
A Appendix: Efficient Low Rank Gaussian Variational Inference for Neural
Networks

A.1 Additional empirical results

In this section we present additional experimental results for vectorized MNIST classification.

400 units 800 units

algorithm test NLL test error rate test NLL test error rate

ELRG-VI K = 1 −0.071 ± 0.011 1.82 ± 0.25% −0.070 ± 0.014 1.91 ± 0.27%
ELRG-VI K = 2 −0.057 ± 0.005 1.69 ± 0.14% −0.057 ± 0.008 1.69 ± 0.24%
ELRG-VI K = 3 −0.055 ± 0.005 1.65 ± 0.15% −0.054 ± 0.002 1.63 ± 0.12%
ELRG-VI K = 4 −0.055 ± 0.004 1.65 ± 0.14% −0.054 ± 0.004 1.65 ± 0.11%
ELRG-VI K = 5 −0.053 ± 0.006 1.54 ± 0.18% −0.058 ± 0.005 1.68 ± 0.17%
NAIVE K = 1 −0.130 ± 0.116 3.00 ± 1.82% −0.134 ± 0.105 2.92 ± 1.47%
NAIVE K = 2 −0.112 ± 0.042 2.82 ± 0.85% −0.113 ± 0.028 2.87 ± 0.54%
NAIVE K = 3 −0.130 ± 0.038 3.29 ± 0.83% −0.454 ± 0.984 4.91 ± 4.97%
NAIVE K = 4 −0.163 ± 0.060 3.75 ± 0.81% −0.241 ± 0.106 4.66 ± 1.23%
K-TIED K = 2 −0.105 ± 0.004 2.67 ± 0.16% −0.108 ± 0.004 2.61 ± 0.17%
K-TIED K = 3 −0.106 ± 0.003 2.69 ± 0.15% −0.107 ± 0.004 2.64 ± 0.18%
K-TIED K = 4 −0.108 ± 0.005 2.77 ± 0.28% −0.109 ± 0.002 2.59 ± 0.12%
K-TIED K = 5 −0.104 ± 0.005 2.71 ± 0.15% −0.109 ± 0.003 2.63 ± 0.09%
MF-VI ADAM −0.0964 ± 0.001 2.51 ± 0.09% −0.1034 ± 0.002 2.65 ± 0.03%
MF-VI SGD [3] − 1.82% − 1.99%

SLANG K=1 [31] − 2.00% − −
SLANG K=32 [31] − 1.72% − −

Table 5: Results for ELRG-VI and baselines on vectorized MNIST classification.

A.2 Omitted proofs

Lemma 1. Let θθθ ∼ N (θθθ|µµµ,α�K
k=1 vkv

�
k + diag[σσσ2]). The forward pass through fully connected

layer Fθθθ(x) can be reparametrized as

Fθθθ(x) = Fµµµ(x) +
√
α

K�

k=1

�kFvk
(x) + εεε�

�
Fσσσ2(x2), where �k ∼ N (0, 1), εεε ∼ N (0, I). (3)

Proof. Fully connected layer. Note that when ��� ∼ N (0, IK) and �̃̃�̃� ∼ N (0, ID) then V���+diag[σσσ]�̃̃�̃� ∼
N (0,VV� + diag[σσσ2]) where V = [v1,v2, . . . ,vk]

K
k=1 [42]. Also VV� =

�K
k=1 vkv

�
k . So we

have that

√
αV���+ diag[σσσ]�̃̃�̃� =

√
α

K�

k=1

�kvk + diag[σσσ]�̃̃�̃� ∼ N (0,α

K�

k=1

vkv
�
k + diag[σσσ2]). (5)

We now assume vk is indexed by i and j as it represents the layer weight matrix θθθ of shape Nin×Nout.
We substitute sample of θij = µij +

√
α
�K

k=1 �kv
ij
k +σij �̃ij to obtain random variable representing

layer’s output oj :

oj =

Nin�

i=1

θijxi =

Nin�

i=1

√
α
�
µij +

K�

k=1

vijk �k + σij �̃ij

�
xi (6)

=

Nin�

i=1

√
α

K�

k=1

vijk �kxi +

Nin�

i=1

µijxi + σij �̃ijxi (7)

=
√
α

K�

k=1

�k

Nin�

i=1

vijk xi +

Nin�

i=1

µijxi + σij �̃ijxi. (8)
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It follows that for the output vector o can be written as:

o = Fµµµ(x) +
√
α

K�

k=1

�kFvvvk
(x) + Fψψψ(x), (9)

where ψψψ ∼ N (0, diag[σσσ2]). Applying Equation (2) to reparametrize the diagonal component Fψψψ(x)
yields Equation (3).

