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A Related Work

We provide a more extension discussion for the context of this work. Firstly, when closed-form
expressions for the optimizer of a function are unavailable, solving optimization problems requires
iterative schemes such as gradient ascent [31]. Their convergence to global extrema is predicated
on concavity and the tractability of computing ascent directions. When the objective takes the form
of an expected value of a function parameterized by a random variable, stochastic approximations
are required [36, 24]. The PG Theorem mentioned above gives a specific form for obtaining ascent
directions with respect to a parameterized family of stationary policies via trajectories in a Markov
decision process, when the objective is the expected cumulative return [44], which gives rise to the
REINFORCE algorithm.

The convergence of policy search for the expected cumulative return has been studied extensively
in recent years. Under general parameterizations the problem becomes nonconvex. Hence, early
work focused on asymptotic convergence to stationarity [34] by invoking dynamical systems [8]. In
actor-critic [26, 25], one replaces the Monte Carlo rollout of the Q function with a temporal difference
estimator [43], and its asymptotic stability follows similar logic [7]. Another line of work focused
on only on per-step value increase, i.e., policy improvement bounds [33, 34]. Recent interest has
been on structural results that yield convergence to global optimality: when state transitions are
linear [16, 12]), the policy parameterization is direct (tabular) [6, 2], function approximation error
can be quantified [38, 27]. Clever step-size rules have also been designed to ensure convergence to
second-order stationary points under general settings [55].

These results, however, are restricted to the expected cumulative return, a linear functional of the
state-action occupancy measure, and hence do not apply to general concave functionals of the form
considered in this work. Early works in operations research consider nonstandard utilities [19],
motivated by certain variance-penalizations which may also be written as concave functionals of
occupancy measures [17]. Similar in spirit to this work is [23], as it also puts occupancy measures at
the center of its conceptual development. These works develop dynamic programming approaches
for tabular settings, and hence are not scalable to problems with large spaces. More recently,
maximizing the entropy of the state visitation distribution has been considered [18], a special case of
the concave utilities we study. Moreover, the authors develop a model-based iteratively policy update,
which requires explicit knowledge of the transition probability matrix. By contrast, in this work we
prioritize model-free approaches for possibly large spaces via the fusion of direct policy search and
parameterization over a family of policies. Related notions of hidden convexity have been studied in
related maximum likelihood scenarios over non-concave distributions recently [13].

B Supplementary materials of Section 3

B.1 A Monte Carlo Algorithm for solving (15)

Note that any algorithm that solves problem (15) will serve our purpose. Therefore, we provide
a Monte Carlo method that alternates between stochastic primal and dual updates as an example,
stated in Algorithm 1, in which the projection operator onto the set {z : ‖z‖∞ ≤ `F } is denoted as
Proj `F {z}. For any z, z′ = Proj `F {z} is defined as

z′i =





−`F , if zi ∈ (−∞,−`F ),

zi, if zi ∈ [−`F , `F ],

`F , if zi ∈ (`F ,+∞).

It is worth noting that we omit the term δ∇Ṽ (θ; z)>x when computing the gradient w.r.t. z in (18).
Note that for the iterates xt are all well bounded, then δ∇Ṽ (θ; zt)>xt=O(δ), which is negligible
when δ → 0.
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Algorithm 1 Monte Carlo Variational Policy Gradient Estimation
Require: a differentiable policy parametrization πθ , stepsizes αt, βt > 0, initial points x = 0, z = 0.

A constant `F .
policy parameter θ ∈ Rd
Generate episodes ζi = {(skt , akt)} from i = 1, · · · , n following πθ(a|s)
For t = 0, 1, 2, ... until some stopping criterion is met:

Sample (skt , akt) from the data set
Update

zt+1 ← Proj `F

{
zt − αt

1− γ 1skt ,akt + αt∇F ∗(zt)
}

(18)

xt+1 ← xt + βt

[∑

a∈A
Qπθ (skt , a; zt) · ∇θπθ(a|skt)− xt

]
(19)

Output: the last iterate x

B.2 Special cases of policy gradient computation

We give several examples of the policy gradient for special cases of the general utility in (10).

Linear utility The simplest, where F (λ) = 〈λ, r〉 [cf. (1)], we have F ∗(z) = 0 if z = c · r for
some scalar c and F ∗(z) = ∞ otherwise. In this case z∗ = r and Theorem 1 recovers the known
policy gradient theorem for the risk-neutral MDP (1), that is ∇θR(πθ) = ∇θV (θ; r).

Constrained MDPs By contrast, in Example 2.1, i.e., when a constraint Eπ [
∑∞
t=0 γ

tc(st, at)] ≤
C on the accumulation of costs c(st, at) is present, and we may enforce it approximately with a log
barrier by defining

R(πθ) = 〈r, λ(θ)〉+ β log (C − 〈c, λ(θ)〉) = V (θ; r) + β log (C − V (θ; c)) , (20)

where β is a regularization parameter, in which case the policy gradient takes the form

∇R(πθ) = ∇θV (θ; r)− β ∇θV (θ; c)

C − V (θ; c)
.

Estimating the policy gradient R of constrained MDP consists of estimating two policy gradients
∇θV (θ; c) and ∇θV (θ; r) and accumulated reward V (θ; c).

Minimum eigenvalue For case (8), define Φ(λπθ ) =
∑
s,a λ

πθ
sa · φ(s, a)φ(s, a)>. Then Φ(λπθ ) is

symmetric and positive semidefinite, since λπθ ≥ 0. By using Rayleigh principle, we have

R(πθ) = σmin (Φ(λπθ )) = min
‖u‖=1

u>Φ(λπθ )u = min
‖u‖=1

∑

s,a

λπθsa |φ(s, a)>u|2. (21)

which is the minimum of a family of linear function in λ. Let v(1), ..., v(k) be a group of orthonormal
bases of the eigenspace of Φ(λπθ ) corresponding to the minimum eigenvalue. Then define k vectors
as r(i)(s, a) = |φ(s, a)>v(i)|2,∀s, a, i = 1, ..., k. Then the Fréchet superdifferential of R at θ is

∂̂θR(πθ) =
{
∇θV (θ; r) : r ∈ conv(r(1), ..., r(k))

}
,

where conv(·) denotes the convex hull of a group of vectors. When the multiplicity of the minimum
eigenvalue is 1, then R(·) is differentiable at this point and ∂̂θR(·) = {∇θR(·)}.

