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A Algorithm Details

In the following, we provide the details of the functions HOO_query and HOO_update that are
utilized in Algorithm 1.

Algorithm 2: HOO_query
1 Input: depth in MCTS d, state s, and round t.
2 Output: action to take a.
3 Parameters: maximum depth H̄ allowed in HOO.
4 if state s has never been visited at MCTS depth d then
5 Initialize HOO agent at state s and depth d: T ← {(0, 1)} and B1,2, B2,2 ←∞;
6 else
7 T ← the HOO agent constructed at state s and depth d previously;
8 (h, i)← (0, 1);
9 Initialize HOO path in the current round: Pt ← {(h, i)};

10 while (h, i) ∈ T do
11 if Bh+1,2i−1 > Bh+1,2i then
12 (h, i)← (h+ 1, 2i− 1);
13 else
14 (h, i)← (h+ 1, 2i);
15 Pt ← Pt ∪ {(h, i)}
16 (H, I)← (h, i);
17 if H ≤ H̄ then
18 Choose arbitrary arm X in PH,I ;
19 AH,I = X;

// Associate the chosen action X with the node (H, I).
20 T ← T ∪ {(H, I)};
21 BH+1,2I−1, BH+1,2I ←∞;
22 return X;
23 else

// We reached the maximum depth and should not explore new actions.
24 (H, I)← (H − 1, dI/2e);
25 return AH,I .

Algorithm 3: HOO_update
1 Input: depth in MCTS d, state s, and bandit reward Y at round t.
2 Parameters: α(d), ξ(d), η(d), ν1 and ρ.
3 α, ξ, η ← α(d), ξ(d), η(d);
4 foreach (h, i) in Pt do
5 Th,i ← Th,i + 1;
6 µ̂h,i ← (1− 1/Th,i) µ̂h,i + Y/Th,i;
7 foreach (h, i) in T do
8 Uh,i ← µ̂h,i + tα/ξT η−1

h,i + ν1ρ
h;

9 T ′ ← T ;
10 while T ′ 6= {(0, 1)} do
11 (h, i)← an arbitrary leaf node of T ′;
12 Bh,i ← min {Uh,i,max {Bh+1,2i−1, Bh+1,2i}};
13 T ′ ← T ′\{(h, i)};
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B Proof of Theorem 2

Let Rn =
∑n
t=1(f∗ − Yt) denote the regret of Algorithms 2 and 3 with the depth limitation H̄ . We

define the following notations that are similar to Bubeck et al. (2011). First, let Ih denote the set of
nodes at depth h that are 2ν1ρ

h-optimal, i.e., the set of nodes (h, i) that satisfy f∗h,i ≥ f∗ − 2ν1ρ
h,

where f∗h,i , supx∈Ph,i f(x). For h ≥ 1, let Jh denote the set of nodes at depth h that are not in
Ih but whose parents are in Ih−1 (i.e., they are not 2ν1ρ

h-optimal themselves but their parents are
2ν1ρ

h−1-optimal). Finally, define Xε , {x ∈ X : f(x) ≥ f∗ − ε} to be the set of arms that are
ε-close to optimal.

Let (Ht, It) denote the node that is selected by the bandit algorithm at time t. Note that with the depth
limitation H̄ it is possible that the nodes on depth H̄ might be played more than once at different
rounds. The nodes above depth H̄ (i.e., Ht < H̄), on the other hand, are played only once and the
random variables (Ht, It) are not the same for different values of t. Let L = {(Ht, It) : Ht = H̄}
denote the set of nodes on depth H̄ that have been played. Let H ≥ 1 be a constant integer whose
value will be specified later, and without loss of generality we assume H̄ > H . We partition the
nodes in the HOO tree T above depth H̄ into three parts T \L = T1 ∪ T2 ∪ T3. Let T1 be the set
of nodes above depth H̄ that are descendants of nodes in IH . By convention, a node itself is also
considered as a descendant of its own, so we also have IH ⊆ T1. Let T2 = ∪0≤h<HIh. Finally, let
T3 be the set of nodes above depth H̄ that are descendants of nodes in ∪0≤h≤HJh. We can verify
that T1 ∪ T2 ∪ T3 ∪ L covers all the nodes in T .

Similarly, we also decompose the regret according to the selected node (Ht, It) into four parts:
Rn = Rn,1 + Rn,2 + Rn,3 + RL, where Rn,i =

∑n
t=1 (f∗ − Yt) I{(Ht,It)∈Ti} and RL =∑n

t=1 (f∗ − Yt) I{(Ht,It)∈L}. In the following, we analyze each of the four parts individually.
We start with the concentration property and then the convergence results.

To proceed further, we first need to state several definitions that are useful throughout. These
definitions come from Bubeck et al. (2011), with similar ideas introduced earlier in Auer et al. (2007).
We reproduce these definitions here for completeness.

Definition 1. (Packing number) The ε-packing number N (X , `, ε) of X w.r.t the dissimilarity ` is
the largest integer k such that there exists k disjoint `-open balls with radius ε contained in X .

Definition 2. (Near-optimality dimension) For c > 0, the near-optimality dimension of f w.r.t ` is

max

{
0, lim sup

ε→0

lnN (Xcε, `, ε)
ln (ε−1)

}
.

Definition 3. Let d be the 4ν1/ν2−near-optimality dimension of f w.r.t `. We use d′ to denote any
value such that d′ > d.

Definition 4. Given the limit of the mean-payoff function f of a HOO agent, we assume without loss
of generality that (0, 1), (1, i∗1), (2, i∗2), . . . , (H̄, i∗

H̄
) is an optimal path, i.e., ∆h,i∗h

= 0,∀h ≥ 1. We
define the nodes (h, i∗h) on the optimal path as optimal nodes, and the other nodes as suboptimal
nodes.

Our proof will also rely on several lemmas that we state and prove in Appendix D.

B.1 Regret from T1

Any node in IH is by definition 2ν1ρ
H -optimal. By Lemma 2, the domain of IH lies inX4ν1ρH . Since

the descendants of IH cover a domain that is a subset of the domain of IH , we know the descendants
of IH also lie in the domain of X4ν1ρH , and hence

∑n
t=1 (f∗ − f (Xt)) I{(Ht,It)∈T1} ≤ 4ν1ρ

Hn.
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Let n1 = |T1| we then have for every z ≥ 1,

P
(
Rn,1 ≥ znη + 4ν1ρ

Hn
)

=P

(
n∑
t=1

(f∗ − Yt) I{(Ht,It)∈T1} ≥ zn
η + 4ν1ρ

Hn

)

=P

(
n∑
t=1

(f∗ − f (Xt)) I{(Ht,It)∈T1} +

n∑
t=1

(f(Xt)− Yt) I{(Ht,It)∈T1} ≥ zn
η + 4ν1ρ

Hn

)

≤
n1∑
t=1

P
(
f(X̃t)− Ỹt ≥

z

n1
nη
)

≤n
ξ+1
1 β

zξ
≤ cξ+1

1 β

zα−3
,

where X̃t denotes the t-th arm pulled in T1, and Ỹt denotes its corresponding reward. Note that in
the first inequality we used the fact that

∑n
t=1 (f∗ − f (Xt)) I{(Ht,It)∈T1} ≤ 4ν1ρ

Hn. In the second
inequality we used the union bound. In the third inequality we applied the concentration property
of the bandit problem (5) with n = 1. Notice that we can only use the concentration property when
the requirement z

n1
≥ 1 is satisfied, but when z

n1
< 1, the inequality also trivially holds because

nξ+1
1 β

zξ
> 1. The last step holds because α − 3 < α < ξ(1− η) < ξ, and c1 ≥ 1 is a constant that

upper bounds n1 (since T is a binary tree with limited depth, one trivial upper bound would be the
number of nodes in T , which does not depend on n and z). Also notice that the inequality above
trivially holds when 0 < z < 1, because β > 1, α− 3 > 0 and hence β

zα−3 > 1 is an upper bound
for any probability value.

