
Appendix

A Mathematical Preliminaries

In this section, we provide a brief introduction to the mathematical tools used in proving the theorems
given in this paper :

Log-Concave Functions [18] A non-negative function f : Rn → R+ is log-concave if it satisfies
the inequality

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ

for all x, y ∈ R and 0 < θ < 1. Some popular examples of log-concave functions are the Gaussian
pdf and 0 − 1 indicator functions of convex sets. Log-concave functions satisfy the following
properties:

• Log-concave functions are also quasi-concave.
• If f, g are both log-concave functions then the convolution f ? g is also log-concave.

Quasi-Concave Functions [18] A function f is called quasi-concave if

f(λx+ (1− λ)y) ≥ min
{
f(x), f(y)

}
Quasi-concave functions satisfy the following properties:

• If f is quasi-concave, then the superlevel sets, i.e., sets S of the form S = {z | f(z) ≥ γ}
for some γ, are convex.

• If f1, f2, . . . , fn are both quasi-concave functions then the point-wise minimum of these,
i.e., f = min1≤i≤n fi is also quasi-concave.

Absolute Moments Of Gaussian Random Variable : The ith absolute moments of a random
variable x is given as E[

∣∣xi∣∣]. For Gaussian random variable with variance σ2, the absolute moments

are E[
∣∣xi∣∣] = σi2i/2√

π
Γ( i+1

2 ), where Γ is the Gamma function. Some properties of the Gamma
function are: Γ(i) = (i− 1)!, Γ( i+1

2 ) = i−1
2 Γ( i−1

2 ) for all i ∈ N>0.

Subgaussian Random Varibale/Vector A random variable x ∈ R is said to be sub-Gaussian with
parameter σ2 if E[x] = 0 and its moment generating function satisfies E[esx] ≤ e

σ2s2

2 . This is
denoted as x ∼ subG(σ2). Then a random vector X is considered to be sub-Gaussian with parameter
σ2 if for all unit vectors v, vTX ∼ subG(σ2). With slight abuse of notation we denote this as
X ∼ subG(σ2).

Sub-Gaussian random variables satisfy the following properties:

• If x1, x2, . . . , xN are independent sub-Gaussian random variables with parameter k, then∑N
i=1 xi
N ∼ subG( kN ).

• If x ∼ subG(k), then P(x > t) ≤ e− t
2

2k and P(x < −t) ≤ e− t
2

2k

• If x1, x2, . . . , xN are not necessarily independent sub-Gaussian random variables with
parameter k, then P(max1≤i≤N xi > t) ≤ Ne− t

2

2k .

Generalized Neyman Pearson Lemma [17] In order to solve the optimization problems for our
framework we use the Generalized Neymann Pearson Lemma [17]. Here, we give the lemma with a
simplified short proof
Lemma 1 (Generalized Neymann Pearson Lemma). Let f0, f1, . . . , fm be real-valued, µ−integrable
functions defined on a Euclidean space X . Let ψ0 be any function of the form

ψ0(x)


= 1, if f0(x) < k1f1(x) + . . .+ kmfm(x)

= γ(x), if f0(x) = k1f1(x) + . . .+ kmfm(x)

= 0, if f0(x) > k1f1(x) + . . .+ kmfm(x)

(8)
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where 0 ≤ γ(x) ≤ 1. Then ψ0 minimizes
∫
X
ψ0f0dµ over all ψ, 0 ≤ ψ ≤ 1 such that for

i = 1, . . . ,m

ki

∫
X

ψfidµ ≥ ki
∫
X

ψ0fidµ

Proof. We start by observing that under the given definition of ψ0, ψ the following inequality holds∫
X

(ψ − ψ0)

(
f0 −

m∑
i=1

kifi

)
dµ ≥ 0 (9)

We can show by proving ∀x, (ψ(x)− ψ0(x))

(
f0(x)−

∑m
i=1 kifi(x)

)
≥ 0. We show this by doing

a case analysis:

• If f0(x)−
∑m
i=1 kifi(x)) > 0 then ψ0(x) = 0. As ψ(x) ≥ 0, ψ(x)− ψ0(x) ≥ 0 making

(ψ(x)− ψ0(x))

(
f0(x)−

∑m
i=1 kifi(x)

)
≥ 0.

• If f0(x)−
∑m
i=1 kifi(x)) < 0 then ψ0(x) = 1. As ψ(x) ≤ 1, ψ(x)− ψ0(x) ≤ 0 making

(ψ(x)− ψ0(x))

(
f0(x)−

∑m
i=1 kifi(x)

)
≥ 0.