Lemma 2. Let q(θθθ|λλλ) = N (θθθ|µµµ,α�K
k=1 vkv

�
k + diag[σσσ2]) and p(θθθ) = N (θθθ|0, γI). Then the

divergence DKL

�
q(θθθ|λλλ)||p(θθθ)

�
can be calculated as

DKL

�
q(θθθ|λλλ)||p(θθθ)

�
=

1

2

� D�

d=1

�σ2
d

γ
− log σ2

d

�
+

α

γ

K�

k=1

�vk�22−Δ+
1

γ
�µµµ�22+D(log γ−1)

�
, (4)

where V = [v1,v2, . . .vk] is a D ×K matrix and Δ = log |IK + αV�diag[σσσ2]−1V|.

Proof. We denote the dimension of parameters associated with the layer as D and the posterior rank
as K. Assuming that vk are D × 1 vectors we denote

�K
k=1 vkv

�
k = VV�, where V is a matrix of

shape D ×K. Let σσσ2 denote the vector of variances of shape D × 1.

DKL(N (µµµ,α

K�

k=1

vkv
�
k + diag[σσσ2])||N (0, γID)) = (10)

=
1

2

�
log |γI|− log

���α
K�

k=1

vkv
�
k + diag[σσσ2]

���+ 1

γ
tr
�
α

K�

k=1

vkv
�
k + diag[σσσ2]

�
+

�µµµ�22
γ

−D
�

(11)

=
1

2

�
D log γ − log

���α
K�

k=1

vkv
�
k + diag[σσσ2]

���+ α

γ

K�

k=1

�vk�22 +
1

γ

D�

i=1

σ2
i +

�µµµ�22
γ

−D
�

(12)

=
1

2

�
D log γ − log |αVV� + diag[σσσ2]|+ α

γ

K�

k=1

�vk�22 +
1

γ

D�

i=1

σ2
i +

�µµµ�22
γ

−D
�

(13)

=
1

2

�
D(log γ − 1)− log |diag[σσσ2]||IK + αV�diag[σσσ2]−1V|+ α

γ

K�

k=1

�vk�22 +
1

γ

D�

i=1

σ2
i +

�µµµ�22
γ

�

(14)

=
1

2

�
D(log γ − 1)−

D�

i=1

log σ2
i − log |IK + αV�diag[σσσ2]−1V|+ α

γ

K�

k=1

�vk�22 +
D�

i=1

σ2
i

γ
+

�µµµ�22
γ

�

(15)

=
1

2

�
D(log γ − 1) +

D�

i=1

�σ2
i

γ
− log σ2

i

�
− log |IK + αV�diag[σσσ2]−1V|+ α

γ

K�

k=1

�vk�22 +
�µµµ�22
γ

�

(16)

where we used Determinant Law |X+AB| = |X||I+BX−1A|.
Lemma 3. Denote the true and approximate posterior p(θθθ|D) = N (θθθ|µµµp,ΣΣΣp) and q(θθθ|µµµ,VVV ,σ2) =
N (θθθ|µµµ,ΣΣΣV I := VV�+σ2I). Assume thatµµµ∗,V∗,σ2

∗ = argminµµµ,V,σ2L(µµµ,V,σ2), rank(V) = K
and λ1 ≥ λ2 ≥ . . . ≥ λD are decreasing eigenvalues of the posterior covariance ΣΣΣp with
corresponding orthonormal eigenvectors u1,u2, . . . ,uD. Then ΣΣΣV I∗ =

�
1≤k≤K λkuku

�
k +�

K+1≤i≤D σ2
∗uiu

�
i where σ2

∗ = ( 1
D−K

�
k+1≤i≤D λ−1

i )−1.