Let λ =
α

ξ(1−η)
−1

1+d′+ 1
1−η

, and we know λ < 0 because α < ξ(1 − η). We then choose the value

for H such that ρH = nλ; then, 4ν1ρ
Hn is of the order of nλ+1. We further have nλ+1 > nη

since α ≥ ξη(1 − η). Let c2 ≥ 1 be a constant such that c2nλ+1 ≥ c
1/2
2 nη + 4ν1n

λ+1,∀n ≥ 1.
Such a constant always exists because c1/22 < c2 and nη < nλ+1. Then it is easy to see that
znλ+1 ≥ z1/2nη + 4ν1n

λ+1,∀n ≥ 1 also holds for any z ≥ c2. Therefore, we have the following
property:

P
(
Rn,1 ≥ znλ+1

)
≤ cξ+1

1 cα−3
2 β

z(α−3)/2
, ∀z ≥ 1. (8)

To see this, first suppose that z ≥ c2; then, znλ+1 ≥ z1/2nη + 4ν1n
λ+1,∀n ≥ 1 and since c2 ≥ 1,

we have P
(
Rn,1 ≥ znλ+1

)
≤ P

(
Rn,1 ≥ z1/2

c2
nη + 4ν1ρ

Hn
)
≤ cξ+1

1 cα−3
2 β

z(α−3)/2 . On the other hand,

if 1 ≤ z < c2, then the inequality (8) trivially holds, because cα−3
2 > zα−3 ≥ z(α−3)/2 and

β > 1, c1 ≥ 1, making the RHS greater than 1. The other side of the concentration inequality follows
similarly and is omitted here.

B.2 Regret from T2

For h ≥ 0, any node (h, i) ∈ T2 by definition belongs to Ih and is hence 2ν1p
h-optimal. Therefore,∑n

t=1 (f∗ − f (Xt)) I{(Ht,It)∈T2} ≤
∑H−1
h=0 4ν1ρ

h |Ih| ≤ 4c3ν1ν
−d′
2

∑H−1
h=0 ρ

h(1−d′), where the

last step uses the fact that |Ih| ≤ c3
(
ν2ρ

h
)−d′

for some constant c3 (Lemma 3 in Appendix D). We
then have the following convergence result:

E [Rn,2] ≤ 4c3ν1ν
−d′
2

H−1∑
h=0

ρh(1−d′). (9)
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Let n2 = |T2|; then for every z ≥ 1, we have

P

(
Rn,2 ≥ znη + 4c3ν1ν

−d′
2

H−1∑
h=0

ρh(1−d′)

)

=P

(
n∑
t=1

(f∗ − Yt) I{(Ht,It)∈T2} ≥ zn
η + 4c3ν1ν

−d′
2

H−1∑
h=0

ρh(1−d′)

)

=P

(
n∑
t=1

(f∗ − f (Xt)) I{(Ht,It)∈T2} +

n∑
t=1

(f(Xt)− Yt) I{(Ht,It)∈T2}

≥ znη + 4c3ν1ν
−d′
2

H−1∑
h=0

ρh(1−d′)

)

≤P

(
n∑
t=1

(f(Xt)− Yt) I{(Ht,It)∈T2} ≥ zn
η

)

≤n
ξ+1
2 β

zξ
≤ cξ+1

4 β

zα−3
,

where the first inequality uses the fact that
∑n
t=1 (f∗ − f (Xt)) I{(Ht,It)∈T2} ≤

4c3ν1ν
−d′
2

∑H−1
h=0 ρ

h(1−d′), and c4 is a constant not depending on n and z that upper bounds n2,
similar to the proof in T1. Again, this inequality also trivially holds for 0 < z < 1.

Since there exists a constant c5 that

H−1∑
h=0

ρh(1−d′) ≤ c5ρH(1−d′) ≤ c5ρ−H(d′+ 1
1−η ) ≤ c5ρ−H(d′+ 1

1−η )n
α

ξ(1−η) ≤ c5nλ+1,

we know 4c3ν1ν
−d′
2

∑H−1
h=0 ρ

h(1−d′) is upper bounded by the order of nλ+1. Again, since
nλ+1 > nη, there always exists a constant c6 ≥ 1 such that for any z ≥ c6, znλ+1 ≥
z1/2nη + 4c3ν1ν

−d′
2

∑H−1
h=0 ρ

h(1−d′),∀n ≥ 1. Therefore, we have

P
(
Rn,2 ≥ znλ+1

)
≤ cξ+1

4 cα−3
6 β

z(α−3)/2
, ∀z ≥ 1. (10)

To see this, again, first suppose that z ≥ c6, then znλ+1 ≥ z1/2nη+4c3ν1ν
−d′
2

∑H−1
h=0 ρ

h(1−d′), and

hence P
(
Rn,2 ≥ znλ+1

)
≤ P

(
Rn,2 ≥ z1/2

c6
nη + 4c3ν1ν

−d′
2

∑H−1
h=0 ρ

h(1−d′)
)
≤ cξ+1

4 cα−3
6 β

z(α−3)/2 . If on
the other hand 1 ≤ z < c6, then inequality (10) trivially holds because the RHS is greater than 1.

B.3 Regret from T3

For any node (h, i) ∈ T3, since the parent of any (h, i) ∈ Jh is in Ih−1, we know by Lemma 2

that the domain of (h, i) is in X4ν1ρh−1 . Further, for any u ≥ Ah,i(n) =

⌈(
2nα/ξ

∆h,i−ν1ρh

) 1
1−η
⌉

and z ≥ 1, we know from inequality (21) that P (Th,i(n) > zu) ≤ (zu−1)3−α

n + (zu−1)3−α

α−3 ≤

z3−α(u− 1)3−α
(

1
n + 1

α−3

)
. Since ∆h,i > 2ν1ρ

h, we know Ah,i(n) ≤
⌈(

2nα/ξ

ν1ρh

) 1
1−η
⌉

. Then for
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any u >
(

2nα/ξ

ν1ρh

) 1
1−η

,

P

 n∑
t=1

(f∗ − f (Xt)) I{(Ht,It)∈T3} ≥
H∑
h=1

4ν1ρ
h−1

∑
(h,i)∈T3

zu


≤P

 H∑
h=1

4ν1ρ
h−1

∑
(h,i)∈T3

Th,i(n) ≥
H∑
h=1

4ν1ρ
h−1

∑
(h,i)∈T3

zu


≤

H∑
h=1

P

 ∑
(h,i)∈T3

Th,i(n) ≥
∑

(h,i)∈T3

zu


≤

H∑
h=1

|Jh|z3−α(u− 1)3−α
(

1

n
+

1

α− 3

)

≤2Cν−d
′

2

H∑
h=1

ρ−(h−1)d′z3−α(u− 1)3−α
(

1

n
+

1

α− 3

)
,

where in the last step we used the fact that |Jh| ≤ 2|Ih−1| ≤ 2c2
(
ν2ρ

h−1
)−d′

, because the
parent of any node in Jh is in Ih−1. Since α > 3, we know 2c2ν

−d′
2

∑H
h=1 ρ

−(h−1)d′(u −
1)3−α

(
1
n + 1

α−3

)
decreases polynomially in n, and hence there exists some constant c7 > 1,

such that 2c2ν
−d′
2

∑H
h=1 ρ

−(h−1)d′(u − 1)3−α
(

1
n + 1

α−3

)
≤ c7, ∀n ≥ 1. Therefore, for any

z ≥ 1,

P

 n∑
t=1

(f∗ − f (Xt)) I{(Ht,It)∈T3} ≥
H∑
h=1

4ν1ρ
h−1

∑
(h,i)∈T3

zu

 ≤ c7z3−α.