• Finally if f0(x) −
∑m
i=1 kifi(x)) = 0 then (ψ(x) − ψ0(x))

(
f0(x) −

∑m
i=1 kifi(x)

)
=

0 ≥ 0.

Using the inequality 9, we see that∫
X

ψ

(
f0 −

m∑
i=1

kifi

)
dµ ≥

∫
X

ψ0

(
f0 −

m∑
i=1

kifi

)
dµ

∀ i ≥ 1, ki

∫
X

ψfidµ ≥ ki
∫
X

ψ0fidµ =⇒
∫
X

ψf0dµ ≥
∫
X

ψ0f0dµ
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B Proofs for A General Framework for Randomized Smoothing

B.1 Regularity Properties of GµF

Theorem 1. If ∀α ∈ Nd,
∫
Rd |D

αµ(z)|dz exists and is finite, then GµF ⊂ C∞. Moreover if g ∈ GµF is
given as g = f ? µ for some f ∈ F , then

∇ig(x) =

∫
Rd
f(y)(−1)i(∇iµ)(y − x)dy

Proof. It follows from the definition that whenever the right-hand side exists, we have

g(x) =

∫
Rd
f(x+ z)µ(z)dz

=

∫
Rd
f(y)µ(y − x)dy,

∇ixg(x) = ∇ix
∫
Rd
f(y)µ(y − x)dy

=

∫
Rd
f(y)∇ixµ(y − x)dy.

As we have i > 1, we get∇ix(y − x) = 0 and

∇ixg(x) =

∫
Rd
f(y)(∇iµ)(y − x)(∇x(y − x))idy

=

∫
Rd
f(y)(−1)i(∇iµ)(y − x)dy.

In order to show that the integral exists and is finite we show that integral converges for ev-
ery element of the tensor. Our problem reduces to showing that for all α ∈ Nd the integral∫
Rd f(y)(−1)i(Dαµ)(y − x)dy exists and is finite. Using integrability conditions we see this

is equivalent to showing∫
Rd
|(Dαµ)(y − x)|dy <∞ ⇐⇒

∫
Rd
|Dαµ(z)|dz <∞.

Lemma 2. Let µ0(z) denote the Gaussian distribution N (0, σ2), then dj

dzj µ0(z) = qj(z)µ0(z)

for some jth degree polynomial qj with finite coefficient aj,i for 0 ≤ i ≤ j. Moreover, aj+1,i =
(i+ 1)aj,i+1 − 1

σ2 aj,i−1

Proof. For the base case j = 1, we see that d
dzµ0(z) = − z

σ2µ0(z). Thus, we we have q1(z) = − z
σ2

which is a degree 1 polynomial.

For the inductive step, we see that dj+1

dzj+1µ0(z) = d
dz

(
dj

dzj µ0(z)
)

= d
dz qj(z)µ0(z) =(

d
dz qj(z)

)
µ0(z) + qj(z)(− z

σ2µ0(z)) =
(
d
dz qj(z) −

z
σ2 qj(z)

)
µ0(z). Thus, qi+1(z) =

(
d
dz qj(z) −

z
σ2 qj(z)

)
which is clearly a polynomial of degree (j + 1) with coefficients aj+1,i = (i+ 1)aj,i+1 −

1
σ2 aj,i−1.

Corollary 1.1. When µ is given as the isotropic Gaussian distribution N (0, σ2I), then GµF ⊂ C∞
and ∇ig(x) =

∫
Rd f(y)(−1)i∇iµ(y − x)dy.

Proof. Using the fact that for isotropic gaussian we can write µ(x) = Πd
i=1µ0(xi) (where µ0 is also

a gaussian pdf), we have ∫
Rd
|Dαµ(z)|dz =

∫
R

∣∣DαΠd
i=1µ0(zi)

∣∣dz
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=

∫
R

Πd
i=1

∣∣∣∣ dαidzαii
µ0(zi)

∣∣∣∣dz
= Πd

i=1

∫
R

∣∣∣∣ dαidzαii
µ0(zi)

∣∣∣∣dzi.
As we know that the product of d finite values is finite, we only need to show that for any value
i ∈ N,

∫
R |

di

dziµ0(z)|dz is finite. Using Lemma 2, we see that it suffices to show that for all j ∈ N,∫
R |x

jµ0(z)|dz is finite. But this quantity is known as the absolute central moment of normal

distribution and is given by σj
√

2j

π Γ
(

1+j
2

)
which is finite.

