class-level alignment across the domains. Thus, such methods are prone to
negative transfer via conditional mis-alignment [4, 8], i.e. alignment of dissimilar classes. However,
SImpAl enables class-conditional alignment by virtue of the label supervision, which could explain
the relatively lower drop in performance under category-shift.

2.2 Is classifier agreement necessary?

We now turn towards the key observation that we present in the paper. By enforcing classifier
agreement we are able to perform adaptation, while, when we learn domain-specific classifiers
following previous MSDA approaches [13, 14], the latent space alignment is not seen. Here, we
provide further empirical analysis in support of the observation through ablations on SImpAl50.

a) Warm-start with domain-specific classifiers. We modify the loss formulation in Eq. 3 of the
paper, to train domain-specific classifiers, as follows:

min
f,h

E
D∈{Ds

i′
}nd
i′=1

E
(x

cj
si

,y
cj
si

)∈D
− log(σ(M[i·])[j]) (2)

where σ denotes the softmax activation function. Essentially, an instance xcj
si pertaining to the source

domain Dsi trains the corresponding classifier head (note that the logarithmic term contains the
probability of class cj of the classifier corresponding to si). This is in line with the prior methods
such as [3, 13] where the domain-specific classifiers progressively learn to discriminate among the
classes in their respective domains. Thus, there is no explicit enforcement of classifier agreement.

We perform warm-start with the loss formulation in Eq. 2 (name this model, "w/o agreement") and
compare against another model learned using Eq. 3 of the paper (name this model, "with agreement").
Both models are trained for the same number of iterations under identical conditions. Finally, we test
each model’s performance on the target domain at warm-start. The multi-run statistics over 3 random
seeds are presented in Table 2. The model "with agreement" shows a consistent improvement in
performance in each scenario, which suggests that the model generalizes better to the target domain.
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Table 2: Target accuracy of warm-start models with ablation on the learning approach - "w/o agreement"
(learning domain-specific classifiers) vs. "with agreement" (our approach). Refer to Sec. 2.2a for discussion.

Model Office-31 (→A) ImageCLEF (→P) Office-Caltech (→C) Office-Home (→Ar)

w/o agreement 65.8 ± 0.3 75.8 ± 0.3 89.2 ± 0.3 67.3 ± 0.7

with agreement 66.2 ± 0.3 77.0 ± 0.6 90.3 ± 0.4 68.5 ± 0.5

Table 3: Proxy A-distance (↓) measured between each pair of domains for the warm-start models "with
agreement", "w/o agreement" and "single classifier". Note that the model "with agreement" consistently
exhibits lower distA than "with agreement", suggesting that it aligns the domains to a greater extent (Sec. 2.2a).
Furthermore, we perform an ablation by using a single classifier head which also shows lower distA (Sec. 2.2b).

Model
Office-31 (→A) ImageCLEF (→ P)

distA(A, D) distA(A, W) distA(D, W) distA(P, C) distA(P, I) distA(I, C)

w/o agreement 1.96±0.01 1.96±0.01 1.70±0.03 1.25±0.03 0.38±0.02 0.94±0.02

with agreement 1.93±0.00 1.93±0.00 0.56±0.04 0.65±0.04 0.34±0.01 0.65±0.04

single classifier 1.91±0.03 1.91±0.02 0.52±0.2 1.04±0.12 0.38±0.06 0.63±0.11

Model
Office-Home (→ Ar)

distA(Ar, Rw) distA(Ar, Cl) distA(Ar, Pr) distA(Cl, Pr) distA(Cl, Rw) distA(Pr, Rw)

w/o agreement 0.70 ± 0.02 1.46 ± 0.05 1.24 ± 0.04 1.36 ± 0.07 1.38 ± 0.06 0.65 ± 0.00

with agreement 0.64 ± 0.01 1.04 ± 0.07 0.98 ± 0.02 0.69 ± 0.04 0.75 ± 0.02 0.36 ± 0.03

single classifier 0.61±0.02 1.16±0.10 1.06±0.06 0.90±0.15 0.96±0.14 0.44±0.06

Model
Office-Caltech (→ C)

distA(C, A) distA(C, D) distA(C, W) distA(A, D) distA(A, W) distA(D, W)

w/o agreement 1.05 ± 0.01 1.80 ± 0.00 1.78 ± 0.02 1.94 ± 0.01 1.92 ± 0.02 1.61 ± 0.06

with agreement 0.91 ± 0.02 1.49 ± 0.05 1.38 ± 0.04 1.67 ± 0.01 1.49 ± 0.02 0.92 ± 0.05

single classifier 0.97 ± 0.05 1.63 ± 0.09 1.55 ± 0.15 1.77 ± 0.14 1.66 ± 0.19 1.05 ± 0.18