Entropy maximization For the entropy (7), its Fenchel dual takes the form

F ∗(z) = −
∑

sa

exp
{
− zsa

1− γ − 1
}
.
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Learning to mimic a distribution For the KL divergence to a prior µ in (9), we have

F ∗(z) =

{
−∑s µs exp

{
− zs1

1−γ − 1
}

if zsa1 = zsa2 ∀s ∈ S, a1, a2 ∈ A,
−∞ otherwise.

C Additional Details of Experiments

C.1 Details of Environment

OpenAI Frozen Lake is a finite-state action problem. The standard state consists of {S, F,H,G}, to
which we add an additional state C which is visualized in Fig. 3(a). At each step, an agent selects
an action a ∈ A, which consists of one of four directions (up, down, left, right), which may be
enumerated as {1, . . . , 4}. The reward is null at all Frozen F spaces, the start S location, and the
Holes H in the lake. If the agent enters a hole, the episode terminates, and hence null reward is
accumulated for this trajectory. The only positive reward is 1 and may be obtained when reaching the
goal state G. Our augmentation is that costly states C have been added, which incur reward −0.4
to represent, for instance, obstacles. We note that only for the cumulative return and its constrained
variants, or other utilities that are defined in terms of the problem’s inherent reward do these quantities
matter. That is, for the entropy maximization problem, there is no reward associated with any state in
the usual sense. The MDP transition model is unknown and defined by the OpenAI environment, a
simulation oracle that provides state-action-reward triples.

Throughout all experiments, for simplicity, we considered a softmax policy parameterization. For
this parameterization, the policy takes the form πθ(s | a) = eθsa/(

∑
a′ e

θsa′ ) for θ ∈ R|S|×|A|. For
the Frozen lake environment in this paper, we have |S| = 16 and |A| = 4.

C.2 Computing the True Policy Gradient

For comparison, we compute the true policy gradient by using a baseline approach based on the
chain rule and a variant of REINFORCE [44]: the second factor on the right-hand side of (12) is
exactly computed using REINFORCE∇θλsa(θ), whereas the first, ∂F (λ(θ))

∂λsa
, is computed using an

additional Monte Carlo rollout. We denote as x∗ the result of this procedure and use it as ground
truth. In Figure 4(a) we display the evolution of its norm difference ‖x̂?n − x̂?n−1‖ as the sample size
n increases. That it approaches null with the sample size implies that this brute force Monte Carlo
variant of REINFORCE is convergent, and hence is a reasonable benchmark comparator.

(a) Convergence of x?

Figure 4: Fig. 4(a) displays the convergence of a generalization of REINFORCE-based gradient
estimator for (12) in terms of its difference ‖x̂?n − x̂?n−1‖ as the number of processed trajectories n
increases, which converges to null, certifying x̂?n as a baseline.

C.3 Details about Maximum Entropy Exploration

For this problem instance, i.e., (7) from Example 2.2, we also consider the state space defined by
Frozen Lake, but note that the reward as defined by the environment is now a moot point. This is

15



because each state contributes positive entropy, with the exception of the holes in the lake, which
terminate the episode. We visualize this setup at the bottom layer of Fig. 2(b). The lower middle
layer visualizes the occupancy measure associated with a uniform policy. Moreover, the upper middle
layer visualizes the “pseudo-reward" z for each point in the state space. This quantity is computed in
terms of the Fenchel dual of the entropy – see Appendix B.2, and the occupancy measure associated
with the output of Algorithm 1 at the end of training is visualized at the top layer. To obtain this
result, we run it for 105 total episodes, and for each episode we evaluate the entropy using (7). We
consider a constant step-size α = 0.01, β = 0.1, and η = 0.001 throughout this experiment.

C.4 Details about the Constrained Markov Decision Process

In this subsection, we elaborate upon the implementation of Example 2.1, specifically, (6) and its
approximation using a logarithmic barrier as detailed in (20). We consider the problem of navigating
through the FrozenLake environment as shown in Fig. 3(a)(bottom): we seek to reach the goal state
G (reward = 1) from the starting location S (reward = 0), navigating along F frozen spaces (reward
= 0), while avoiding locations marked C (reward = −0.2) that denote costly states (obstacles) and
H holes.

We consider two approaches to the problem: first, we focus on optimizing the standard expected
cumulative return (1), whose associated state occupancy measure is given in Fig. 3(a)(middle);
second, we consider imposing constraints to avoid costly states [cf. (6)] via a logarithmic barrier
(20), whose resulting occupancy measure is depicted in Fig. 3(a)(top). Bluer/yellower colors denote
higher/lower likelihoods, respectively. We observe that imposing constraints yields policies whose
probability mass is concentrated away from constraints and instead along paths from the start to the
goal. Thus, Algorithm 1 combined with a policy search scheme (16) may be used to solve CMDPs.

This trend is corroborated in Fig. 3, which depicts the reward 3(b) and cost 3(c) accumulation
during test trajectories as a function of training index for Algorithm 1 for the cumulative return (1) as
compared with a logarithmic barrier imposed to solve CMDP (6) for different penalty parameters
β. We may observe that without imposing any constraint (β = 0 in red), one achieves the highest
reward, but incurs the most costs, i.e., hits obstacles most often, a form of “reckless boldness." Larger
β means higher penalty for the constraints, and hence β = 4 incurs lower cost and lower reward. We
further added the curves for β = 1 and β = 2 for comparison.

For all results reported in Fig. 3, we run the algorithm for 10K total training steps in the form of
episodes. For each episode, we run a number of evaluation (test) trajectories in order to determine their
merit, both in terms of reward and cost accumulation. Put more simply, we evaluate the performance
averaged over a few test trajectories as a function of episode number and report its average over
last 20 episodes to show the trend. This is to illuminate policy improvement in its various forms
(reward/cost accumulation) during training. Moreover, the algorithm is run with constant step-size
η = 0.1 throughout this experiment.