Let n3 = |T3|, and let I{·} denote I{(Ht,It)∈T3} for short; then for every z ≥ 1, we have

P

Rn,3 ≥ znη +

H∑
h=1

4ν1ρ
h−1

∑
(h,i)∈T3

zu


=P

 n∑
t=1

(f∗ − Yt) I{(Ht,It)∈T3} ≥ zn
η +

H∑
h=1

4ν1ρ
h−1

∑
(h,i)∈T3

zu


=P

 n∑
t=1

(f∗ − f (Xt)) I{·} +

n∑
t=1

(f(Xt)− Yt) I{·} ≥ znη +

H∑
h=1

4ν1ρ
h−1

∑
(h,i)∈T3

zu


≤P

(
n∑
t=1

(f(Xt)− Yt) I{·} ≥ znη
)

+ P

 n∑
t=1

(f∗ − f (Xt)) I{·} ≥
H∑
h=1

4ν1ρ
h−1

∑
(h,i)∈T3

zu


=
nξ+1

3 β

zξ
+ P

 n∑
t=1

(f∗ − f (Xt)) I{·} ≥
H∑
h=1

4ν1ρ
h−1

∑
(h,i)∈T3

zu


≤c

ξ+1
8 β

zξ
+ c7z

3−α ≤ cξ+1
8 β + c7
zα−3

,

where as before c8 is a constant not depending on n and z that upper bounds n3, and in the last step
we used the fact that α− 3 < α < ξ(1− η) < ξ.

Once again, since
∑H
h=1 4ν1ρ

h−1
∑

(h,i)∈T3
u is upper bounded by the order of nλ+1, there exists a

constant c9 ≥ 1 such that for any z ≥ c9, znλ+1 ≥ z1/2nη+
∑H
h=1 4ν1ρ

h−1
∑

(h,i)∈T3
z1/2u,∀n ≥
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1. Therefore, we have

P
(
Rn,3 ≥ znλ+1

)
≤ cα−3

9 (cξ+1
8 β + c7)

z(α−3)/2
, ∀z ≥ 1, (11)

due to exactly the same logic as in T1 and T2, by discussing the two cases z ≥ c9 and 1 ≤ z < c9.

B.4 Regret from L

Recall that L is the set of nodes that are played on depth H̄ . We divide the nodes in L into two
parts L = L1 ∪ L3, in analogy to T1 and T3 in T \L. Let L1 be the set of nodes on depth H̄ that
are descendants of nodes in IH , and let L3 be the set of nodes in L that are descendants of nodes in
∪0≤h≤HJh. By the assumption that H̄ > H , there is no counterpart of T2 = ∪0≤h<HIh in L.

Similarly, we also decompose the regret from L according to the selected node (Ht, It) into two parts:
RL = R̃n,1 + R̃n,3, where R̃n,i =

∑n
t=1 (f∗ − Yt) I{(Ht,It)∈Li}. Analyzing the regret from L1 and

L3 is almost the same as T1 and T3, with only one difference that each node in L might be played
multiple times. We demonstrate with L1 in the following and the analysis for L3 naturally follows.

Again, any node in IH is by definition 2ν1ρ
H -optimal. By Lemma 2, the domain of IH lies

in X4ν1ρH , and we know the descendants of IH also lie in the domain of X4ν1ρH , satisfying∑n
t=1 (f∗ − f (Xt)) I{(Ht,It)∈L1} ≤ 4ν1ρ

Hn. Let ñ1 = |L1|. Let X̃1, . . . , X̃n1
denote the arms

pulled in L1 (we know from Algorithm 2 that only one arm in a node will be played and associated
with that node, and this arm will be played repeatedly thereafter). For j = 1, . . . , n1, define Kj

to be the total number of times arm X̃j has been played. Finally, let Ỹ tj (1 ≤ t ≤ Kj) denote the
corresponding reward when the t-th time arm X̃j is played. Then for every z ≥ 1,

P
(
R̃n,1 ≥ znη + 4ν1ρ

Hn
)

=P

(
n∑
t=1

(f∗ − Yt) I{(Ht,It)∈L1} ≥ zn
η + 4ν1ρ

Hn

)

=P

(
n∑
t=1

(f∗ − f (Xt)) I{(Ht,It)∈L1} +

n∑
t=1

(f(Xt)− Yt) I{(Ht,It)∈L1} ≥ zn
η + 4ν1ρ

Hn

)

≤P

(
n∑
t=1

(f(Xt)− Yt) I{(Ht,It)∈L1} ≥ zn
η

)

≤
n1∑
j=1

P

Kj∑
t=1

(
f(X̃j)− Ỹ tj

)
≥ z

c̃1
Kη
j


≤ c̃

ξ+1
1 β

zξ
≤ c̃ξ+1

1 β

zα−3
,

where c̃1 ≥ n1 is a constant that is independent of n and z, and hence
∑n1

j=1
z
c̃1
Kη
j ≤ z

n1

∑n1

j=1 n
η ≤

znη. Note that in the first inequality we used the fact that
∑n
t=1 (f∗ − f (Xt)) I{(Ht,It)∈T1} ≤

4ν1ρ
Hn. In the second inequality, we used the union bound. In the third inequality we applied the

concentration property of the bandit problem (5) with n = Kj . Notice that we can only use the
concentration property when the requirement z

c̃1
≥ 1 is satisfied, but when z

c̃1
< 1, the inequality

also trivially holds because c̃ξ+1
1 β

zξ
> 1. The last step holds because α− 3 < α < ξ(1− η) < ξ. Also

notice that the inequality above trivially holds when 0 < z < 1, because β > 1, α− 3 > 0 and hence
β

zα−3 > 1 is an upper bound for any probability.

Similar to the analysis of T1, let c̃2 ≥ 1 be a constant such that c̃2nλ+1 ≥ c̃1/22 nη+4ν1n
λ+1,∀n ≥ 1.

Such a constant always exists because c̃1/22 < c̃2 and nη < nλ+1. Then it is easy to see that
znλ+1 ≥ z1/2nη + 4ν1n

λ+1,∀n ≥ 1 also holds for any z ≥ c̃2. Therefore, we have the following
property:

P
(
R̃n,1 ≥ znλ+1

)
≤ c̃ξ+1

1 c̃α−3
2 β

z(α−3)/2
, ∀z ≥ 1. (12)
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To see this, first suppose that z ≥ c̃2; then znλ+1 ≥ z1/2nη + 4ν1n
λ+1,∀n ≥ 1 and since c̃2 ≥ 1,

we have P
(
R̃n,1 ≥ znλ+1

)
≤ P

(
R̃n,1 ≥ z1/2

c̃2
nη + 4ν1ρ

Hn
)
≤ c̃ξ+1

1 c̃α−3
2 β

z(α−3)/2 . On the other hand,

if 1 ≤ z < c̃2, then the inequality (8) trivially holds, because c̃α−3
2 > zα−3 ≥ z(α−3)/2 and

β > 1, c̃1 ≥ 1, making the RHS greater than 1. The other side of the concentration inequality follows
similarly. This completes the analysis for R̃n,1.

Similarly, as for the regret from L3, we have the following result:

P
(
R̃n,3 ≥ znλ+1

)
≤ c̃α−3

9 (c̃ξ+1
8 β + c̃7)

z(α−3)/2
, ∀z ≥ 1, (13)

where again c̃7, c̃8, c̃9 are constant independent of n and z.

B.5 Completing proof of concentration

First, recall that the inequalities (8)(10)(11)(12)(13) still hold even when 0 < z < 1. This is because
the RHS of the inequalities will be greater than 1, which is a trivial upper bound for a probability
value. Putting together the bounds we got for each individual term, for every z ≥ 1, we have

P
(
Rn ≥ znλ+1

)
≤

3∑
i=1

P
(
Rn,i ≥

z

5
nλ+1

)
+

2∑
i=1

P
(
R̃n,i ≥

z

5
nλ+1

)
≤ β′

z(α−3)/2
,

where β′ > 1 is a constant independent of n and z. Therefore, we have the desired concentration
property:

P(

n∑
t=1

Yt − nf∗ ≥ nη
′
z) ≤ β′

zξ′
, (14)

where ξ′ = (α− 3)/2, η′ = λ+ 1 =
α

ξ(1−η)
+d′+ 1

1−η
1+d′+ 1

1−η
, and β′ > 1 depends on α, β, η, ξ and H̄ . The

other side of the concentration inequality follows similarly.