To uncover the underlying effect, we measure the Proxy A-distance [1] defined as distA = 2(1− 2ε)
where ε is the generalization error of a domain discriminator. A lower value of this measure indicates
a higher degree of alignment between the domains. In Table 3, we report distA between each pair of
domains at the f -output space (multi-run statistics corresponding to the models trained in Table 2).
Clearly, our approach exhibits a higher degree of alignment between the source domains, as compared
to learning source-specific classifiers. This encourages the model to learn domain-agnostic features
that are more generalizable to the target domain, resulting in an improved alignment between each
source-target pair. This translates to an improvement in the target performance.

b) Using a single classifier head. We also train a model by replacing multiple classifiers having
agreement with a single classifier. In this case, we fix the number of iterations to be the same as
those obtained from SImpAl50. In Table 4, we compare the adaptation results of the single-classifier
model, against our approach (with agreement using nd classifiers). Clearly, the performance is better
when using multiple classifier heads with agreement. For the single-classifier model, we find that
during adaptation the performance reaches a peak and then marginally declines to a lower value
before reaching the maximum number of iterations, perhaps due to noisy pseudo-labels [13]. In
our approach however, classifier agreement aids in pruning those noisy samples near the decision
boundaries and enhances the pseudo-labels. This is the added benefit of using multiple classifiers.

To study the extent of latent space alignment using a single classifier, we measure the Proxy A-
distance. In Table 3, we present the distA values at warm-start for the single classifier model and
compare it against the two aforementioned approaches ("with" and "w/o" agreement). Particularly, we
find that the distA values are either similar to the model "with agreement", or lower than the model
"w/o agreement", indicating that even a single classifier enables alignment to an extent. This explains
the efficacy of self-supervised approaches that use pseudo-labels for training under domain-shift.

2.3 Ablations using thresholding schemes

In self-training based approaches, pseudo-labeled samples are usually obtained using confidence-
thresholding, i.e. those samples exhibiting a confidence above a certain threshold τ are chosen for
self-training. However, this results in a sensitive hyperparameter τ which requires labeled target
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Table 4: Target adaptation performance for models trained with a single classifier head (n = 1) and our
approach with n = nd classifier heads. Refer to Sec. 2.2b for discussion.

No. of Heads Office-31 (→A) ImageCLEF (→P) Office-Caltech (→C) Office-Home (→Ar)

n = 1 68.8 ± 0.6 75.9 ± 0.7 89.8 ± 1.3 68.4 ± 0.7

n = nd 70.6 ± 0.6 77.5 ± 0.3 92.2 ± 0.1 70.8 ± 0.2

Table 5: Target adaptation performance using softmax confidence based thresholding (τ ) and percentile based
bagging (γ) schemes in our approach. Refer to Sec. 2.2b for discussion.

Threshold Office-31 (→A) ImageCLEF (→P) Office-Caltech (→C) Office-Home (→Ar)

τ = 0.80 70.4 ± 0.8 76.6 ± 0.4 92.4 ± 1.1 71.5 ± 0.5

τ = 0.75 70.8 ± 0.2 76.8 ± 1.0 93.3 ± 0.1 72.2 ± 0.3

τ = 0.70 71.8 ± 1.3 77.7 ± 0.4 92.8 ± 0.7 71.9 ± 0.4

τ = 0.65 72.6 ± 0.5 77.1 ± 0.7 92.4 ± 1.3 72.2 ± 0.5

τ = 0.60 71.4 ± 1.0 77.7 ± 0.8 92.5 ± 1.3 72.4 ± 0.5

τ = 0.55 73.4 ± 0.7 78.1 ± 0.5 93.1 ± 1.0 71.9 ± 0.2

τ = 0.50 72.5 ± 1.0 77.4 ± 0.9 92.3 ± 0.4 71.2 ± 0.1

γ = 5% 69.3 ± 0.2 77.4 ± 0.9 92.7 ± 0.3 73.2 ± 0.4

γ = 10% 70.3 ± 0.9 77.9 ± 0.2 92.8 ± 0.7 72.6 ± 0.3

γ = 15% 71.9 ± 0.8 78.6 ± 0.7 92.1 ± 0.3 72.8 ± 0.6

SImpAl50 70.6 ± 0.6 77.5 ± 0.3 92.2 ± 0.1 70.8 ± 0.2

samples for tuning appropriately. In our framework, we propose w(xt, f, h), defined in Eq. 6 of
the paper, as a measure of confidence in pseudo-label prediction for target instances, that results
in an easy-to-hard curriculum (Sec. 4.2f in the paper). While our framework supports confidence
based thresholding, we do not use it for the main results in the paper since it introduces additional
hyperparameters. Here, we present empirical results by incorporating thresholds in SImpAl50.

We incorporate two types of thresholds, softmax-confidence based (similar to Saito et al. [10]) and
percentile-based bagging (top confident samples based on w). In both cases, target samples are first
filtered based on classifier agreement, i.e. Dt

′ = {(xt, y
cj
t ) | xt ∈ Dt, a(xt, f, h) = 1}, and the

samples are further chosen based on thresholding or bagging schemes.