We first derive helper lemmas.
Lemma 4. Assume that posterior p(θθθ|D) = N (θθθ|µµµp,ΣΣΣp) and q(θθθ) = N (θθθ|µµµq,ΣΣΣq). If µµµ∗,ΣΣΣ∗ =
argmaxµµµq,ΣΣΣq

L(µµµq,ΣΣΣq) then µµµ∗ = µµµp.
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Proof. Recall that

DKL(q(θθθ|µµµq,ΣΣΣq)||p(θθθ|D)) = log p(D)− L(µµµq,ΣΣΣq), (17)

and

DKL(N (µµµ1,ΣΣΣ1)||N (µµµ2,ΣΣΣ2)) =
1

2

�
log

ΣΣΣ2

ΣΣΣ1
+ tr(ΣΣΣ−1

2 ΣΣΣ1)+(µµµ2−µµµ1)
TΣΣΣ−1

2 (µµµ2−µµµ1)−D
�
. (18)

Setting ∂L(µµµq,ΣΣΣq)
∂µµµq

to 0 and solving for µµµq gives µµµq = µµµp.

We now investigate the properties of function:

Φ(x1, x2, . . . , xK) := log
1

K

K�

k=1

xk − 1

K

K�

k=1

log xk, (19)

assuming that xk > 0, representing the gap in Jensen’s inequality. Due to symmetry we have
that Φ(x1, x2, . . . , xK) = Φ(σ(x1),σ(x2), . . . ,σ(xK)) for any permutation σ. Thus to describe
monotonicity of Φ it is enough to focus on first argument.

Lemma 5. Φ(x, x2, . . . , xK) is an increasing function for x > 1
K−1

�K
k=2 xk and decreasing

function for x < 1
K−1

�K
k=2 xk.

Proof. Denote x̄ = 1
K

�K
k=1 xk We have that

∂Φ

∂x
(x, x2, . . . , xk) =

1

K

� 1
x̄
− 1

x

�
. (20)

It follows that

x > x̄ ⇐⇒ ∂Φ

∂x
(x, x2, . . . , xk) > 0, (21)

x < x̄ ⇐⇒ ∂Φ

∂x
(x, x2, . . . , xk) < 0. (22)

(23)

Note that we have x > x̄ ⇐⇒ (1− 1
K )x > 1

K

�K
k=2 xk ⇐⇒ K−1

K x > 1
K

�K
k=2 xk ⇐⇒ x >

1
K−1

�K
k=2 xk. Thus we obtain

x >
1

K − 1

K�

k=2

xk ⇐⇒ ∂Φ

∂x
(x, x2, . . . , xk) > 0, (24)

x <
1

K − 1

K�

k=2

xk ⇐⇒ ∂Φ

∂x
(x, x2, . . . , xk) < 0. (25)

Lemma 6. Suppose x1 < x2 < x3 < . . . < xD and M,N are K element array of
distinct increasing indices from {1, 2, . . . , D}. Let Φ(x1, x2, . . . , xK) = log 1

K

�
k∈M xk −

1
K

�
k∈M log xk. If there exists j /∈ M and l, r ∈ M such that xl < xj < xr, then

Φ(xM [1], xM [2], . . . , xM [K]) > Φ(argminN Φ(xN [1], xN [2], . . . , xN [K])). It follows that the mini-
mizer M∗ = argminMΦ(xM [1], xM [2], . . . , xM [K]) has to contain contiguous block of x’s.

Proof. Suppose that there exists j /∈ M and l, r ∈ M such that xl < xj < xr. Assume that
xj <

1
K−1

�
k �=j,k∈M xk. Without loss of generality assume that xM [1] < xj , i.e. l = M [1]. Based

on Lemma 5 it follows that Φ(x, xM [2], . . . , xM [K]) is a decreasing function of x for x ∈ [xM [1], xj ].
Hence replacing M [1] with j decreases the value of Φ.