B.6 Convergence results

We conclude with a convergence analysis of the regret. Let Rn =
∑n
t=1(f∗ − Yt) denote the regret

of Algorithms 2 and 3 with the depth limitation H̄ . In the following, we proceed with the special
case that there is only one optimal node on depth H̄ , i.e., there is only one node (H̄, I∗) on depth H̄
with ∆H̄,I∗ ≤ 2ν1ρ

H̄ , which in turn implies PH̄,I∗ ⊆ X4ν1ρH̄
(Lemma 2). The regret of the general

case with multiple optimal nodes is bounded by a constant multiple of this special case.

We partition the regret into three parts, but in a way that is slightly different from the previous
concentration analysis. Let Rn = RT +Rn,1 +Rn,3, where RT denotes the regret above depth H̄ ,
Rn,1 denotes the regret from L1 (the set of nodes on depth H̄ that are descendants of nodes in IH ),
and Rn,3 denotes the regret from L3 (the set of nodes on depth H̄ that are descendants of nodes in
∪0≤h≤HJh). Recall that the bandit rewards are bounded in [−R,R]. Then it is easy to see that RT is
bounded by a constant, denoted by C1, because the number of nodes played above depth H̄ is upper
bounded by a constant independent of n.

Now we consider Rn,1. Any node in IH is by definition 2ν1ρ
H -optimal. By Lemma 2, the domain of

IH lies in X4ν1ρH , and we know the descendants of IH also lie in the domain of X4ν1ρH , satisfying∑n
t=1 (f∗ − f (Xt)) I{(Ht,It)∈L1} ≤ 4ν1ρ

Hn. Let ñ1 = |L1|, and let I{·} denote I{(Ht,It)∈L1} for
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short. Then we have

E [Rn,1] = E

[
n∑
t=1

(f∗ − Yt)I{(Ht,It)∈L1}

]

= E

[
n∑
t=1

(f∗ − f(Xt))I{(Ht,It)∈L1}

]
+ E

[
n∑
t=1

(f(Xt)− Yt)I{(Ht,It)∈L1}

]

≤ 4nν1ρ
H + E

[
n∑
t=1

(f(Xt)− ft(Xt))I{·}

]
+ E

[
n∑
t=1

(ft(Xt)− Yt)I{·}

]

≤ 4nν1ρ
H +

n∑
t=1

C

tζ
,

where the last step holds due to the definition of the mean-payoff function that E [Yt] = E [ft(Xt)]

and the convergence property of ft. Since
∑n
t=1

1
tζ
≤
∫ n

0
t−ζ ≤ n1−ζ

1−ζ , there exists some constant
C2 such that

1

n
E [Rn,1] ≤ 1

n

(
4nν1ρ

H +
Cn1−ζ

1− ζ

)
≤ 4ν1ρ

H +
C

(1− ζ)nζ

≤ C2

nζ
,

where the last step is by the fact that ρH = nλ and that ζ ≤ −λ.

Finally, we analyze the regret of Rn,3. Let ñ3 = |L3|. For any node (h, i) ∈ L3, since the parent of
any (h, i) ∈ Jh is in Ih−1, we know by Lemma 2 that the domain of (h, i) is in X4ν1ρh−1 . Further,
(h, i) is not 2ν1ρ

h-optimal by the definition of Jh. We then have

E [Rn,3] = E

[
n∑
t=1

(f∗ − Yt)1{(Ht,It)∈L3}

]

= E

[
n∑
t=1

(f∗ − f(Xt))1{(Ht,It)∈L3}

]
+ E

[
n∑
t=1

(f(Xt)− Yt)1{(Ht,It)∈L3}

]

≤
H∑
h=1

4ν1ρ
h−1

∑
i:(h,i)∈Jh

E [Th,i(n)] +
C

(1− ζ)nζ−1

≤
H∑
h=1

4ν1ρ
h−1 |Jh|

[(
2nα/ξ

ν1ρh

) 1
1−η

+ 2 +
1

α− 3

]
+

C

(1− ζ)nζ−1

where the last step is by an application of Lemma 7. Further, since the parent of Jh is in Ih−1, we

know from Lemma 3 that |Jh| ≤ 2 |Ih−1| ≤ 2C3

(
ν2ρ

h−1
)−d′

for some constant C3. Therefore,
there exists some constant C4, such that

1

n
E [Rn,3] ≤ 1

n

H∑
h=1

8C3ν1ρ
h−1

(
ν2ρ

h−1
)−d′ [(2nα/ξ

ν1ρh

) 1
1−η

+ 2 +
1

α− 3

]
+

C

(1− ζ)nζ
≤ C4

nζ
,

where the last step holds because 1
n

∑H
h=1 8C3ν1ρ

h−1
(
ν2ρ

h−1
)−d′ ( 2nα/ξ

ν1ρh

) 1
1−η

is in the order of

O(nλ), and by the fact that ζ ≤ −λ.

Putting everything together, we arrive at the desired convergence result:∣∣∣∣∣f∗ − 1

n
E

[
n∑
t=1

Yt

]∣∣∣∣∣ =

∣∣∣∣ 1nE [Rn]

∣∣∣∣ =

∣∣∣∣ 1nE [RT +Rn,1 +Rn,3]

∣∣∣∣ ≤ C0

nζ
,

where C0 > 0 is a proper constant that can be calculated from C,R, α, ν1, H̄ and ζ.
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C Proof of Theorem 1

In the following, we provide a complete proof for Theorem 1. The idea of this proof is built upon
the analysis of fixed-depth Monte-Carlo tree search derived in Shah et al. (2019). Given the value
function oracle V̂ at the leaf nodes, a depth-D MCTS can be approximately considered as D steps of
value iteration starting from V̂ . Let V (d) be the value function after d steps of exact value iteration
with V (0) = V̂ . Since value iteration is a contraction mapping with respect to the L∞ norm, we
have

∥∥V (d+1) − V ∗
∥∥
∞ ≤ γ

∥∥V (d) − V ∗
∥∥
∞, where V ∗ is the optimal value function. Therefore, we

conclude that ∣∣∣V (D)(s(0))− V ∗(s(0))
∣∣∣ ≤ γD ∥∥∥V̂ − V ∗∥∥∥

∞
= γDε0 (15)

for the MCTS root node s(0).

In the following, we will show that the empirical average reward collected at the root node of MCTS
(denoted as ṽ(0)(s(0))/n in Algorithm 1) is within O(nη−1) of V (D)(s(0)) after n rounds of MCTS
simulations. The proof is based on an inductive procedure that we will go through in the following
sections. Before that, we first introduce a lemma that will be useful throughout.
Lemma 1. Consider real-valued random variables Xi, Yi for i ≥ 1, where Xi’s are independent
and identically distributed, taking values in [−B,B] for some B > 0. Yi’s are independent of Xi’s,
satisfying the following two properties:

A. Convergence: Let Ȳn = 1
n (
∑n
i=1 Yi); then there exists C > 0, 0 < ζ ≤ 1/2, and µY , such that

for every integer n ≥ 1 ∣∣E [Ȳn]− µY ∣∣ ≤ C

nζ
(16)

B. Concentration: There exist constants β > 1, ξ > 0, and 1/2 ≤ η < 1, such that for every z ≥ 1
and every integer n ≥ 1:

P
(
nȲn − nµY ≥ nηz

)
≤ β

zξ
, P

(
nȲn − nµY ≤ −nηz

)
≤ β

zξ
. (17)

Let Zi = Xi + γYi for some 0 < γ < 1, and let Z̄n = 1
n

∑n
i=1 Zi = 1

n

∑n
i=1 (Xi + γYi). Define

µX = E [X1]. Then, the following properties are satisfied:

A. Convergence: ∣∣E [Z̄n]− (µx + γµY )
∣∣ ≤ C

nζ
(18)

B. Concentration: There exists a constant β′ > 1 depending on γ, ξ, β and B, such that for every
z ≥ 1 and every integer n ≥ 1:

P
(
nZ̄n − n(µX + γµY ) ≥ nηz

)
≤ β′

zξ
,

P
(
nZ̄n − n(µX + γµY ) ≤ −nηz

)
≤ β′

zξ
.