Lemma 3. For µ given by isotropic Gaussian distribution N (0, σ2I) and a function f ∈ F , if
‖x− w‖∞ ≤ R for some finite R, then∫

Rd
f(y)

∑
α∈Nd

Dαµ(y − w)
(w − x)α

α!
dy =

∑
α∈Nd

(w − x)α

α!

∫
Rd
f(y)Dαµ(y − w)dy

Proof. As this can be regarded as a double integral where the sum is an integral over the counting
measure, we can use Fubini’s Theorem to reduce it to proving :∑

α∈Nd

∣∣∣∣ (w − x)α

α!

∣∣∣∣ ∫
Rd
|f(y)Dαµ(y − w)dy| <∞

As f(y) only takes values between 0 and 1, we see that∑
α∈Nd

∣∣∣∣ (w − x)α

α!

∣∣∣∣ ∫
Rd
|f(y)Dαµ(y − w)|dy ≤

∑
α∈Nd

∣∣∣∣ (w − x)α

α!

∣∣∣∣ ∫
Rd
|Dαµ(z)|dz

=
∑
α∈Nd

d∏
j=1

(∣∣∣∣ (wj − xj)αjαj !

∣∣∣∣ ∫
R

∣∣∣∣ dαjdzαj
µ0(z)

∣∣∣∣dz
)

=

d∏
j=1

(∑
k∈N

∣∣∣∣ (wj − xj)kk!

∣∣∣∣ ∫
R

∣∣∣∣ dkdzk µ0(z)

∣∣∣∣dz
)

≤

(∑
k∈N

Rk

k!

∫
R

∣∣∣∣ dkdzk µ0(z)

∣∣∣∣dz
)d

As d is finite number, it is sufficient to show that the infinite sum converges. Using Lemma 2, we see
that dk

dzk
µ0(z) = qk(z)µ0(z) for some kth degree polynomial qk. Let aj,i be the co-efficient of zi in

the polynomial qj .∫
R

∣∣∣∣ dkdzk µ0(z)

∣∣∣∣dz =

∫
R
|qk(z)µ0(z)|dz ≤

k∑
i=0

∫
R

∣∣akiziµ0(z)
∣∣dz =

k∑
i=0

|aki|
σi2i/2Γ( i+1

2 )
√
π

Using comparison condition, it is sufficient to show that the sum
∑∞
k=0

Rk

k!

∑k
i=0 |ak,i|

σi2i/2Γ( i+1
2 )√

π

converges. Now, we prove the convergence using the ratio test. Using the fact aj+1,i = (i +
1)aj,i+1 − 1

σ2 aj,i−1, we see

Rk+1

(k+1)!

∑k+1
i=0 |ak+1,i|

2i/2σi+1Γ( i+1
2 )√

π

Rk

k!

∑k
i=0 |ak,i|

2i/2σi+1Γ( i+1
2 )√

π

=
R

k + 1

∑k+1
i=0 |ak+1,i|2i/2σi+1Γ( i+1

2 )∑k
i=0 |ak,i|2i/2σi+1Γ( i+1

2 )

≤ R

k + 1

∑k+1
i=0 ((i+ 1)|ak,i+1|+ 1

σ2 |ak,i−1|)2i/2σi+1Γ( i+1
2 )∑k

i=0 |ak,i|2i/2σi+1Γ( i+1
2 )

=
R

k + 1

∑k
i=0 |ak,i|(iσiΓ( i2 )2(i−1)/2 + σiΓ( i+2

2 )2(i+1)/2)∑k
i=0 |ak,i|2i/2σi+1Γ( i+1

2 )
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=
R

k + 1

∑k
i=0 2i|ak,i|2(i−1)/2σiΓ( i2 )∑k
i=0 |ak,i|2i/2σi+1Γ( i+1

2 )

Using ([19]),
Γ( i2 )

Γ( i+1
2 )
≤

√
i+1
2

i
2

,

≤ R

k + 1

∑k
i=0 2

√
i+ 1|ak,i|2i/2σiΓ( i+1

2 )∑k
i=0 σ|ak,i|2i/2σiΓ( i+1

2 )

≤ R

k + 1

2
√
k + 1

σ
=

2R

σ
√
k + 1

For any finite R, limk→∞
2R

σ
√
k+1

= 0 < 1. So the series is convergent.