D Proof of Theorem 1

Proof. First note that for any z ∈ RSA, x ∈ Rd, we have

V (θ; z) = 〈z, λ(θ)〉 ,
∇θV (θ; z)>x = 〈z,∇θλ(θ)x〉 , (22)

where ∇θλ(θ) is the SA× d Jacobian matrix, the first identity holds by definition, and the second
holds by directly differentiating the first identity and product it with x.

Consider the saddle point problem in (13) for fixed 0 < δ < 1. Let G be any constant such that
‖∇F (λ(θ))‖∞ < G. Define

(x∗(δ), z∗(δ)) := argmaxx argmin‖z‖∞≤G
{
V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2‖x‖2
}
.(23)

Note in (23) we added the auxiliary constraint set {z : ‖z‖∞ ≤ G}, and later we will show that this
constraint is inactive for all δ sufficiently small. We will also show that (x∗(δ), z∗(δ)) are bounded
for all δ sufficiently small.
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By the first-order stationarity condition, we have

x∗(δ) = ∇θV (θ; z∗(δ)).

Note that ∇θV (θ; ·) is a linear function of z, thus there exists B > 0 such that ‖∇θV (θ; z)‖ ≤ B
for all z ∈ {‖z‖∞ ≤ G}. And consequently ‖x∗(δ)‖ ≤ B for all δ > 0.

For all x ∈ {‖x‖ ≤ 2B}, we have

lim
δ→0+

λ(θ) + δ∇θλ(θ)x = λ(θ).

Therefore, there exists some small δ0 > 0, such that for all δ < δ0, the vector λ(θ) + δ∇θλ(θ)x
belongs to the neighborhood on which F is differentiable and

‖∇F (λ(θ) + δ∇θλ(θ)x)‖∞ < G, ∀ x ∈ {x : ‖x‖ ≤ 2B}.
In this case, we consider the unconstrained solution, for ‖x‖ ≤ 2B, defined by

z∗(x; δ) := argmin
z

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z) = ∇F
(
λ(θ) + δ∇θλ(θ)x

)
,

and observe that the unconstrained solution satisfies ‖z∗(x; δ)‖∞ < G, and consequently the
constraint ‖z‖∞ ≤ G is not active. Therefore, for δ < δ0, we can equivalently rewrite (23) as

x∗(δ) := argmax
‖x‖≤2B

min
z

{
V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2
‖x‖2

}
(24)

= argmax
‖x‖≤2B

F (λ(θ) + δ∇θλ(θ)x)− δ

2
‖x‖2 ,

Recall that we showed ‖x∗(δ)‖ ≤ B, therefore the constraint ‖x‖ ≤ 2B is also inactive and
removable. Therefore x∗(δ) is equivalent to the unconstrained min-max solution, for all δ sufficiently
small, and Fenchel duality together with the first-order stationarity condition implies

x∗(δ) = argmax
x

inf
z

{
V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2
‖x‖2

}

= ∇θλ(θ)>∇F
(
λ(θ) + δ∇θλ(θ)x∗(δ)

)
.

By using the fact that∇F is continuous at λ(θ) and x∗(δ) is bounded, by letting δ → 0 on both sides,
we get

lim
δ→0+

x∗(δ) = lim
δ→0+

∇θλ(θ)>∇F
(
λ(θ) + δ∇θλ(θ)x∗(δ)

)

= ∇θλ(θ)>∇F
(
λ(θ)

)

= ∇R(θ) ,

where the last equality uses the chain rule.

E Proof of Theorem 2

Proof. First, let us denote the expression in (13) for fixed 0 < δ < 1 as

(x∗(δ), z∗(δ)) = argmax
x

argmin
‖z‖∞≤`F

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2
‖x‖2, (25)

and its approximation with empirically estimated value functions and their gradients in (14) as

(x̂(δ), ẑ(δ)) = argmax
x

argmin
‖z‖∞≤`F

Ṽ (θ; z) + δ∇θṼ (θ; z)>x− F ∗(z)− δ

2
‖x‖2. (26)

Then we decompose the entity E
[∥∥∥∇̂θR(πθ)−∇θR(πθ)

∥∥∥
2
]

into three terms by adding and sub-

tracting (i) x∗(δ) and (ii) x̂(δ), which we then establish depends on the difference between (iii) ẑ(δ)
and z∗(δ). Taken together with computing the limit of the right-hand side as δ → 0 we obtain the
result. Each of these steps is analyzed independently, whose estimation errors are derived in the
following lemma.
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Lemma 1. Consider (x∗(δ), z∗(δ)) and (x̂(δ), ẑ(δ)) as defined in (25)-(26), respectively. Under the
technical conditions stated in Theorem 2, their respective estimation errors satisfy:

(i)
∥∥∥x∗(δ)−∇θR(πθ)

∥∥∥
2

= O(δ2).

(ii) E
[∥∥∥x∗(δ)− x̂(δ)

∥∥∥
2
]
≤ 2C2‖z∗(δ)‖2∞

(1−γ)4 ·
(

γ2K

(1−γ)2 + 1
n

)
+ 2C2

(1−γ)4 · E
[
‖z∗(δ)− ẑ(δ)‖2∞

]
.

(iii) E
[
‖ẑ(δ)− z∗(δ)‖2∞

]
≤ O

(
L2
F

n(1−γ)2 +
L2
F `

2
F∗
n +

L2
F δ

2+LF δ
n

)
.

Combining the three steps and the fact that ‖z∗(δ)‖∞ ≤ `F yields

E
[
‖x̂(δ)−∇θR(θ)‖2

]
≤ O

(
C2(`2F + L2

F `
2
F∗)

n(1− γ)4
+

C2L2
F

n(1− γ)6

)
+O(δ2 + δ/n+ γK).

Let δ → 0, we get

E
[∥∥∥∇̂θR(πθ)−∇θR(πθ)

∥∥∥
2
]
≤ O

(
C2(`2F + L2

F `
2
F∗)

n(1− γ)4
+

C2L2
F

n(1− γ)6

)
+O(γK).

Lemma 1(i) - (iii) is proved in the next subsection. For the ease of notation, we will simply denote x∗
and x̂ instead of x∗(δ) and x̂(δ). Similarly, we denote z∗ and ẑ instead of z∗(δ) and ẑ(δ).

E.1 Preliminary Technicalities

Linearity property. The functions Q, V and ∇θV are linear in the reward function. Namely, for
any α, α′ ∈ R and r, r′ ∈ R|S||A|,

α∇θV (θ; r) + α′∇θV (θ; r′) = ∇θV (θ;αr + α′r′).