Proof. We first prove the convergence property of Z̄n.
∣∣E [Z̄n]− (µX + γµY )

∣∣ =∣∣γE [Ȳn]− γµY ∣∣ ≤ γC
nζ
≤ C

nζ
.

We then prove the concentration property of Z̄n. Let X̄n = 1
n

∑n
i=1Xi. By Hoeffding’s inequality,

we know P
(
X̄n − µX ≥ ε

)
≤ exp(−2nε2

B2 ). Then,

P
(
nZ̄n − n(µX + γµY ) ≥ nηz

)
=P
(
nX̄n − nµX + nγȲn − nγµY ≥ nnz

)
≤P
(
nX̄n − nµX ≥

nηz

2

)
+ P

(
nȲn − nµY ≥

nηz

2γ

)
≤ exp

(
−n

2η−1z2

2B2

)
+

2ξβγξ

zξ

≤β
′

zξ
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where β′ is a constant large enough depending on γ, ξ, β and B. The other side of the concentration
inequality follows similarly.

C.1 Base case

We wanted to inductively show that the empirical mean reward collected at the root node of MCTS is
within O(nη−1) of the value iteration result V (D)(s(0)) after n rounds of MCTS simulations. We
start with the induction base case at MCTS depth D − 1, which contains the parent nodes of the leaf
nodes at level D.

First, notice that there are only finitely many nodes at MCTS depth D − 1 when n goes to infinity,
even though both the state space and the action space are continuous. This is because the HOO
tree has limited depth at each MCTS node, and we repeatedly take the same action at a leaf of the
HOO tree, resulting in a finite number of actions tried at each state. Further, we have assumed
deterministic transitions, and thus each action at a given state repeatedly leads to the same destination
state throughout the MCTS process. Combining those two properties gives finite number of nodes in
the MCTS tree.

Consider a node denoted as i at depthD−1, and let si,D−1 denote the corresponding state. According
to the definition of Algorithm 1, whenever state si,D−1 is visited, the bandit algorithm will select
an action a from the action space, and the environment will transit to state s′D = si,D−1 ◦ a at
depth D. The corresponding reward collected at node i of depth D − 1 would be R(si,D−1, a) +

γṽ(D)(s′D), where the reward R(s, a) is an independent random variable taking values bounded in
[−Rmax, Rmax]. Recall that we use a deterministic value function oracle at depth D, and hence
ṽ(D)(s′D) = V̂ (s′D) is fully determined once the action a is known. We also know the reward is
bounded in [−Rmax1−γ − ε0,

Rmax
1−γ + ε0], where ε0 is the largest possible mistake made by the value

function oracle. We can then apply Lemma 1 here, with the X’s in Lemma 1 corresponding to
the partial sums of independent rewards R(si,D−1, a), the Y ’s corresponding to the deterministic
values ṽ(D)(s′D). From the result of Lemma 1, we know for the given α(D−1), η(D−1) and ξ(D−1)

calculated from (3), there exists a constant β(D−1) such that the rewards collected at si,D−1 satisfy
the concentration property (5) required by Theorem 2.

Further, let fn in Theorem 2 be the mean-payoff function when state si,D−1 is visited for the n-th time,
i.e., fn(a) = E [R(si,D−1, a)] + γV̂ (s′D). Then since the rewards are stationary, there apparently
exists a function f = fn, ∀n ≥ 1 such that the convergence (4) property is satisfied with arbitrary
value of ζ such that 0 < ζ < 1− α

ξ(1−η) . Since we use exactly the same Algorithms 2 and 3 in the
MCTS simulations as the ones stated in Theorem 2, the results of Theorem 2 apply.

Finally, define

µ
(D−1)
∗ (si,D−1) = sup

a∈A

{
E [R(si,D−1, a)] + γṽ(D)(si,D−1 ◦ a)

}
.

Applying Theorem 2 gives the following result:
Proposition 1. Consider a node i at depth D − 1 of MCTS with the corresponding state si,D−1. Let
ṽ

(D−1)
n (si,D−1) denote the value of ṽ(D−1)(si,D−1) at the end of the n-th round of MCTS simulations.

Then, for a given ξ(D−1) > 0, η(D−1) ∈ [ 1
2 , 1), α(D−1) > 3, and a proper value of β(D−1) given by

Lemma 1, we have

A. Convergence: There exists some constant C0 > 0 and 0 < ζ(D−1) < 1 − α(D−1)

ξ(D−1)(1−η(D−1))
,

such that ∣∣∣∣ 1nE [ṽ(D−1)
n (si,D−1)− µ(D−1)

∗ (si,D−1)
]∣∣∣∣ ≤ C0

nζ(D−1)
.

B. Concentration: There exist constants β′ > 1, ξ′ > 0, and 1/2 ≤ η′ < 1, such that for every
z ≥ 1 and every integer n ≥ 1:

P
(
ṽ(D−1)
n (si,D−1)− nµ(D−1)

∗ (si,D−1) ≥ nη
′
z
)
≤ β′

zξ′
,

P
(
ṽ(D−1)
n (si,D−1)− nµ(D−1)

∗ (si,D−1) ≤ −nη
′
z
)
≤ β′

zξ′
,
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where η′ =
α(D−1)

ξ(D−1)(1−η(D−1))
+d′+ 1

1−η(D−1)

1+d′+ 1

1−η(D−1)

with constant d′ defined in Definition 3, ξ′ = (α(D−1) −

3)/2, and β′ > 1 depends on α(D−1), β(D−1), η(D−1), ξ(D−1) and H̄ .

Since α(D−1) < ξ(D−1)(1− η(D−1)), we can see 0 < η′ < 1. We would also like to remark that the
definition of µD−1

∗ (si,D−1) is exactly the value function estimation at si,D−1 after one step of value
iteration starting from V̂ . If we set α(D−1) = ξ(D−1)η(D−1)(1−η(D−1)), then ζ(D−1) ∈ (0, 1

2 ).This
completes the base case for our induction.

C.2 Induction step

We have shown that the convergence and concentration requirements are satisfied from depth D to
depth D − 1. In the following, we will recursively show that these properties also hold from depth d
to depth d− 1 for all 1 ≤ d ≤ D − 1.

Consider a node denoted as i at depth d− 1, and let si,d−1 denote the corresponding state. Again,
according to the definition of Algorithm 1, whenever state si,d−1 is visited, the bandit algorithm will
select an action a from the action space, and the environment will transit to state s′d = si,d−1 ◦ a
at depth d. The corresponding reward collected at node i of depth d − 1 would be R(si,d−1, a) +

γṽ(d)(s′d), where the reward R(s, a) is an independent random variable taking values bounded
in [−Rmax, Rmax]. Our induction hypothesis assumes that ṽ(d) satisfies the convergence and
concentration properties for all states at depth d, with parameters α(d), ξ(d), η(d) defined by (3) and
proper value of β(d). Therefore, we can again apply Lemma 1 here, with the X’s in Lemma 1
corresponding to the partial sums of independent rewards R(si,d−1, a), and the Y ’s corresponding to
ṽ(d)(s′d) that satisfy the convergence and concentration properties by our induction hypothesis. From
the result of Lemma 1, we know for the given α(d−1), η(d−1) and ξ(d−1) calculated from (3), there
exists a constant β(d−1) such that the rewards collected at si,d−1 satisfy the concentration property (5)
required by Theorem 2.