For the softmax-confidence based threshold (τ ), we follow the method applied in Saito et al. [10],
where a prediction is considered confident if at least one of the classifiers exhibit the argmax-
confidence above a threshold τ . Intuitively, self-training with such confident target samples will
encourage more target samples to fall in the high confidence region. For the percentile-based bagging
scheme, we choose the top γ-percentile (most confident) target samples from Dt

′ for pseudo-labeling.
At each pseudo-label update, the percentile is increased by γ, i.e. the pseudo-labeled bag progressively
grows in integral steps of γ. Both methods are trained for the same number of iterations as SImpAl50.

Table 5 shows that self-training is sensitive to the confidence threshold τ and bagging percentile γ.
Although the adaptation performance is seen to improve using thresholds, the best hyperparameter
values are highly dataset specific. This calls for labeled target samples to reliably establish the most
appropriate hyperparameter values for the task at hand. The study of automated methods to select
threshold hyperparameters using unlabeled target samples would be of interest.

3 Practical Application: Cross-Domain Image Retrieval

We now demonstrate a practical application of Implicit Alignment. Consider an unlabeled dataset
D of images sampled from a target domain. Suppose we wish to retrieve images from this dataset
based on some class semantics (for e.g., "retrieve images of objects having wheels"). With an un-
annotated dataset, this task seems non-trivial. However, we show that this is possible by performing
Multi-Source Domain Adaptation on the target dataset D using SImpAl. Considering D as the target
domain, we adapt a deep model using labeled source datasets and the unlabeled target data D, under
the SImpAl framework, and use this model to measure semantic similarity.
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Algorithm 1 Cross-Domain Image Retrieval
1: require: Reference image xr, Query set D, Model {f, h} . ∪ denotes union

. Calculate the class probability vector for xr (using Eq. 1 of the paper)
2: M← h ◦ f(xr)
3: pr ← 1

nd

∑nd

i=1 σ(M[i·])

. Calculate class probability vectors for images in the query set D (using Eq. 1 of the paper)
4: R ← { } . Create an empty collection of distance values
5: for xq ∈ D do
6: M← h ◦ f(xq)
7: pq ← 1

nd

∑nd

i=1 σ(M[i·])

8: R ← R ∪ {||pq − pr||2} . get the euclidean distance in class probabilities
9: D′ ← set of k nearest images in the query set D based on the distanceR

10: return D′

Quickdraw

Real
Figure 4: Sample images in the Quickdraw (Qdr) and Real (Rel) domains of the DomainNet [9] dataset. Note,
this figure is meant for qualitatively demonstrating the domain-shift; the images do not correspond.

We develop a cross-domain image retrieval system where, given a reference image xr, we retrieve
semantically similar images from a given set of images D (called the query set). To achieve this, we
obtain the nearest neighbors of the reference image xr in the set D, based on the class probability
vector p (as obtained in Eq. 1 of the paper). This is shown in Algorithm 1.

Note, Algo. 1 does not require any label information. Thus, the query set D can be unlabeled.
We show an example use-case where we consider images in the "Quickdraw" (Qdr) domain of
DomainNet [9] as the reference images, while the query set is the unlabeled target domain "Real"
(Rel). Fig. 4 shows sample images in the two domains, which exhibit a large domain-shift.

We obtain a model adapted to the "Real" target domain (i.e. the model corresponding to→Rel in
Table 1). Given a reference image in the Qdr domain, an end-user can retrieve semantically similar
images from the unlabeled Rel domain using Algo. 1 above.

In Fig. 5, we present qualitative results, demonstrating the retrieval of images from the Rel domain
using randomly selected images from the Qdr domain as reference. Note that, all images in Fig. 5
pertain to the test set of the corresponding domains that the model has not encountered during
adaptation. The retrieval process using Algo. 1 above works surprisingly well, yielding qualitatively
satisfactory results (annotated with green tick-mark). While there are certain images which yield false
retrievals (annotated with red cross-mark), many of those cases have incomprehensible reference
image (marked with an orange question-mark) and can be ignored during qualitative evaluation.

Further, we design a tool to retrieve images from a chosen query set, by manually "doodling" class
semantics (similar to the images in the Qdr domain). See code implementation for the demonstration.
Fig. 6 shows the images retrieved during the demonstration.

4 Code Reference

Pytorch implementation (with cross-domain image-retrieval demo) can be found on the project page1.

1http://val.cds.iisc.ac.in/simpal
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Figure 5: Images retrieved from the Real (Rel) domain (below) using reference images from the Quickdraw
(Qdr) domain (above). The model corresponds to the→Rel task of DomainNet. Here, we show the nearest
neighbor (k = 1 in Line 9 of Algo. 1 above). All images pertain to the test set of DomainNet. Green tick-marks
indicate satisfactory retrivals, red cross-marks indicate false retrievals and orange question-marks indicate the
cases where the reference image is incomprehensible. Note the high success rate of retrievals.

Figure 6: An example showing the top-16 retrievals (k = 16 in Line 9 of Algo. 1 above) from the Rel domain
by manually "doodling" objects (see demonstration video on the project page).
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