Theorem 2. When µ is the isotropic Gaussian distribution N (0, σ2I), then ∀g ∈ GµF , g is a real
analytic function with infinite radius of convergence ,i.e., the Taylor series of g around any point w
converges to the function g everywhere.

Proof. Let us take the Taylor expansion at a point w. In order to show that the Taylor expansion
has an infinite radius of convergence, we consider any arbitrarily big value R and show that if
‖x− w‖∞ ≤ R, then

g(x) =

∫
Rd
f(x+ z)µ(z)dz

=

∫
Rd
f(y)µ(y − x)dy

Using the Taylor expansion of the gaussian PDF and the fact it’s radius of convergence is infinite

g(x) =

∫
Rd
f(y)

∑
α∈Nd

Dαµ(y − w)
((y − x)− (y − w))α

α!
dy

Now using Lemma 3, we get

g(x) =
∑
α∈Nd

(w − x)α

α!

∫
Rd
f(y)Dαµ(y − w)dy

Finally, we use Corollary 1.1, to get

g(x) =
∑
α∈Nd

(x− w)α

α!
Dαg(w)

As for any arbitrarily large R, the Taylor series converges for any x satisfying ‖x− w‖∞ ≤ R we see
that the radius of convergence is infinite. Clearly, this holds for all points w ∈ Rd and all g ∈ GµF .

B.2 Certification For Randomized Smoothing Using First-Order Information

We use the Generalized Neymann Pearson Lemma ([17]) to solve the optimization problem 2.
Theorem 3 (Lower Bound of px(z)). For a base classifier f ∈ F , if g = f ? µ, µ is the isotropic
Gaussian distribution N (0, σ2I), y(0) = g(x), y(1) = ∇g(x), then for any unit vector v and any
positive value of r, px(x+ σrv) can be lower bounded by solving the following set of equations:∫ ∞

−∞

1√
2π
e−

x2

2 Φ(c(x))dx = q (6)

∫ ∞
−∞

1√
2π
e−

x2

2
1√
2π
e−

c(x)2

2 dx = m2 (7a)
∫ ∞
−∞

1√
2π
xe−

x2

2 Φ(c(x))dx = m1 (7b)

with q ≤ y(0),m1 ≤ σvT y(1),m2 ≤ σ
∥∥y(1) − vT y(1)v

∥∥
2
, c(x) := c0 + c1x + c2e

rx, and Φ(z)

being the CDF of the standard normal distribution. If the solution (c0, c1, c2) of above equations has
c1 < 0, then the lower bound of px(x+ σrv) is instead given by solving Equations (4) to (5a) with
c(x) := c0 + c2e

rx.
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Proof. In order to solve the Equation 2 under the local constraints Hx0
1 (h) = y(0) − h(x0) = 0 and

Hx0
2 (h) = y(1) −∇h(x0) = 0. Setting the measure to be µσ =

(
1√

2πσ2

) d
2 e−

‖z‖22
2σ2 and using the fact

that h ∈ GµF , we have h = f ′ ? µ for some f ∈ F . Thus, the constraints can be expressed using the
base classifier as given as ∫

Rd
f ′(x0 + z)dµσ = y(0)∫

Rd

z

σ2
f ′(x0 + z)dµσ = y(1)

and the optimization problem is given as minf ′∈F
∫
Rd e

− R2

2σ2 e
RvT z
σ2 f ′(x0 + z)dµσ .

In order to make the math simpler we use the following basis transformation we rotate the basis such
that we have z1 along the v, z2 along y(1) − vT y(1)v and then we scale the basis by a factor of 1

σ .

The constraints can now be expressed using µ =
(

1√
2π

) d
2 e−

‖z‖22
2 given as∫

Rd
f ′(x0 + z)dµ = y(0)∫

Rd

z1

σ
f ′(x0 + z)dµ = vT y(1)∫

Rd

z2

σ
f ′(x0 + z)dµ =

∥∥∥y(1) − vT y(1)v
∥∥∥

2∫
Rd

zi
σ
f ′(x0 + z)dµ = 0, if i ≥ 3

Then defining r = R
σ , the optimization problem is given as

min
f ′∈F

∫
Rd
e−

r2

2 erz1f ′(x0 + z)dµ = e−
r2

2 min
f ′∈F

∫
Rd
erz1f ′(x0 + z)dµ

Using the Generalized Neymann Pearson Lemma, we see that the minima occurs for the function f0

such that f0(x0 + z) = 1 if erz1 ≤ aT z + b and 0 otherwise, for some a ∈ Rd, b ∈ R such that the
constraints are satisfied. We can use the constraints to solve for a, b in order to get the value of the
minimization.