Let fn in Theorem 2 be the mean-payoff function after state si,D−1 is visited for the n-th time, i.e.,
fn(a) = E [R(si,D−1, a)] + γṽ

(d)
n (s′d)/n. Define f(a) = E [R(si,D−1, a)] + γµ

(d)
∗ (s′d), then we

can see the convergence requirement (4) is also satisfied by fn and f , with ζ = ζ(d). Therefore, the
results of Theorem 2 apply.

Finally, define

µ
(d−1)
∗ (si,d−1) = sup

a∈A

{
E [R(si,d−1, a)] + γµ

(d)
∗ (si,d−1 ◦ a)

}
.

A direct application of Theorem 2 gives the following result:
Proposition 2. For a node i at depth d − 1 of MCTS with the corresponding state si,d−1. Let
ṽ

(d−1)
n (si,d−1) denote the value of ṽ(d−1)(si,d−1) at the end of the n-th round of MCTS simulations.

Then, for a given ξ(d−1) > 0, η(d−1) ∈ [ 1
2 , 1), α(d−1) > 3, and a proper value of β(d−1) given by

Lemma 1, we have

A. Convergence: There exists some constant C0 > 0 and 0 < ζ(d−1) < 1− α(d−1)

ξ(d−1)(1−η(d−1))
, such

that ∣∣∣∣ 1nE [ṽ(d−1)
n (si,d−1)− µ(d−1)

∗ (si,d−1)
]∣∣∣∣ ≤ C0

nζ(d−1)
. (19)

B. Concentration: There exist constants β′ > 1, ξ′ > 0, and 1/2 ≤ η′ < 1, such that for every
z ≥ 1 and every integer n ≥ 1:

P
(
ṽ(d−1)
n (si,d−1)− nµ(d−1)

∗ (si,d−1) ≥ nη
′
z
)
≤ β′

zξ′
,

P
(
ṽ(d−1)
n (si,d−1)− nµ(d−1)

∗ (si,d−1) ≤ −nη
′
z
)
≤ β′

zξ′
,

where η′ =
α(d−1)

ξ(d−1)(1−η(d−1))
+d′+ 1

1−η(d−1)

1+d′+ 1

1−η(d−1)

with constant d′ defined in Definition 3, ξ′ = (α(d−1) −

3)/2, and β′ > 1 depends on α(d−1), β(d−1), η(d−1), ξ(d−1) and H̄ .
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Since α(d−1) < ξ(d−1)(1−η(d−1)), we can see that 0 < η′ < 1. If we set α(d−1) = ξ(d−1)η(d−1)(1−
η(d−1)), then ζ(d−1) ∈ (0, 1

2 ). Notice that the definition of µd−1
∗ (si,d−1) is exactly the value function

estimation at si,d−1 after D − d steps of value iteration starting from V̂ . This completes the proof of
the induction step.

C.3 Completing proof of Theorem 1

Following an inductive procedure, we can see that the convergence result (19) also holds at the MCTS
root node s(0). After n rounds of MCTS simulations starting from the root node, the empirical mean
reward collected at s(0) satisfies:∣∣∣∣ 1nE [ṽ(0)

n (s(0))− µ(0)
∗ (s(0))

]∣∣∣∣ ≤ C0

nζ(0)
, (20)

where µ(0)
∗ (s(0)) is the value function estimation for s(0) after D rounds of value iteration starting

from V̂ , and ζ(0) ∈ (0, 1
2 ) if we set α(0) = ξ(0)η(0)(1 − η(0)). Recall from Equation (15) that∣∣∣µ(0)

∗ (s(0))− V ∗(s(0))
∣∣∣ ≤ γD ∥∥∥V̂ − V ∗∥∥∥

∞
= γDε0. By the triangle inequality, we conclude that

∣∣∣∣ 1nE [ṽ(0)
n (s(0))− V ∗(s(0))

]∣∣∣∣ ≤ O( 1

nζ

)
+ γDε0,

for some 0 < ζ < 1/2. This completes the proof of Theorem 1.

D Technical Lemmas

Lemma 2. (Lemma 3 in Bubeck et al. (2011)) Under Assumptions 1 and 2, for some region Ph,i, if
∆h,i ≤ cν1ρ

h for some constant c ≥ 0, then all the arms in Ph,i are max{2c, c+ 1}-optimal.

Proof. This lemma is stated in exactly the same as way Lemma 3 in Bubeck et al. (2011), and we
therefore omit the proof here.

Lemma 3. There exists some constant C > 0, such that |Ih| ≤ C(ν2ρ
h)−d

′
for all h ≥ 0.

Proof. This result is the same as the second step in the proof of Theorem 6 in Bubeck et al. (2011).
We therefore omit the proof here.

Lemma 4. Let Assumptions 1 and 2 hold. Then for every optimal node 3 (h, i) and any integer
n ≥ 1, there exists a constant β1 > 1, such that

P (Uh,i(n) ≤ f∗) ≤ β1

nα−1
.

Proof. If (h, i) is not played during the first n rounds, then by assumption Uh,i(n) = ∞ and the
inequality trivially holds. Now we focus on the case where Th,i(n) ≥ 1. From Lemma 2, we know that
f∗ − f(x) ≤ ν1ρ

h, ∀x ∈ Ph,i. Then we have
∑n
t=1

(
f (Xt) + ν1ρ

h − f∗
)
I{(Ht,It)∈C(h,i)} ≥ 0.

3Recall Definition 4.
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Therefore,

P (Uh,i(n) ≤ f∗ and Th,i(n) ≥ 1)

=P
(
µ̂h,i(n) + nα/ξTh,i(n)η−1 + ν1ρ

h ≤ f∗ and Th,i(n) ≥ 1
)

=P
(
Th,i(n)µ̂h,i(n) + Th,i(n)

(
ν1ρ

h − f∗
)
≤ −nα/ξTh,i(n)η and Th,i(n) ≥ 1

)
=P

(
n∑
t=1

(Yt − f (Xt)) I{(Ht,It)∈C(h,i)} +

n∑
t=1

(
f (Xt) + ν1ρ

h − f∗
)
I{(Ht,It)∈C(h,i)}

≤ −nα/ξTh,i(n)η and Th,i(n) ≥ 1

)

≤P

(
n∑
t=1

(f (Xt)− Yt) I{(Ht,It)∈C(h,i)} ≥ n
α/ξTh,i(n)η and Th,i(n) ≥ 1

)
Since the HOO tree has limited depth, the total number of nodes played in C(h, i) is upper bounded
by some constant C > 1 that is independent of n. Let Xj denote the j-th new node played in C(h, i),
denote the number of times Xj is played as nj , and let Y jt (1 ≤ t ≤ nj) be the corresponding reward
the t-th time arm Xj is played. Then, by the union bound, we have

P

(
n∑
t=1

(f (Xt)− Yt) I{(Ht,It)∈C(h,i)} ≥ n
α/ξTh,i(n)η and Th,i(n) ≥ 1

)

≤
n∑

Th,i(n)=1

P

(
n∑
t=1

(f (Xt)− Yt) I{(Ht,It)∈C(h,i)} ≥ n
α/ξTh,i(n)η

)

=

n∑
Th,i(n)=1

P

 H̄∑
j=1

nj∑
t=1

(
f
(
Xj
)
− Y jt

)
≥ nα/ξTh,i(n)η


≤

n∑
Th,i(n)=1

C∑
j=1

P

(
nj∑
t=1

(
f
(
Xj
)
− Y jt

)
≥ nα/ξ

C
nηj

)

≤ β1

nα−1
,

where β1 > 1 is a constant depending on C and β, and in the last inequality we applied the
concentration property of the bandit problem (5). Notice that we can only use the concentration
property when the requirement z = nα/ξ

H̄
≥ 1 is satisfied, but when z < 1, the inequality also trivially

holds because β
zξ
> 1. This completes the proof of P (Uh,i(n) ≤ f∗) ≤ β1

nα−1 .