Similar identities holds for Qπθ (s, a; ·) and V (θ; ·). For the stochastic estimators∇θṼ (θ; r; ζ), it is
straightforward to check that the linearity property is still true.
Upperbounding Q and V . Given an arbitrary reward function r, the upper bounds of Q and V
functions are

|Qπθ (s, a; r)| ≤ ‖r‖∞
1− γ and |V (θ; r)| ≤ ‖r‖∞

1− γ .

Uniform upperbounds for estimators. Given any sample path ζ = {(sk, ak)}Kk=0, the estimators
Ṽ (θ; z; ζ) and ∇θṼ (θ; z; ζ) are upper bounded by

Ṽ (θ; z; ζ)| ≤ ‖z‖∞
1− γ and ‖∇θṼ (θ; z; ζ)‖ ≤ C‖z‖∞

(1− γ)2
. (27)

Consequently, as the sample averages of Ṽ (θ; z; ζi) and ∇θṼ (θ; z; ζi), we also have

|Ṽ (θ; z)| ≤ ‖z‖∞
1− γ and ‖∇θṼ (θ; z)‖ ≤ C‖z‖∞

(1− γ)2
(28)

for any set of sample paths {ζi}ni=1.

Proof. For Ṽ (θ; z; ζ), for any z,

|Ṽ (θ; z; ζ)| =
∣∣∣∣∣
K∑

k=0

γk · z(sk, ak)

∣∣∣∣∣ ≤
K∑

k=0

γk‖z‖∞ ≤
‖z‖∞
1− γ
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For∇θṼ (θ; z; ζ), for any z,

‖∇θṼ (θ; z; ζ)‖ =

∥∥∥∥∥
K∑

k=1

∑

a∈A
γk ·Q(sk, a; z)∇θπθ(a|sk)

∥∥∥∥∥

≤
K∑

k=1

γk ·
∥∥∥∥∥
∑

a∈A
Q(sk, a; z)∇θπθ(a|sk)

∥∥∥∥∥

≤
K∑

k=1

γk · max
‖u‖∞≤ ‖z‖∞1−γ

‖πθ(·|sk)u‖

≤ C‖z‖∞
(1− γ)2

.

E.2 Proof of Lemma 1(i).

Consider the problem (25). First let us ignore the requirement that ‖z‖∞ ≤ `F . For this series of
unconstrained problem, Theorem 1 suggests that

lim
δ→0+

x∗(δ) = ∇θR(πθ).

Consequently, limδ→0+
λ(θ) + δ∇θλ(θ)x∗(δ) = λ(θ). Because ‖λ(θ)‖1 = (1− γ)−1, ∃δ0 > 0 s.t.

when δ < δ0 we have

‖λ(θ) + δ∇θλ(θ)x∗(δ)‖1 ≤
2

1− γ .

According to condition (i) of this theorem, we have

‖∇F (λ(θ) + δ∇θλ(θ)x∗(δ))‖∞ ≤ `F .
It is worth noting that z∗(δ) = ∇F (λ(θ) + δ∇θλ(θ)x∗(δ)) is also the solution to the unconstrained
version of (25). Therefore we have ‖z‖∞ ≤ `F , so that we can add this to the constraint without
changing the optimal solutions. By the intermediate result in the proof of Theorem 1, we have

x∗(δ) = ∇θλ(θ)>∇F
(
λ(θ) + δ∇θλ(θ)x∗(δ)

)
.

Consequently, by the Lipschitz continuity of ∇F , we have
∥∥∥x∗(δ)−∇θR(θ)

∥∥∥
2

=
∥∥∥∇θλ(θ)>∇F

(
λ(θ) + δ∇θλ(θ)x∗(δ)

)
−∇θλ(θ)>∇F

(
λ(θ)

)∥∥∥
2

≤ ‖∇θλ(θ)>‖∞,2 ·
∥∥∥∇F

(
λ(θ) + δ∇θλ(θ)x∗(δ)

)
−∇F

(
λ(θ)

)∥∥∥
2

∞

≤ LF ‖∇θλ(θ)>‖2∞,2 ·
∥∥∥δ∇θλ(θ)x∗(δ)

∥∥∥
2

1

= O(δ2).

as stated in Lemma 1(i). In the last step, we used the fact that x∗(δ) is bounded because x∗(δ) →
∇θR(πθ).

E.3 Proof of Lemma 1(ii).

By the first order stationarity condition of the problems (25)-(26), we know

x∗ = ∇θV (θ; z∗) and x̂ = ∇θṼ (θ; ẑ).

Consider the norm-difference between the preceding quantities:

E
[∥∥x∗ − x̂

∥∥2
]
≤ 2E

[
‖∇θV (θ; z∗)−∇θṼ (θ; z∗)‖2

]
+ 2E

[
‖∇θṼ (θ; z∗)−∇θṼ (θ; ẑ)‖2

]
. (29)
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To bound the term E
[
‖∇θV (θ; z∗)−∇θṼ (θ; z∗)‖2

]
, recall the definition (14):

∇Ṽ (θ; z) :=
1

n

∑

i=1

∇θV (θ; z; ζi) =
1

n

n∑

i=1

K∑

k=1

∑

a∈A
γkQ(s

(i)
k , a; z)∇θπθ(a|s(i)

k ).

Consider the first term on the right-hand side of (29). Add and subtract E
[
∇θṼ (θ; z∗)

]
and use the

fact that E
[
∇θṼ (θ; z∗)

]
= ∇θV (θ; z∗), i.e., the bias-variance decomposition identity, to write

E
[∥∥∥∇θV (θ; z∗)−∇θṼ (θ; z∗)

∥∥∥
2
]

(30)

=
∥∥∥∇θV (θ; z∗)− E

[
∇θṼ (θ; z∗)

]∥∥∥
2

+ E
[∥∥∥∇θṼ (θ; z∗)− E

[
∇θṼ (θ; z∗)

]∥∥∥
2
]
.