Now assume xj > 1
K−1

�
k �=j,k∈M xk. Without loss of generality assume that xM [K] > xj , i.e.

r = M [K]. Again based on Lemma 5 it follows that Φ(x, xM [2], . . . , xM [K]) is an increasing
function of x for x ∈ [xM [K], xj ]. Hence replacing M [K] with j decreases the value of Φ.
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Derivation of Lemma 3. We employ similar techniques as [42] (compare Equation (4) from [42]
with the Equation below to see the difference in optimized objective). As variational posterior mean
µµµq is exact by Lemma 4 we need to minimize DKL

�
N (θθθ|µµµp,VV� + σ2I)||N (θθθ|µµµp,Σp)

�
w.r.t. V

and σ2. We have that

DKL

�
N (θθθ|µµµp,VV�+σ2I)||N (θθθ|µµµp,Σp)

�
∝ − log |VV� + σ2I|+tr(ΣΣΣ−1

p (VV�+σ2I)). (26)

The gradient of DKL

�
N (θθθ|µµµp,VV� + σ2I)||N (θθθ|µµµp,Σp)

�
w.r.t. V is:

∂DKL

�
N (θθθ|µµµp,VV� + σ2I)||N (θθθ|µµµp,Σp)

�

∂V
= −(VV� + σ2I)−1V +Σ−1

p V. (27)

Setting the above gradient to zero results in:

V = (VV� + σ2I)ΣΣΣ−1
p V. (28)

We denote the precision matrix ΛΛΛp := ΣΣΣ−1
p . We will denote λk eigenvalues of ΣΣΣp and pk eigenvalues

ofΛΛΛp. We have that the eigenvalues of precision and covariance corresponding to the same eigenvector
(assuming orthonormality) are pairwise inverses of each other pk = 1

λk
.

We follow by applying SVD decomposition to V to obtain:

V = ULW�, (29)

where U is a d× k matrix with orthonormal columns, L is k × k diagonal matrix and W is of shape
d× k and also has orthonormal columns. We now have that by reexpressing Equation (28):

ULW� = (ULW�(ULW�)� + σ2I)ΛpULW�, (30)

which yields:
ULW� = (ULW�WLU� + σ2I)ΛpULW�, (31)

and:
ULW� = (UL2U� + σ2I)ΛpULW�, (32)

We now multiply by WL−1 on the right to obtain

U = (UL2U� + σ2I)ΛpU. (33)

We now analyze matrix UL2U� + σ2I. We denote U = [u1,u2, . . . ,uk]. First we note that:

UL2U� =

K�

k=1

l2kkuku
�
k . (34)

We also consider orthonormal compliment of U with basis ũK−d+1, ũK−D+2, . . . , ũD. Note that
for n ∈ {1, 2, . . . ,K} we have:

(UL2U� + σ2I)un = UL2U�un + σ2un =

K�

k=1

l2kkuku
�
k un + σ2un = (l2nn + σ2)un. (35)

We also have that for n ∈ {D −K + 1, d−K + 2, . . . , D}

(UL2U� + σ2I)un = UL2U�un + σ2un =

K�

k=1

l2kkuku
�
k un + σ2un = σ2un. (36)

As u1,u2, . . . ,uK , ũK+1, ũK+2, . . . , ũD form an orthonormal basis, we can represent the matrix
UL2U� + σ2I as:

UL2U� + σ2I =

K�

k=1

(l2kk + σ2)uku
�
k +

D�

k=K+1

σ2ũkũ
�
k . (37)

Note that u1,u2, . . . ,uK , ũK+1, ũK+2, . . . , ũD are eigenvectors of UL2U� + σ2I by Equation
(35). Thus we can derive the inverse of UL2U� + σ2I as:

(UL2U� + σ2I)−1 =

K�

k=1

1

l2kk + σ2
uku

�
k +

D�

k=K+1

1

σ2
ũkũ

�
k . (38)

17



We now substitute the above equation into Equation (33) to obtain:

ΛpU =
� K�

k=1

1

l2kk + σ2
uku

�
k +

D�

k=K+1

1

σ2
ũkũ

�
k

�
U. (39)

Consider column un of U. We have that:

Λpun =
� K�

k=1

1

l2kk + σ2
uku

�
k +

D�

k=K+1

1

σ2
ũkũ

�
k

�
un =

1

l2nn + σ2
un. (40)

It follows that the columns of U, un have to be orthonormal eigenvectors of Λp. Additionally we
obtain the dependence between eigenvalues pk of Λp and lnn. Based on Equation (40) we have that
pn = 1

l2nn+σ2 . It follows that l2nn = 1
pn

− σ2 = λn − σ2.