Claim. For i ≥ 3, we can show that we need ai = 0.

Proof. Assume to the contrary ai > 0, then∫
Rd

zi
σ
f ′(x0 + z)dµ =

∫
erz1≤aT z+b

zi
σ
f ′(x0 + z)dµ

=

∫
zi≥

erz1−(aT−iz−i+b)
ai

zi
σ
dµ > 0

Consider the function l(z−i) :=
erz1−(aT−iz−i+b)

ai
. We know that for the standard normal measure

µ0 gaussian cdf, the value of
∫
zi≥l

zi
σ dµ0 ≥ 0 for any value of l with the equality holding only if

l = −∞. So, we see that
∫
zi≥l(z−i)

zi
σ dµ ≥ 0 for any function l(z−i) with equality holding only if

l(z−i) is −∞ almost everywhere does not hold. So, we get a contradiction. Similarly we can also
show a contradiction for the case when ai < 0. Thus, we have that for i ≥ 3, ai = 0.

Substituting the values of ai in our constraints and simplifying the integrals we have the following
system of equations:

px0
(x0 + σrv) =

∫ ∞
−∞

1√
2π
e−

(x−r)2
2 Φ(c(x))dx
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∫ ∞
−∞

1√
2π
e−

x2

2 Φ(c(x))dx = y(0)∫ ∞
−∞

1√
2π
e−

x2

2
1√
2π
e−

c(x)2

2 dx = σ
∥∥∥y(1) − vT y(1)v

∥∥∥
2∫ ∞

−∞

1√
2π
xe−

x2

2 Φ(c(x))dx = σvT y(1)

where c(x) := b
a2

+ a1

a2
x+ −1

a2
erx and Φ(z) denotes the CDF of the standard normal distribution.

Although this gives a solution for px0
(x0 + σrv) the constraints here have equalities which require

us to get exact values of y(0), y(1). This is not possible to achieve in practice. In practice, we can only
get a high confidence interval estimate of the values. So, we need to be able to solve for px0

(x0 +σrv)
given interval estimates of the parameters.

We notice that using the same argument in the Claim, we can use the constraint∫∞
−∞

1√
2π
e−

x2

2
1√
2π
e−

c(x)2

2 dx ≥ 0 to show that a2 > 0. Similarly we have that if y(0) > 0,

then b > 0. Otherwise if b < 0, then we see that c(x) < a1

a2
x giving

∫∞
−∞

1√
2π
e−

x2

2 Φ(c(x))dx <∫∞
−∞

1√
2π
e−

x2

2 Φ(a1

a2
x)dx = 0.5. As the coefficients a2, b > 0, Generalized Neymann Pearson

Lemma allows us to use lower bounds p ≤ y(0) and m2 ≤ σ
∥∥y(1) − vT y(1)v

∥∥
2

in the constraints to
still get a valid estimate of px0

(x0 + σrv).

The only variable that can be both negative and positive is a1. If we use a lower bound m1 ≤ σvT y(1)

and the resulting solution has a positive value of a1 then it is valid. However, we see that if we get a
negative value of a1 in the solution we can instead solve the relaxed minimization problem to get a
lower bound of px0(x0 + σrv) without the constraint 5b. We give this as

px0
(x0 + σrv) =

∫ ∞
−∞

1√
2π
e−

(x−r)2
2 Φ(c(x))dx∫ ∞

−∞

1√
2π
e−

x2

2 Φ(c(x))dx = y(0)∫ ∞
−∞

1√
2π
e−

x2

2
1√
2π
e−

c(x)2

2 dx = σ
∥∥∥y(1) − vT y(1)v

∥∥∥
2

where c(x) := b
a2

+ −1
a2
erx.

Proposition 1. The certified safety region, SRL(x), calculated using the zeroth and first-order local
information is convex, i.e., if x1, x2 ∈ SRL(x) then x1+x2

2 ∈ SRL(x).