For the first (squared bias) term on the right-hand side of (30), denote dπξ,K(s) = (1 −
γ)
∑K
t=0 γ

tProb(st = s|π, s0 ∼ ξ). Then it is straightforward that
∑
s |dπξ,K(s)− dπξ (s)| ≤ γK

1−γ .
As a result, we know
∥∥∥∇θV (θ; z∗)− E

[
∇θṼ (θ; z∗)

]∥∥∥
2

(31)

=
1

(1− γ)2

∥∥∥∥∥
∑

s

(
dπξ (s)− dπξ,K(s)

)∑

a

Qπθ (s, a; z∗)∇θπθ(a|s)
∥∥∥∥∥

2

=
1

(1− γ)2

(∑

s

|dπξ (s)− dπξ,K(s)| ·
∥∥∥
∑

a

Qπθ (s, a; z∗)∇θπθ(a|s)
∥∥∥
)2

=
1

(1− γ)2

(∑

s

|dπξ (s)− dπξ,K(s)| ·
∥∥∥
∑

a

Qπθ (s, a; z∗)∇θπθ(a|s)
∥∥∥
)2

≤ 1

(1− γ)2

(∑

s

|dπξ (s)− dπξ,K(s)| · max
‖u‖∞≤ ‖z

∗‖∞
1−γ

‖∇θπ(·|s)u‖
)2

≤ ‖∇θπ(·|s)‖2∞,2 · ‖z∗‖2∞
(1− γ)4

(∑

s

|dπξ (s)− dπξ,K(s)|
)2

≤ C2‖z∗‖2∞
(1− γ)6

γ2K .

Next, we consider the second (variance) term on the right-hand side of (30). By substituting (14) in
for ∇θṼ (θ; z∗) to rewrite it in terms of trajectories ζi, we have

E
[∥∥∥∇θṼ (θ; z∗)− E

[
∇θṼ (θ; z∗)

]∥∥∥
2
]

=
1

n
E
[∥∥∥∇θṼ (θ; z∗; ζi)− E

[
∇θṼ (θ; z∗; ζi)

]∥∥∥
2
]

≤ 1

n
E
[∥∥∥∇θṼ (θ; z∗; ζi)

∥∥∥
2
]

≤ C2‖z∗‖2∞
n(1− γ)4

.

The first inequality comes from crudely upper-bounding the bias by the estimator itself. The last
equality uses (27).

Now, returning focus to the second term in the bound (29), by the linearity of the stochastic estimators
with respect to the differential and (28), we have

∥∥∥∇θṼ (θ; z∗)−∇θṼ (θ; ẑ)
∥∥∥

2

=
∥∥∥∇θṼ (θ; z∗ − ẑ)

∥∥∥
2

≤ C2‖z∗ − ẑ‖2∞
(1− γ)4

.
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Taking the expectation after squaring both sides yields

E
[∥∥∥∇θṼ (θ; z∗)−∇θṼ (θ; ẑ)

∥∥∥
2
]
≤ C2

(1− γ)4
E
[
‖z∗ − ẑ‖2∞

]
. (32)

Combining inequalities (29), (30), (31), (32), (32) yields

E
[∥∥x∗ − x̂

∥∥2
]
≤ 2C2‖z∗‖2∞

(1− γ)4
·
(

γ2K

(1− γ)2
+

1

n

)
+

2C2

(1− γ)4
· E
[
‖z∗ − ẑ‖2∞

]
.

which is as stated in Lemma 1(ii).

E.4 Proof of Lemma 1(iii).

In this section we will apply the generalization bound for stochastic saddle points from [54] to bound
the term E[‖ẑ − z∗‖2∞]. To achieve this, we need a compact feasible region for x. Note that for
problems (25) and (26), the solutions x∗ and x̂ has the form

x∗ = ∇θV (θ; z∗) and x̂ = ∇θṼ (θ; ẑ).

Due to (28) and the constraint that ‖z‖∞ ≤ `F , we have ‖x∗‖ ≤ C‖z∗‖∞
(1−γ)2 ≤ C`F

(1−γ)2 and thus

‖x̂‖ ≤ C`F
(1−γ)2 with probability 1. Therefore, adding a constraint that ‖x‖ ≤ C`F

(1−γ)2 will not change
the solutions of problems (25) and (26). Formally speaking, we will then apply the theory of [54] to
the following pair of constrained problems:

(x∗, z∗) = argmax
x∈X

argmin
z∈Z

V (θ; z) + δ∇θV (θ; z)>x− F ∗(z)− δ

2
‖x‖2, (33)

and
(x̂, ẑ) = argmax

x∈X
argmin
z∈Z

Ṽ (θ; z) + δ∇θṼ (θ; z)>x− F ∗(z)− δ

2
‖x‖2. (34)

with X = {x : ‖x‖ ≤ C`F
(1−γ)2 } and Z = {z : ‖z‖∞ ≤ `F }. The problems (25) and (33) share the

same solution, and problems (26) and (34) share the same solution.

Finally, similar to the proof of (31), for any x ∈ X and z ∈ Z

V (θ; z) + δ∇θV (θ; z)>x− E
[
Ṽ (θ; z; ζi) + δ∇θṼ (θ; z; ζi)

>x
]

= O
(

γK

1− γ

)
.

For the simplicity of discussion, let us assume that K is large enough so that we can ignore the
O
(
γK

1−γ

)
bias. Therefore problem (34) can be viewed as an empirical version of the problem (33)

with negligible bias. To apply the theory of [54], define

Ψζ(x, z) := Ṽ (θ; z; ζ) + δ∇θṼ (θ; z; ζ)>x− F ∗(z)− δ

2
‖x‖2.

Then for any sample path ζ, Ψζ satisfies the following set of properties:

• Ψζ(·, z) is µx-strongly concave under L2 norm. And Ψζ(x, ·) is µz-strongly convex under
the L∞ norm. In other words, for ∀x, x′ ∈ X and z, z′ ∈ Z ,

{
Ψζ(x

′, z) ≥ Ψζ(x, z) + 〈u, x′ − x〉+ µx
2 ‖x′ − x‖2, u ∈ ∂xΨζ(x, z),

Ψζ(x, z
′) ≤ Ψζ(x, z) + 〈v, z′ − z〉 − µz

2 ‖z′ − z‖2∞, v ∈ ∂zΨζ(x, z).

In our case, it is clear that µx = δ. Due to Theorem 3 of [21], µz = L−1
F .