Now we consider the solutions VV� + σ2I which have to be of the form:

VV� + σ2I = ULW�(ULW�)� + σ2I = UL2U� + σ2I. (41)

We eigendecompose ΣΣΣp =
�D

k=1 λkrkr
�
k such that rk are orthonormal vectors. It follows that

columns of U have to be in the set r1, r2, . . . , rd. We denote K-element set S of the selected indices
of the columns. We have that

VV� + σ2I =
�

k∈S

(λk − σ2)rkr
�
k +

D�

k=1

σ2rkr
�
k =

�

k∈S

λkrkr
�
k +

�

k/∈S

σ2rkr
�
k . (42)

We now evaluate DKL(N (θθθ|µµµp,VV� + σ2I)||N (θθθ|µµµp,ΣΣΣp)) as a function of V and σ2 at the
potential solutions VV� + σ2I =

�
k∈S λkrkr

�
k +

�
k/∈S σ2rkr

�
k :

DKL(N (θθθ|µµµp,VV� + σ2I)||N (θθθ|µµµp,ΣΣΣp))

∝ log |ΣΣΣp|− log |
�

k∈S

λkrkr
�
k +

�

k/∈S

σ2rkr
�
k |+ tr(ΛΛΛp(

�

k∈S

λkrkr
�
k +

�

k/∈S

σ2rkr
�
k )). (43)

Since log |�k∈S λkrkr
�
k +

�
k/∈S σ2rkr

�
k | =

�
k∈S log λk + (D − |S|) log σ2 it follows that

2DKL(θθθ|N (µµµp,VV� + σ2I)||N (θθθ|µµµp,ΣΣΣp)) =

= log |ΣΣΣp|−
�

k∈S

log λk − (D − |S|) log σ2 + tr(ΛΛΛp(
�

k∈S

λkrkr
�
k +

�

k/∈S

σ2rkr
�
k ))−D (44)

= log |ΣΣΣp|−
�

k∈S

log λk − (D − |S|) log σ2 + tr(
�

k∈S

λkΛΛΛprkr
�
k +

�

k/∈S

σ2ΛΛΛprkr
T
k )−D (45)

= log |ΣΣΣp|−
�

k∈S

log λk − (D − |S|) log σ2 +
�

k∈S

tr(λkpkrkr
�
k ) +

�

k/∈S

tr(σ2pkrkr
�
k )−D (46)

= log |ΣΣΣp|−
�

k∈S

log λk − (D − |S|) log σ2 +
�

k∈S

tr(r�k rk) +
�

k/∈S

σ2pktr(r�k rk)−D (47)

= log |ΣΣΣp|−
�

k∈S

log λk − (D − |S|) log σ2 + |S|+ σ2
�

k/∈S

pk −D, (48)

where we have used cyclic property of trace, orthonormality of {rk}Dk=1 and the fact that pkλk = 1.
We now define

f(S,σ2) = log |ΣΣΣp|−
�

k∈S

log λk − (D − |S|) log σ2 + σ2
�

k/∈S

λ−1
k + |S|−D, (49)

and calculate
∂f(S,σ2)

∂σ2
=

�

k/∈S

λ−1
k − (D − |S|) 1

σ2
. (50)
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Solving for an extremum gives σ2 = ( 1
D−|S|

�
k/∈S λ−1

k )−1 being the harmonic mean of not selected
eigenvalues. We substitute this σ2 into the definition of f(S,σ2) to get

f(S) = log |ΣΣΣp|−
�

k∈S

log λk − (D − |S|) log( 1

D − |S|
�

k/∈S

λ−1
k )−1 + |S|+ (D − |S|)−D.