Proof.
SRL(x) = {z | px(z) > 0.5}

So, SRL(x) is a superlevel set of px. In order to show SRL(x) is convex it is sufficient to show px
is a quasi-concave function. Using the definition of px, we have

px
(
z
)

= min
h∈GµF

h(z)c s.t. h(x) = y(0),∇h(x) = y(1)

Claim. For the lower bound probability function px calculated using the zeroth and first-order
information, px(z) = (f ? µ)(z) for some f such that f ? µ satisfies all the optimization constraints
and f ? µ is quasi-concave.

Proof. Using Generalized Neyman Pearson Lemma, we see that the minima of the constrained

optimization problem occurs for some function f that satisfies f(x) = 1 if e
2zT x−‖z‖22

2σ2 ≤ aTx+ b
and 0 otherwise. Thus, px(z) = (f ? µ)(z) where f is the indicator function for the set

S = {x | x ∈ Rd; e
2zT x−‖z‖22

2σ2 ≤ aTx+ b}

18



It is easy to see that the function e
2zT x−‖z‖22

2σ2 − aTx − b is convex as the Hessian is given as
zzT+σ2I

σ4 e
2zT x−‖z‖22

2σ2 � 0. Thus, the set S being a level set of a convex function is also convex. So,
f is the indicator function of a convex set and thus a log-concave function. Moreover, we have
that µ being isotropic gaussian distribution is also log-concave. From the properties of log-concave
functions we get that the convolution f ? µ is also log-concave and as log-concave functions are also
quasi-concave, f ? µ is quasi-concave.

Using this claim we see that as at every point z, px(z) = (f ? µ)(z) for some f ? µ that satisfies all
the constraints and is also quasi-concave, we can add an extra constraint to get

px
(
z
)

= min
g∈GµF

g(z)c s.t. g(x) = y(0),∇g(x) = y(1), g(x)c is quasi-concave

to get the same px. As px can be written as the minima over a set of quasi-concave functions, we see
that by the property of quasi-concave functions, px is also quasi-concave. Thus, we see that SRL(x)
is convex.

Proposition 2. For any given value of y(0), y(1), the directional robustness along v, Rv, given
by the first-order certification method is a non-increasing function of the angle between v and
y(1), i.e., cos−1

(
vT y(1)

‖v‖2‖y(1)‖
2

)
.

Proof. It follows from Theorem 3 that given some value of y(0) and y(1) the minimal probability
px0(x0 + rv) at distance r along a direction v depends only on the angle between v and y(1). Given
some fixed y(0), y(1) we can write px0

(x0 + rv) as a function of θ, px0
(x0 + rv) = px(r, θ). Given

this we claim

Claim. For any given value of r, ∂p(r,θ)∂θ ≤ 0.

Proof. As it is easier to state our theorems for vectors, We relate θ back to our vectors using a vector
valued function w(α) that gives us vectors in some plane P containing y(1) such that the angle
between y(1) and w(α) is α. Now given any angle α and some distance r, Theorem 3 gives us that
there exists some function f0 such that for g0 = f0 ? µ all the local constraints are satisfied and
g0(x0 + rw(α)) = p(r, α). As p(r, θ) gives the minimum value that can be assigned x0 + rw(θ) by
a function satisfying the given constraints, we see the p(r, θ) ≤ g0(x0 + rw(θ)). So we see that if
∂g0(x0+rw(θ))

∂θ

∣∣
θ=α
≤ 0 then ∂p(r,θ)

∂θ

∣∣
θ=α
≤ 0. It is sufficient to show that ∂g0(x0+rw(θ))

∂θ

∣∣
θ=α
≤ 0.

In order to make the make the calculation simpler we can do the same basis transformation as in
proof of Theorem 3. Under the new basis we have ∂g0(x0+rw(θ))

∂θ

∣∣
θ=α

= −∂g0(x0+(z1,z2))
∂z2

∣∣
z=(r,0)

where (z1, z2) is a two dimensional vector z1 along the old w(0) and z2 along w(π2 ).