• The feasible regions X and Z are compact convex sets. For every ζ, there exist constants
`x(ξ, z) and `z(ξ, x) s.t.

{|Ψζ(x
′, z)−Ψζ(x, z)| ≤ `x(ζ, z)‖x′ − x‖, ∀x, x′ ∈ X and y ∈ Y,

|Ψζ(x, z
′)−Ψζ(x, z)| ≤ `z(ζ, x)‖z′ − z‖∞, ∀z, z′ ∈ Z and x ∈ X .

In our case, we gave `z(ζ, x) = sup {‖u‖1 : z ∈ Z, u ∈ ∂zΨζ(x, z)} = 1
1−γ + `F∗ +O(δ)

and `x(ζ, z) = supx∈X ‖∇xΨζ(x, z)‖ = O(δ). Consequently,{
(`wx )2 := supz∈Z E

[
`2x(ζ, z)

]
= O(δ2),

(`wz )2 := supx∈X E
[
`2z(ζ, x)

]
= O(`2F∗ + 1

(1−γ)2 + δ2).
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With the above two properties, Theorem 1 of [54] indicates that

µz
2
E
[
‖ẑ − z∗‖2∞

]
≤ 2
√

2

n
·
(

(`wx )2

µx
+

(`wz )2

µz

)
.

With the detailed parameters substituted in the above inequality, we have

E
[
‖ẑ − z∗‖2∞

]
≤ O

(
L2
F

n(1− γ)2
+
L2
F `

2
F∗

n
+
L2
F δ

2 + LF δ

n

)

as stated in Lemma 1(iii).

F Proof of Theorem 3

Proof. Let θ∗ be a first-order stationary solution of (10). When F is concave and locally Lipschitz
continuous in a neighborhood containing λ(Θ), we can compute the Fréchet superdifferential of
F ◦ λ at θ∗ by the chain rule, see [15]. That is

∂̂(F ◦ λ)(θ∗) = [∇θλ(θ∗)]> ∂F (λ∗)

where ∂F (λ∗) denotes the set of supergradients of the concave function F at λ∗. Then there exists
w∗ ∈ ∂F (λ∗) ∈ RSA such that u∗ := [∇θλ(θ∗)]>w∗ ∈ ∂̂(F ◦ λ)(θ∗) as in (17). It follows from
(17) that

〈w∗,∇θλ(θ∗)(θ − θ∗)〉 ≤ 0, for ∀θ ∈ Θ. (35)
For any λ ∈ λ(Θ), we let θ := g(λ) such that λ = λ(θ). Therefore, by adding and subtracting
∇θλ(θ∗)θ inside the inner product we have

〈w∗, λ− λ∗〉 = 〈w∗, λ(θ)− λ(θ∗)〉 (36)
= 〈w∗,∇θλ(θ∗)(θ − θ∗)〉+ 〈w∗, λ(θ)− λ(θ∗)−∇θλ(θ∗)(θ − θ∗)〉
≤ 0 + ‖w∗‖‖λ(θ)− λ(θ∗)−∇θλ(θ∗)(θ − θ∗)‖.

where in the last inequality we group terms and apply Cauchy-Schwartz. Note that the Jacobian matrix
∇θλ(θ) is Lipschitz continuous. Denote the Lipschitz constant by Lλ, i.e., ‖∇θλ(θ)−∇θλ(θ′)‖ ≤
Lλ‖θ − θ′‖ for all θ, θ′ ∈ Θ. Then,

‖λ(θ)− λ(θ∗)−∇θλ(θ∗)(θ − θ∗)‖ ≤ Lλ
2
‖θ − θ∗‖2.

By Assumption 1, we know

‖θ − θ∗‖2 = ‖g(λ)− g(λ∗)‖2 ≤ `2θ|||λ− λ∗|||2.
Substituting the above inequalities into (36) yields

〈w∗, λ− λ∗〉 ≤ Lλ`
2
θ

2
‖w∗‖|||λ− λ∗|||2 ∀λ ∈ λ(Θ). (37)

Note that (37) holds for arbitrary λ ∈ λ(Θ). Therefore, since λ(Θ) is assumed to be convex
(Assumption 1(i)), we can also substitute λ with (1− α)λ∗ + αλ, α ∈ [0, 1] into the above equation,
which yields

α〈w∗, λ− λ∗〉 ≤ Lλ`
2
θα

2

2
‖w∗‖|||λ− λ∗|||2 ∀λ ∈ L,∀α ∈ [0, 1].

Divide both sides of the preceding expression by α and take α→ 0+ gives

〈w∗, λ− λ∗〉 ≤ lim
α→0+

Lλ`
2
θα

2
‖w∗‖|||λ− λ∗|||2 = 0 ∀λ ∈ λ(Θ).

Recall that the following problem is concave in λ:

max
λ

F (λ) s.t. λ ∈ λ(Θ),

therefore we conclude that λ∗ is the global optimal solution. Then θ∗ = g(λ∗) is the globally optimal
solution of the nonconvex optimization problem (10).
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G Proof of Theorem 4

G.1 Proof of sublinear convergence

Proof. First, the Lipschitz continuity in Assumption 2 indicates that

∣∣F (λ(θ))− F (λ(θk))− 〈∇θF (λ(θk)), θ − θk〉
∣∣ ≤ L

2
‖θ − θk‖2.

Consequently, for any θ ∈ Θ we have the ascent property:

F (λ(θ)) ≥ F (λ(θk)) + 〈∇θF (λ(θk)), θ − θk〉 − L

2
‖θ − θk‖2 ≥ F (λ(θ))− L‖θ − θk‖2. (38)

The optimality condition in the policy update rule (16) then yields

F (λ(θk+1)) ≥ F (λ(θk)) + 〈∇θF (λ(θk)), θk+1 − θk〉 − L

2
‖θk+1 − θk‖2

= max
θ∈Θ

F (λ(θk)) + 〈∇θF (λ(θk)), θ − θk〉 − L

2
‖θ − θk‖2

(a)
≥ max

θ∈Θ
F (λ(θ))− L‖θ − θk‖2

(b)
≥ max

α∈[0,1]

{
F (λ(θα))− L‖θα − θk‖2 : θα = g(αλ(θ∗) + (1− α)λ(θk))

}
. (39)

Here, step (a) is due to (38) and step (b) uses the convexity of λ(Θ). Now, we proceed to analyze the
right-hand side of (39). First, by the concavity of F and the fact that λ ◦ g = id, we have

F (λ(θα)) = F (αλ(θ∗) + (1− α)λ(θk)) ≥ αF (λ(θ∗)) + (1− α)F (λ(θk)).