(51)

Note that log |ΣΣΣp| =
�

k∈S log λk +
�

k/∈S log λk so that log |ΣΣΣp|−
�

k∈S log λk =
�

k/∈S log λk.
Thus we further have that

f(S) =
�

k/∈S

log λk − (D − |S|) log( 1

D − |S|
�

k/∈S

λ−1
k )−1. (52)

We apply further transformations to f(S) to get

f(S) =
�

k/∈S

log λk − (D − |S|) log( 1

D − |S|
�

k/∈S

λ−1
k )−1 (53)

= −(D − |S|) 1

D − |S|
�

k/∈S

log λ−1
k + (D − |S|) log 1

D − |S|
�

k/∈S

λ−1
k (54)

= (D − |S|)
�
log

1

D − |S|
�

k/∈S

λ−1
k − 1

D − |S|
�

k/∈S

log λ−1
k

�
. (55)

Lastly we substitute λ−1
k = pk to obtain:

h(S) = (D − |S|)
�
log

1

D − |S|
�

k/∈S

pk − 1

D − |S|
�

k/∈S

log pk

�
. (56)

Note that the expression log 1
D−|S|

�
k/∈S pk − 1

D−|S|
�

k/∈S log pk is positive based on Jensen’s
inequality. Now we need to optimize f(S) w.r.t. the index set S. The solution is to set S having
indices of K smallest eigenvalues pk of precision matrix Λp.

To see this note that additionally we have a requirement on selected pk that σ2 = D−|S|�
k/∈S pk

and

λk = 1
pk

> σ2 so that pk <
�

k/∈S pk

D−|S| meaning that the selected pk has to be less than average over
not selected pk. It also follows that the largest pk has to be discarded. Based on Lemma 6 we have
that D −K largest pk have to be discarded leaving indices of K smallest pk being selected to set S.
Since pk = 1

λk
K indices of largest λk have to be selected to set S.

A.3 Computational cost

Here present detailed comparison of computational costs and provide explanations.

Algorithm Time Memory
MAP O(NinNout|B|) O(Nout|B|)

naive mean-field O(NinNout|B|) O(NinNout|B|)
mean-field (LRT) O(2NinNout|B|) O(2Nout|B|)

naive low-rank O(N3
inN

3
out +NinNout|B|) O(NinNout|B|)

efficient low-rank O(K3 + (K + 2)NinNout|B|) O((K + 2)Nout|B|)
full rank O(N3

inN
3
out +N2

inN
2
out|B|) O(NoutNin|B|)

Table 6: Computational cost to update λλλl per layer.

Note that the above computational cost refers to forward pass through the network and calculating
complexity penalty for corresponding layer (similar analysis can be done for backpropagation and
would yield the same costs). We also do not discuss biases separately as they can by augmented
with observations by extending the inputs. We discuss the memory usage we need to incur while
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constructing dynamical computational graph. There is additional cost to store the parameters, for
instance O(N2

inN
2
out) in the case of Gaussian variational posterior with full covariance matrix.

First, MAP estimation needs to store layer’s output size Nout numbers for every element in batch B
and during forward pass it multiplies every parameter through corresponding input to the layer xi

giving time cost NinNout. This cost is multiplied by the number of elements in batch |B|. There is
additional time cost proportional to NinNout to estimate e.g. L2 regularization.

Next, naive mean-field needs to perform the same computational effort as MAP, but it additionally
needs to sample and store |B| sampled weights of dimension NinNout. Sampling weights costs
NinNout|B| in both memory and time (sampling through reparametrization).

Local Reparametrization Trick improves upon naive mean-field as it requires sampling noise of shape
|B|Nout. It requires two forward passes to obtain means and variances of preactivations.

Naive reparametrization for low-rank plus diagonal Gaussian variational posterior requires to store
|B| ×NinNout samples and perform forward pass of cost |B| ×NinNout. There is additional cost
N3

inN
3
out incoming from estimating log determinant for complexity penalty.