Lemma 5. (Lemma 14 in Bubeck et al. (2011)) Let (h, i) be a suboptimal node. Let 0 ≤ k ≤ h− 1
be the largest depth such that (k, i∗k) is on the path from the root (0, 1) to (h, i), i.e., (k, i∗k) is the
lowest common ancestor (LCA) of (h, i) and the optimal path. Then, for all integers u ≥ 0, we have

E [Th,i(n)] ≤ u+

n∑
t=u+1

P
{[
Us,i∗s (t) ≤ f∗ for some s ∈ {k + 1, . . . , t− 1}

]
or [Th,i(t) > u and Uh,i(t) > f∗]} .

Proof. This lemma is stated in exactly the same way as Lemma 14 in Bubeck et al. (2011), and the
proof follows similarly. We hence omit the proof here.

Lemma 6. For all integers t ≤ n, for any suboptimal node (h, i) such that ∆h,i > ν1ρ
h, and for all

integers u ≥ Ah,i(n) =

⌈(
2nα/ξ

∆h,i−ν1ρh

) 1
1−η
⌉

, there exists a constant β2 > 1, such that

P (Uh,i(t) > f∗ and Th,i(t) > u) ≤ β2t

nα
.
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Proof. The proof idea follows almost the same procedure as the proof of Lemma 16 in Bubeck et al.
(2011), and we repeat it here due to some minor differences. First, notice that the u defined in the
statement of the lemma satisfies nα/ξuη−1 + ν1ρ ≤ ∆h,i+ν1ρ

h

2 . Then we have

P (Uh,i(t) > f∗ and Th,i(t) > u)

=P
(
µ̂h,i(t) + nα/ξuη−1 + ν1ρ

h > f∗h,i + ∆h,i and Th,i(t) > u
)

≤P
(
µ̂h,i(t) > f∗h,i +

∆h,i − ν1ρ
h

2
and Th,i(t) > u

)
≤P
(
Th,i(t)

(
µ̂h,i(t)− f∗h,i

)
>

∆h,i − ν1ρ
h

2
Th,i(t) and Th,i(t) > u

)
≤P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} >
∆h,i − ν1ρ

h

2
Th,i(t) and Th,i(t) > u

)

≤
t∑

Th,i(t)=u+1

P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} >
∆h,i − ν1ρ

h

2
Th,i(t)

)
,

where in the last step we used the union bound. Then, following a similar procedure as in the proof
of Lemma 4 (defining Xj and Y jt , and then the concentration property), we get:

t∑
Th,i(t)=u+1

P

(
t∑

s=1

(Ys − f (Xs)) I{(Hs,Is)∈C(h,i)} >
∆h,i − ν1ρ

h

2
Th,i(t)

)

≤
t∑

Th,i(t)=u+1

β2(
∆h,i−ν1ρ

2

)ξ
(Th,i(t))

ξ(1−η)

≤
t∑

Th,i(t)=u+1

β2

nα
≤ β2t

nα
,

where β2 > 1 is a constant independent of n, and in the second step we used the

fact that Th,i(t) > u ≥ Ah,i(n) =

⌈(
2nα/ξ

∆h,i−ν1ρh

) 1
1−η
⌉

. This completes our proof of

P (Uh,i(t) > f∗ and Th,i(t) > u) ≤ β2t
nα .

Lemma 7. For any suboptimal node (h, i) with ∆h,i > ν1ρ
h and any integer n ≥ 1, there exist

constants β1, β2 > 1, such that:

E [Th,i(n)] ≤
(

2nα/ξ

∆h,i − ν1ρh

) 1
1−η

+ 1 + β1 +
β2

α− 3
.

Proof. Let Ah,i(n) =

⌈(
2nα/ξ

∆h,i−ν1ρh

) 1
1−η
⌉

. Then from Lemma 5, we know that

E [Th,i(n)] ≤ Ah,i(n) +

n∑
t=Ah,i(n)+1

(
P (Th,i(t) > Ah,i(n) and Uh,i(t) > f∗) +

t−1∑
s=1

P
(
Us,i∗s (t) ≤ f∗))

By replacing the right hand side with the results from Lemma 4 and Lemma 6, we further have

E [Th,i(n)] ≤ Ah,i(n) +

n∑
t=Ah,i(n)+1

(
β2t

nα
+

t−1∑
s=1

β1

tα−1

)

≤ Ah,i(n) +
β2

nα−2
+

∫ n

u

β1

tα−2
dt

≤
(

2nα/ξ

∆h,i − ν1ρh

) 1
1−η

+ 1 + β2 +
β1

α− 3
.
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This completes our proof.

Lemma 8. Let (h, i) be a suboptimal node. Then for any n ≥ 1 and any u > Ah,i(n) =⌈(
2nα/ξ

∆h,i−ν1ρh

) 1
1−η
⌉

, there exist constants β1, β2 > 1, such that

P (Th,i(n) > u) ≤ β2

nα−2
+
β1(u− 1)3−α

α− 3
.

Proof. Clearly, this inequality holds for n ≤ u, as Th,i(n) ≤ n and the left hand side would be 0 in
this case. We therefore focus on the case n > u.

We first notice the following monotonicity of the B-values: according to the way that B-values are
defined, the B-value of the descendants of a node (h, i) would always be no smaller than the B-value
of (h, i) itself. Therefore, B-values do not decrease along a path from the root to a leaf.

Now, let 0 ≤ k ≤ h− 1 be the largest depth such that (k, i∗k) is on the path from the root (0, 1) to
(h, i). We define two events: E1 = {For each t ∈ [u, n], Bh,i(t) ≤ f∗ or Th,i(t) ≤ Ah,i(t) < u},
and E2 = {For each t ∈ [u, n], Bk+1,i∗k+1

(t) > f∗}. We can verify that E1 ∩ E2 ⊆ {Th,i(n) ≤ u}.
To see this, suppose that for some t ∈ [u, n] we have Bh,i(t) ≤ f∗ and Bk+1,i∗k+1

(t) > f∗; then we
know that we would not enter the node (h, i). This is because by the monotonicity of the B-values,
the ancestor of (h, i) at level k + 1 has a B-value no larger than Bh,i(t), which in turn satisfies
Bh,i(t) ≤ f∗ < Bk+1,i∗k+1

(t). Therefore, we would always enter Bk+1,i∗k+1
rather than the ancestor

of (h, i) at level k + 1. In this case, Th,i would not increase at round t. Now consider the other case:
suppose that for some t ∈ [u, n] we have Th,i(t) ≤ Ah,i(t) < u and Bk+1,i∗k+1

(t) > f∗. In this case,
we could indeed possibly enter node (h, i) and increase Th,i by 1, but since Th,i(t) < u, we still have
Th,i(t + 1) ≤ u after increasing by 1. Considering these two cases inductively, we can see that if
E1 ∩ E2 holds, then Th,i(u − 1) < u implies Th,i(n) ≤ u. Since Th,i(u − 1) < u trivially holds,
we can conclude that E1 ∩ E2 ⊆ {Th,i(n) ≤ u}.
After we haveE1∩E2 ⊆ {Th,i(n) ≤ u}, we know that {Th,i(n) > u} ⊆ Ec1∪Ec2, whereEc denotes
the complement of event E. This in turn gives us P ({Th,i(n) > u}) ≤ P (Ec1) + P (Ec2). From the

definition of the B-values,
{
Bk+1,i∗k+1

(t) ≤ f∗
}
⊂
{
Uk+1,i∗k+1

(t) ≤ f∗
}
∪
{
Bk+2,i∗k+2

(t) ≤ f∗
}

,
and this can be applied recursively up to depth t, where the nodes in depth t have not been played at
round t and satisfy Bt,i∗t =∞ > f∗. Together with the fact that Uh,i(t) ≥ Bh,i(t) (by definition),
we have