Moreover, by the Lipschitz continuity assumption of g, we have

‖θα − θk‖2 = ‖g(αλ(θ∗) + (1− α)λ(θk))− g(λ(θk))‖2 (40)

≤ α2`2θ|||λ(θ∗)− λ(θk)|||2

≤ α2`2θD
2
λ.

Substituting the above two inequalities into the right-hand side of (39), we get

F (λ(θ∗))− F (λ(θk+1))

≤ min
α∈[0,1]

{
F (λ(θ∗))− F (λ(θα)) + L‖θα − θk‖2 : θα = g(αλ(θ∗) + (1− α)λ(θk))

}

≤ min
α∈[0,1]

(1− α)
(
F (λ(θ∗))− F (λ(θk))

)
+ α2L`2θD

2
λ . (41)

Let αk = F (Λ(π∗))−F (Λ(πk))
2L`2θD

2
λ

≥ 0, which is the minimizer of the RHS of (41) as long as it satisfies
αk ≤ 1.

Now, we claim the following: If αk ≥ 1 then αk+1 < 1. Further, if αk < 1 then αk+1 ≤ αk. The
two claims together mean that (αk)k is decreasing and all αk are in [0, 1) except perhaps α0.

To prove the first of the two claims, assume αk ≥ 1. This implies that F (Λ(π∗)) − F (Λ(πk)) ≥
2L`2θD

2
λ. Hence, choosing α = 1 in (41), we get

F (λ(θ∗))− F (λ(θk)) ≤ L`2θD2
λ

which implies that αk+1 ≤ 1/2 < 1.

To prove the second claim, we plug αk into (41) to get

F (λ(θ∗))− F (λ(θk+1)) ≤
(

1− F (λ(θ∗))− F (λ(θk))

4L`2θD
2
λ

)
(F (λ(θ∗))− F (λ(θk))),

which shows that αk+1 ≤ αk as required.
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Now, by our preceding discussion, for k = 1, 2, . . . the previous recursion holds. Using the definition
of αk, we rewrite this in the equivalent form

αk+1

2
≤
(

1− αk
2

)
· αk

2
.

By rearranging the preceding expressions and algebraic manipulations, we obtain

2

αk+1
≥ 1(

1− αk
2

)
· αk2

=
2

αk
+

1

1− αk
2

≥ 2

αk
+ 1.

For simplicity assume that α0 < 1 also holds. Then, 2
αk
≥ 2

α0
+ k, and consequently

F (λ(θ∗))− F (λ(θk)) ≤ F (λ(θ∗))− F (λ(θ0))

1 + F (λ(θ∗))−F (λ(θ0))
4L`2θD

2
λ

· k
≤ 4L`2θD

2
λ

k
.

A similar analysis holds when α0 > 1. Combining these two gives that F (λ(π∗)) − F (λ(πk)) ≤
4L`2θD

2
λ

k+1 no matter the value of α0, which proves the result.

G.2 Proof of exponential convergence

When the strong concavity of F is available, we further provide the exponential convergence result.

Proof. We start from (39) whose proof requires no assumption on strong concavity of F , which is

F (λ(θk+1)) ≥ max
α∈[0,1]

{
F (λ(θα))− L‖θα − θk‖2 : θα = g(αλ(θ∗) + (1− α)λ(θk))

}
. (42)

By the µ-strong concavity of F , we have

F (λ(θα)) = F (αλ(θ∗)+(1−α)λ(θk)) ≥ αF (λ(θ∗))+(1−α)F (λ(θk))+
µ

2
α(1−α)|||λ(θ∗)− λ(θk)|||2.

By the Lipschitz continuity of g, we know that

‖θα − θk‖ = ‖g(αλ(θ∗) + (1− α)λ(θk))− g(λ(θk))‖ ≤ α`θ|||λ(θ∗)− λ(θk)|||
Substituting the above two inequalities into the right-hand side of (42), we get

F (λ(θ∗))− F (λ(θk+1)) (43)

≤ min
α∈[0,1]

{
F (λ(θ∗))− F (λ(θα)) + L‖θα − θk‖2 : θα = g(αλ(θ∗) + (1− α)λ(θk))

}

≤ min
α∈[0,1]

(1− α)
(
F (λ(θ∗))− F (λ(θk))

)
− α

(
1− α

2
µ− L`2θα

)
|||λ(θ∗)− λ(θk)|||2

Suppose we choose ᾱ = 1
1+L`2θ/µ

< 1 such that
(

1−ᾱ
2 µ− L`2θᾱ

)
= 0. Then we have a contraction

with modulus 1− ᾱ as

F (λ(θ∗))− F (λ(θk+1)) ≤ (1− ᾱ)F (λ(θ∗))− F (λ(θk)).

Consequently, for any k ≥ 1, we have

F (λ(θ∗))− F (λ(θk)) ≤ (1− ᾱ)k
(
F (λ(θ∗))− F (λ(θ0))

)
.

which can be translated into iteration complexity by fixing ε and initialization θ0, and solving for the
minimal k such that F (λ(θ∗))− F (λ(θk)) ≤ ε. Doing so is an algebraic exercise which results in

O
(

1

ᾱ
log

(
F (λ(θ∗))− F (λ(θ0))

ε

))
= O

(
L`2θ
µ

log

(
1

ε

))
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H Validating Assumption 1 for tabular policy case

For the tabular policy case, the following Proposition holds true and hence the Assumption 1 is
satisfied in this case.

Proposition 1. Suppose ξs > 0 for ∀s ∈ S. Then the following hold:

(i). The mappings Π and Λ form a pair of bijections between the convex sets ∆SA and L;

(ii). ∃Lλ > 0 s.t. ‖∇Λ(π)−∇Λ(π′)‖ ≤ Lλ‖π − π′‖,∀π, π′ ∈ ∆SA;

(iii). For all λ, λ′ ∈ L, we have

‖Π(λ)−Π(λ′)‖2 ≤ 2
∑

s

(∑

a

(λ′sa − λsa)2 + (
∑

a

λ′sa − λsa)2
)
/
(∑

a

λsa
)2
.