Efficient low-rank requires sampling noise of shape K and performing K additional forward passes.
We additionally need to add the cost of performing Local Reparametrization Trick. Using Lemma 2
allows to reduce the cost of calculating log determinant in complexity penalty to K3.

A.4 Local reparametrization for convolutional neural networks

We analyze a convolutional layer. We adopt the notation from Supplementary Material A.2.
We denote input channel as Cin and output channel as Cout. We have that wij,Cin,Cout :=√
α
�K

k=1 �kv
k,ij,Cin,Cout + σij,Cin,Cout�ij,Cin,Cout where i, j run over coordinates of kernel. For

clarity we drop the forward pass associated with mean µµµ, i.e. consider θθθ ∼ N (θθθ|0,α�K
k=1 vkv

�
k +

diag[σσσ2]). We have that for the output oCout
p associated with patch p and output channel Cout:

oCout
p =

�

Cin

�

(i,j)∈p

wij,Cin,Coutxij,Cin (57)

=
�

Cin

�

(i,j)∈p

�√
α

K�

k=1

�kv
ij,Cin,Cout

k xij,Cin + σij,Cin,Cout�ij,Cin,Cout

�
xij,Cin (58)

=
√
α
�

Cin

�

(i,j)∈p

K�

k=1

�kv
ij,Cin,Cout

k xij,Cin +
�

Cin

�

(i,j)∈p

σij,Cin,Cout�ij,Cin,Coutxij,Cin (59)

=
√
α

K�

k=1

�k
�

Cin

�

(i,j)∈p

vij,Cin,Cout

k xij,Cin +
�

Cin

�

(i,j)∈p

σij,Cin,Cout�ij,Cin,Coutxij,Cin . (60)

So similarly as in the case of the linear layer we can write output o as

o =
√
α

K�

k=1

�kFvk
(x) + Fψψψ(x). (61)

where ψψψ ∼ N (0, diag[σσσ2]). The difference between fully connected and concolutional layer is that
Fψψψ(x) cannot be reparametrized as LRT given by Equation (2) cannot be applied to convolutional
layer [46] (since outputs for different patches p are not independent due to sharing weights). Applying
LRT to Fψψψ(x) can be treated as a rough approximation, but we did not find it to cause divergence.

A.5 Experimental details

For toy experiment summarized in Figure 1 we run optimization for 30000 steps with learning rate
0.001 using ADAM optimizer. We initialize the diag[σσσ2] with e−12 We use 200 data points for an
update of parameters λλλ (whole data set D). We use 500 variational samples to estimate statistics. We
average the results over 30 random initializations and report corresponding error bars.
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For vectorized MNIST classificaation with MLP summarized in Table 2 we estimate test statistics
using 1000 variational samples. We do not employ data augmentation in this experiment. We
normalize data set using empirical mean and standard deviation. We intitialize the layers mean
sampling from N (0,

�
2

Nin+Nout
). We initialize the diag[σσσ2] with e−12 and initialize vectors v by

sampling from N (0, 0.5
�

2
Nin+Nout

). We average the results over 10 random initializations and
report corresponding error bars.

For LeNet classification experiment summarized in Table 3 we run optimization for 500 epochs (MAP
50) using batch size of 512, ADAM optimizer and learning rate 0.001 and one variational sample.
For LeNet architecture we set log prior variance of units to −5. We use 500 variational samples to
estimate test statistics. We normalize data sets using empirical mean and standard deviation. We do
not employ data augmentation in this experiment. We average the results over 5 random initializations
and report corresponding error bars.

For experiments with modern CNNs summarized in Table 4 we run optimization for 200 epochs
(50 more than [35]). We run optimization using ADAM optimizer with learning rate 0.001 for first
100 epochs, then 0.0003 for remaining 100 epochs. We use one variational sample during training.
We set log prior variance of units to −1 and initialize diag[σσσ2] with e−20 . We normalize data sets
using empirical mean and standard deviation and employ data augmentation for these experiments:
random padding followed by flipping left/right (except SVHN). We average the results over 5 random
initializations and report corresponding error bars.
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