P (Th,i(n) > u)

≤P (∃t ∈ [u, n], Bh,i(t) > f∗ and Th,i(t) > Ah,i(t)) + P
(
∃t ∈ [u, n], Bk+1,i∗k+1

(t) ≤ f∗
)

≤P (∃t ∈ [u, n], Uh,i(t) > f∗ and Th,i(t) > Ah,i(t))

+ P
(
∃t ∈ [u, n], Uk+1,i∗k+1

(t) ≤ f∗ or Uk+2,i∗k+2
(t) ≤ f∗ or . . . or Ut−1,i∗t−1

(t) ≤ f∗
)

≤
n∑
t=u

P (Uh,i(t) > f∗ and Th,i(t) > Ah,i(t))

+

n∑
t=u

P
(
Uk+1,i∗k+1

(t) ≤ f∗ or Uk+2,i∗k+2
(t) ≤ f∗ or . . . or Ut−1,i∗t−1

(t) ≤ f∗
)

≤
n∑
t=u

P (Uh,i(t) > f∗ and Th,i(t) > Ah,i(t)) +

n∑
t=u

t−1∑
s=1

P
(
Us,i∗s (t) ≤ f∗

)
,
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where in the last two steps we used the union bound. Since we know P
(
Us,i∗s (t) ≤ f∗

)
≤ β1

nα−1

from Lemma 4, and P (Uh,i(t) > f∗ and Th,i(t) > Ah,i(t)) ≤ β2t
nα from Lemma 6, we conclude that

n∑
t=u

P (Uh,i(t) > f∗ and Th,i(t) > Ah,i(t)) +

n∑
t=u

t−1∑
s=1

P
(
Us,i∗s (t) ≤ f∗

)
≤

n∑
t=u

β2t

nα
+

n∑
t=u

t−1∑
s=1

β1

tα−1
≤

n∑
t=u

β2n

nα
+ β1

∫ ∞
u−1

t2−αdt

≤ β2

nα−2
+
β1(u− 1)3−α

α− 3
.

This completes the proof.

We further remark that if 1 < u ≤ n, then 1
nα−2 ≤ u3−αnα−3

nα−2 ≤ (u−1)3−α

n , which implies

P (Th,i(n) > u) ≤ β2(u− 1)3−α

n
+
β1(u− 1)3−α

α− 3
. (21)

Notice that this inequality also holds when u > n, because Th,i(n) ≤ n < u, and any non-negative
value on the RHS is a trivial upper bound for P (Th,i(n) > u).

Remark 4. As a final remark, when we refer to the results of Lemmas 4, 5, 6, 7 and 8, we typically
drop the constant factors β1 and β2 and proceed with β1 = β2 = 1 instead. This does not affect our
main results up to a constant factor.

E Details of the Simulations

In this section, we discuss details of the simulations and empirically evaluate the performance of
POLY-HOOT on several classic control tasks. We have chosen three benchmark tasks from the OpenAI
Gym (OpenAI, 2016), and extended them to the continuous-action settings as necessary. These tasks
include CartPole, Inverted Pendulum Swing-up, and LunarLander.

In the CartPole problem, a pole is attached to a cart through a joint. The task is to apply an appropriate
horizontal force to the cart to prevent the pole from falling. For every time step that the pole remains
standing (up to 15 degrees from being vertical), a unit reward is given. We have also modified the
CartPole problem to a more challenging setting with an increased gravity value (CartPole-IG) to
better demonstrate the differences between the algorithms we compare. This new setting requires
smoother actions, and bang-bang control strategies easily lead the pole to fall due to the increased
momentum. The Inverted Pendulum Swing-up task is also a classic problem in control. A pendulum
is attached to a frictionless pivot, starting from a random position. The task is to apply a force to the
pendulum to swing it up and let it stay upright. At each time step, a reward is given based on the
angle of the current position of the pendulum from being upright. In the LunarLander problem, the
task is to design the control signals for a lunar lander to land smoothly on a landing pad. A negative
reward is given every time the engine is fired, and a positive reward is given when the lander safely
reaches the landing pad.

In the original problem of CartPole, the action set is a discrete set {−1, 1}. In our CartPole and
CartPole-IG environments though, we have extended the action space to a continuous domain [−1, 1].
In CartPole-IG, we have further increased the gravity value from 9.8 to 50, increased the mass of the
pole from 0.1 to 0.5, and increased the length of the pole from 1 to 2. The other parameters have
remained the same as the discrete setting in OpenAI Gym. For the task of Inverted Pendulum, we
have manually reduced the randomness of the initial state to ensure that each run of the simulation is
initialized more consistently. The reward discount factor was set to be γ = 0.99 for all the four tasks.
The length of the horizon was taken as T = 150.

We compare the empirical performance of POLY-HOOT with three continuous MCTS algorithms,
including UCT (Kocsis and Szepesvári, 2006) with manually discretized actions, Polynomial Upper
Confidence Trees (PUCT) with progressive widening (Auger et al., 2013), and the original empirical
implementation of HOOT (Mansley et al., 2011) with a logarithmic bonus term. For all four
algorithms, we have set the MCTS depth to be D = 50, except for the task of LunarLander where we
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Figure 1: Figures (a) and (b) show the rewards of the four algorithms with respect to the rounds of
simulations per MCTS step on CartPole and CartPole-IG, respectively. The horizontal axes are in
logarithmic scales. The shaded areas denote the standard deviations. Figure (c) shows the reward of
discretized-UCT with respect to the action discretization level on CartPole-IG.

set D = 100 because this task takes a longer time to finish. We have set the number of simulations at
each state to be n = 100 rounds. For the UCT algorithm with discretized actions, we have fixed the
number of actions to be 10 and sampled the actions using a uniform grid. For PUCT with progressive
widening, we have set the progressive widening coefficient to be 0.5, i.e., the number of discrete
action samples grows at a square-root order in time. For HOOT and POLY-HOOT, given the dimension
m of the action space, we have calculated the ρ and ν1 parameters by ρ = 1

4m and ν1 = 4m. For
POLY-HOOT, we have set the maximum depth of the HOO tree covering to be H̄ = 10, and we have
fixed α = 5, ξ = 20, and η = 0.5. The value function oracle we have used is V̂ (s) = 0,∀s ∈ S for
all four algorithms.

In addition to the evaluation results presented in the main text, we have also tested how the number
of simulation rounds per planning step influences the rewards of the four algorithms. The number of
simulation rounds is proportional to the number of samples used in each step, and hence we can use
this experiment to infer the sample complexities of different algorithms. The evaluation results on
CartPole and CartPole-IG are shown in Figures 1 (a) and (b), respectively. As we can see, HOOT and
POLY-HOOT require significantly fewer rounds of simulations to achieve the optimal rewards, which
suggests that they have better sample complexities than discretized-UCT and PUCT.

We have also evaluated how the action discretization level influences the performance of discretized-
UCT. The evaluation results on CartPole-IG are shown in Figure 1 (c), where different curves
denote different numbers of simulation rounds per planning step. As we can see, the performance
of discretized-UCT does not necessarily improve with finer granularity of actions. We believe the
reason is that, given the fixed number of samples used in each step, each discretized action cannot
be well estimated and fully exploited when the discretized action space is large. In addition, there
exist huge reward fluctuations even if we only slightly modify the action granularity. This suggests
that the performance of discretized-UCT is very sensitive to the discretization level, making this
hyper-parameter hard to tune. These evaluation results can further demonstrate the advantages of
partitioning the action space adaptively in HOOT and POLY-HOOT.
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