Consequently, ‖Π(λ)−Π(λ′)‖ ≤ 2
mins ξs

‖λ− λ′‖1

Proof.
Proof of (i): The equations Π ◦ Λ = idL and Λ ◦Π = id∆SA

are standard. See, e.g., [3] or Appendix
A of [53].
Proof of (ii): For the existence of the Lλ-Lipschitz constant of the gradient ∇Λ, note that the t-th
term of the infinite sum

Λsa(π) =
∞∑

t=0

γt · P
(
st = s, at = a

∣∣∣∣ π, s0 ∼ ξ
)

is a (t+ 1)-th order polynomial. Therefore, Λsa(π) can actually be defined for any π even if π /∈ ∆SA,
as long as this infinite series of polynomial of π converges absolutely. Note that for ∀π ∈ ∆SA, since
0 ≤ P

(
st = s, at = a

∣∣ π, s0 ∼ ξ
)
≤ 1 this infinite series is absolutely convergent. Because we

have 0 < γ < 1, even if we slightly perturb the π within a neighborhood of it (not necessarily in ∆SA
after perturbation), the infinite series is still absolutely convergent. This indicates that Λsa is infinitely
continuously differentiable in an open neighborhood containing ∆SA, then due to the compactness of
∆SA, we are able to argue that there exists a Lλ s.t. ∇Λ is Lλ-Lipschitz continuous within ∆SA.

Proof of (iii): Now, we provide the calculation of the Lipschitz constant of Π. For the ease of notation,
let us define µs =

∑
a∈A λsa and µ′s =

∑
a∈A λ

′
sa. Then for ∀λ, λ′ ∈ L and ∀(s, a) ∈ S × A, it

holds that

Πsa(λ)−Πsa(λ′) =
λsa
µs
− λ′sa

µ′s

=

(
λsa
µs
− λ′sa

µs

)
+

(
λ′sa
µs
− λ′sa

µ′s

)

=
1

µs
(λsa − λ′sa) +

µ′s − µs
µsµ′s

λ′sa.

Consequently, we can compute the norm difference of the preceding expression and apply the triangle
inequality:

‖Π(λ)−Π(λ′)‖2 =
∑

s∈S

∑

a∈A
(Πsa(λ)−Πsa(λ′))

2 (44)

≤ 2
∑

s∈S

∑

a∈A

1

µ2
s

(λsa − λ′sa)2 + 2
∑

s∈S

∑

a∈A

(µ′s − µs)2

µ2
s(µ
′
s)

2
(λ′sa)2

≤ 2
∑

s∈S

1

µ2
s

(∑

a∈A
(λsa − λ′sa)2 + (µ′s − µs)2

)
,
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where the last inequality follows because ‖x‖22 ≤ ‖x‖21 holds for any vector x (here, ‖ · ‖p denotes
the p-norm). Finally, note that µs ≥ ξs > 0, we have

‖Π(λ)−Π(λ′)‖2 ≤ 2
∑

s∈S

1

µ2
s

(∑

a∈A
(λsa − λ′sa)2 + (µ′s − µs)2

)

≤ 2

mins ξ2
s

∑

s∈S

(∑

a∈A
(λsa − λ′sa)2 +

(∑

a∈A
|λsa − λsa′ |

)2
)

≤ 4

mins ξ2
s

‖λ− λ′‖21
Take the square root of both sides completes the proof.

I Proof of Theorem 5

Proof. To prove this theorem, it suffices to observe that (39) is still true with θ = π, λ(θ) = Λ(π)
and g(λ) = Π(λ). Therefore, (39) can be translated as

F (Λ(πk+1)) ≥ max
α∈[0,1]

{
F (Λ(πα))− L‖πα − πk‖2 : πα = Π(αΛ(π∗) + (1− α)Λ(πk))

}
. (45)

By the concavity of F and the fact that Λ ◦Π = id, we have

F (Λ(πα)) = F (αΛ(π∗) + (1− α)Λ(πk)) ≥ αF (Λ(π∗)) + (1− α)F (Λ(πk)). (46)

For the inequality (40), we can derive a tighter bound by the following argument:

‖πα − πk‖2 = ‖Π(αΛ(π∗) + (1− α)Λ(πk))−Π(Λ(πk))‖2 (47)

≤ α2
∑

s

1
(∑

a λsa
)2

(∑

a

(λ∗sa − λsa)2 +
(∑

a

λ∗sa −
∑

a

λsa
)2
)

≤ 4α2
∑

s

1
(∑

a λsa
)2

(
(∑

a

λ∗sa
)2

+
(∑

a

λsa
)2
)

= 4α2
∑

s

(
dπ
∗
ξ (s)

)2
+
(
dπ

k

ξ (s)
)2

(
dπ

k

ξ (s)
)2

= 4α2|S|+ 4α2
∑

s

(
dπ
∗
ξ (s)

dπ
k

ξ (s)

)2

≤ 4α2|S|+ 4α2|S|
∥∥∥∥∥
dπ
∗
ξ

dπ
k

ξ

∥∥∥∥∥

2

∞

≤ 4α2|S| ·
(

1 + (1− γ)−2
∥∥∥dπ∗ξ /ξ

∥∥∥
2

∞

)

≤ 5α2|S|
(1− γ)2

∥∥∥dπ∗ξ /ξ
∥∥∥

2

∞

Denote D := 5|S|
(1−γ)2

∥∥∥dπ∗ξ /ξ
∥∥∥

2

∞
. Substituting the above two inequalities into the right-hand side of

(45), we get

F (Λ(π∗))− F (Λ(πk+1))

≤ min
α∈[0,1]

{
F (Λ(π∗))− F (Λ(πα)) + L‖πα − πk‖2 : πα = Π(αΛ(π∗) + (1− α)Λ(πk))

}

≤ min
α∈[0,1]

(1− α)
(
F (Λ(π∗))− F (Λ(πk))

)
+ LDα2 . (48)

Note that (48) differs from (41) by replacing `2θD
2
λ with D. The latter proof of Theorem 5 is almost

identical to that of Theorem 4 and hence we omit the proof.
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