
We thank all reviewers for their insightful feedback. We are encouraged they find ODS to be simple (R2), well-motivated1

(R1), applicable to many existing attacks (R2) including both white- and black-box attacks (R1,3), and evaluated with2

extensive experiments (R2) which show significant improvements in black-box attacks (R1,3) and justifications of3

surrogate models (R3). We address some specific comments below and will incorporate all feedback received.4

@R2,3 – “Comparison with black-box attacks using surrogate models would strengthen the paper.” Great suggestion!5

We focus on [25] which R2 and R3 cited. [25] proposed P-RGF which uses prior knowledge to estimate the gradient of6

the target model more efficiently than RGF. RGF uses random sampling to estimate the gradient, so we can combine7

ODS with RGF and compare it with P-RGF under `2 and `∞ norms (results in Table i below) . The average number8

of queries required by ODS-RGF is smaller than P-RGF ([25]) in all settings. It suggests ODS-RGF can estimate9

the gradient more precisely than P-RGF by exploiting diversity obtained from surrogate models. R2 also cited [23].10

While we did not have enough time for an additional experimental comparison, we note that [23] is specific to the `∞11

norm and needs to train a generator per target class, which is quite restricted compared to ODS.12

Table i: Comparison of ODS-RGF and P-RGF for 300 images on ImageNet. The target and surrogate models are
pre-trained ResNet50 and ResNet34 models, respectively. As for hyperparameters, the number of max queries is 10000,
sample size is 10, step size is 0.5 (`2) and 0.005 (`∞), and epsilon is

√
0.001 · 2242 · 3 (`2) and 0.05 (`∞).

untargeted targeted
norm attack success queries `2 perturbation success queries `2 perturbation

`2
RGF 100.0% 633 3.07 99.3% 3141 8.23

P-RGF [25] 100.0% 211 2.08 97.0% 2296 7.03
ODS-RGF 100.0% 133 1.50 99.3% 1043 4.47

`∞
RGF 97.0% 520 - 25.0% 2971 -

P-RGF [25] 99.7% 88 - 65.3% 2123 -
ODS-RGF 100.0% 74 - 92.0% 985 -

@R2 – “Does ODS suffer from differences in the training scheme (e.g. adversarially and naturally)?” Yes, partly. That13

being said, we can mitigate the problem by simultaneously using surrogates obtained with various training schemes14

(which are mostly publicly available). We run a new experiment to attack a robust target model using SimBA-ODS15

with both natural and robust surrogate models (a natural model and a robust model). SimBA-ODS still outperforms16

SimBA-DCT without surrogate models (e.g. average query is 1304 vs 2824). This suggests that if the set of surrogates17

includes one that is similar to the target, ODS still works (even when some other surrogates are "wrong").18

@R3 – “What happens if a search direction of ODS is a vector aligned with the true class?” It might accelerate attacks19

but make the perturbation large due to less diversity (A related phenomenon is shown in Figure G for MultiTargeted).20

@R3 – “Why do you combine SimBA and Boundary attack with ODS?” A reason is these attacks use random sampling.21

Another one is popularity. These attacks are common benchmarks.22

@R1 – “Comparison under the same step for Table 1 and 2 would be fairer.” We agree and performed new experiments23

with ODI-PGD-(k-2), which outperforms PGD-k in Table 1 on all datasets (90.21% vs 90.31% on MNIST, 44.45% vs24

46.06% on CIFAR-10 and 42.3% vs 43.5% on ImageNet). For Table 2, we also ran tuned ODI-PGD with 1000 total25

steps on MNIST and can confirm the result in a single run is within the confidence intervals in Figure C.26

@R2 – “Comparison of diversity between 2 steps of ODI and PGD would be helpful.” We compare diversity like in27

Figure A. In the left panel of Figure i, losses for points generated by ODI-2 (2 steps of ODI) are more diverse than28

PGD-2. This diversity also brings diversity in attack results after 20 steps (see the right panel).29

Figure i: Histogram of loss values after some update steps. Each attack runs 100 times for one sample image. PGD-2
and PGD-20 are initialized by naïve uniform initialization. The loss function is the margin loss.

@R1 – “What is computational complexity in Table 2?” It is the number of gradient computations, e.g. 42 steps × 2030

restarts = 840. We confirmed the wall-clock time for calculation of a ODI step is the same as PGD.31