For the new basis we see that the proof of Theorem 3 also gives the form of f0, i.e., there exist
some constants a1, b ∈ R and a2 ∈ R+ such that f0(x0 + z) = 1 if erz1 ≤ a1z1 + a2z2 + b and 0
otherwise. Using this form we have

∂g0(x0 + (z1, z2))

∂z2

∣∣
z=(r,0)

=
∂

∂z2

∫ ∫
erx≤a1x+a2y+b

1

2π
e−

(x−z1)2+(y−z2)2

2 dy dx
∣∣
z=(r,0)

=

∫ ∫
erx≤a1x+a2y+b

−y
2π

e−
(x−r)2+(y)2

2 dy dx

=

∫ ∞
−∞

∫
erx−a1x−b

a2
≤y

−y
2π

e−
(x−r)2+(y)2

2 dy dx

=

∫ ∞
−∞

1

2π
e−

(x−r)2
2 − e

− (erxa1x−b)
2

2a2
2 dx ≥ 0

∂g0(x0 + rw(θ))

∂θ

∣∣
θ=α

= −∂g0(x0 + (z1, z2))

∂z2

∣∣
z=(r,0)

≤ 0

=⇒ ∂p(r, θ)

∂θ

∣∣
θ=α
≤ 0
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Using the claim we can show that Rv is a non-increasing function of the angle cos−1
(

vT y(1)

‖v‖2‖y(1)‖
2

)
as follows: For angle α let Rw(α) = r, then px0

(x0 + rw(α)) = 0.5. Using the claim we see that
for any value of β > α, px0

(x0 + rw(β)) = p(r, β) ≤ p(r, α) = 0.5. So we conclude that for any
β > α, Rw(β) ≤ r = Rw(α).

Corollary 3.1 (Certified `2 Norm Radius). For a base classifier f ∈ F , if g = f ? µ, where µ is
the isotropic Gaussian distribution N (0, σ2I), y(0) = g(x), y(1) = ∇g(x), the `2 norm radius R is
given as R = σr, where (r, z1, z2) is the solution of the system of equations:

Φ(z1 − r)− Φ(z2 − r) = 0.5 (8)

Φ(z1)− Φ(z2) = q (9a)
1√
2π
e−

z22
2 − 1√

2π
e−

z21
2 = m1 (9b)

with q ≤ y(0) and m1 ≥ σ
∥∥y(1)

∥∥
2
.

Proof. Using Proposition 2 we see that the minimum value of Rv occurs when vT y(1) is smallest.
As vT y(1) ≥ −‖v‖2

∥∥y(1)
∥∥

2
with equality when v = −y(1)

‖y(1)‖
2

. Using Theorem 3 to solve for Rv

along this direction yields m2 = 0. Using the same proof as in the first Claim in proof of Theorem
3 we have a2 = 0. So we can rewrite f0(x) = 1 if erx1 ≤ a1x1 + b. Solving for a1, b under the
constraints gives us the equations:∫

erx1≤a1x1+b

1√
2π
e−

x2

2 dx = p∫
erx1≤a1x1+b

1√
2π
xe−

x2

2 dx = −m1

where As for all values of a, b the solution to the equation erx1 ≤ a1x1 + b is an interval of the form
[z2, z1], we can re-write the constraints as

Φ(z1)− Φ(z2) = p

1√
2π

(e−
z22
2 − e−

z21
2 ) = m1

Using the resulting f0 the minimum value of g0 at r is given as Φ(z1 − r)−Φ(z2 − r) which can be
equated to 0.5 to give the radius.

Corollary 3.2 (Certified `1 Norm Radius). For a base classifier f ∈ F , if g = f ? µ, where µ is
the isotropic Gaussian distribution N (0, σ2I), y(0) = g(x), y(1) = ∇g(x), the `1 norm radius R
is obtained by solving px(x + Rv) = 0.5, where px(x + Rv) is given by solving the problem in

Theorem 3 with m1 ≤ −σ
∥∥y(1)

∥∥
∞, m2 ≤ σ

√∥∥y(1)
∥∥2

2
−
∥∥y(1)

∥∥2

∞.

Proof. We see that if the minimum directional robustness among the basis vectors is given as
Rmin = mini

(
min(Rei ,R−ei)

)
, then along every basis vector direction Rv ≥ Rmin. Thus, the

points {Rminei,−Rminei | 1 ≤ i ≤ d} ⊂ SRL and by Proposition 1, the convex hull of these points
the `1 norm ball of radius Rmin is also in SRL. Thus, the `1 norm certified radius can be given as
mini

(
min(Rei ,R−ei)

)
.

Using Proposition 2, we see that this minimum occurs in the direction with the largest angle with
y(1). So, the projection of y(1) along this direction can be given as mini min(eTi y

(1),−eTi y(1)) =
−maxi max(−eTi y(1), eTi y

(1)) = −
∥∥y(1)

∥∥
∞. Now, we can use Theorem 3 to give us the final

solution.

Corollary 3.3 (Certified `∞ Norm Radius). For a base classifier f ∈ F , if g = f ? µ, where µ is
the isotropic Gaussian distribution N (0, σ2I), y(0) = g(x), y(1) = ∇g(x), the `∞ norm radius R
is obtained by solving px(x + Rv) = 0.5, where px(x + Rv) is given by solving the problem in

Theorem 3 with m1 ≤ − σ√
d

∥∥y(1)
∥∥

1
,m2 ≤ σ√

d

√
d
∥∥y(1)

∥∥2

2
−
∥∥y(1)

∥∥2

1
.
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Proof. Consider the set of vectors S = {v | |vi| = 1√
d
}. We see that if the minimum directional

robustness among the vectors in S is given as Rmin = minv∈SRv , then along every vector direction
v in S, Rv ≥ Rmin. Thus, the points {Rminv | v ∈ S} ⊂ SRL and by Proposition 1, the convex
hull of these points the `∞ norm ball of radius Rmin is also in SRL. Thus, the `∞ norm certified
radius can be given as minv∈SRv .

Using Proposition 2, we see that this minimum occurs in the direction with the largest angle
with y(1). So, the projection of y(1) along this direction can be given as minv∈S v

T y(1) =
−maxv∈S(−v)T y(1) = −maxv∈S v

T y(1) = − 1√
d

∥∥y(1)
∥∥

1
. Now, we can use Theorem 3 to give us

the final solution.

Corollary 3.4 (Subspace Certified `p norm radius). For a base classifier f ∈ F , if g = f ? µ, where
µ is the isotropic Gaussian distribution N (0, σ2I), y(0) = g(x), y(1) = ∇g(x), and a subspace S
with orthogonal projection matrix PS , for p = 1, 2,∞ the subspace `p norm certified radius R is
obtained by solving px(x+Rv) = 0.5, where px(x+Rv) is given by solving the problem in Theorem

3 with m1 ≤ −σ
∥∥PSy(1)

∥∥
p′
,m2 ≤ σ

√∥∥y(1)
∥∥2

2
−
∥∥PSy(1)

∥∥2

p′
and ‖ · ‖p′ is the dual norm of ‖ · ‖p.

Proof. For orthogonal projection PS onto a subspace S, we can consider the vector PSy(1) instead
of y(1), the using almost identical arguments as before we get the corresponding projections and we
can solve for the certified radii using Theorem 3.
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C Theoretical Case Study: Binary Linear Classifier

Figure 3: Certified safety regions for binary linear classifiers (input point x grey circle at origin)

Given any binary linear classifier, f(x) = 1wT x+b≤0 let g defined by f ? µ where µ is the isotropic
Gaussian distribution N (0, σ2I) (for any σ) be the smoothed classifier. For this case, Cohen et al. [5,
Appendix B] showed the following:

• The prediction of g is same as the prediction of f , i.e., ∀ x ∈ Rd, f(x) = 1⇔ g(x) > 0.5.

• The `2 norm certified radius for g at x0 is given as R =
|wT x0+b|
‖w‖2

.

We saw in subsection 3.2, the certified safety region calculated using only the zeroth order information
has spherical symmetry. Thus, the certified safety region for g at x0 calculated using existing methods

is a sphere of radius R =
|wT x0+b|
‖w‖2

centered at x. For the proposed method we show using both the
zeroth and the first order information gives :

Proposition 3. Under our proposed method, the certified safety region for g at a point x0 is given as
the halfspace H = {x | sign(wTx+ b) = sign(wTx0 + b)}.

Proof. In this case, we can calculate

y(0) = Φ

(∣∣wTx0 + b
∣∣

σ‖w‖2

)

y(1) =
1√

2πσ2
e
− (wT x0+b)2

2σ2‖w‖22
sign(wTx0 + b)w

‖w‖2
We shift the origin to x0 and rotate and scale the basis by 1

σ to get a basis with positive x1 along
sign(wTx0 + b)w. Then, we can use the framework and to calculate the feasible set of g′’s. Any
valid g′ can be written as g′ = f ′ ? µ where∫

Rd
f ′(x)

( 1

2πσ2

)d/2
e−
‖x‖22

2 dx = p = y(0)∫
Rd
f ′(x)

( 1

2πσ2

)d/2
x1e
− ‖x‖

2
2

2 dx = m = σ
∥∥∥y(1)

∥∥∥
2

=
1√
2π
e−

(Φ−1(1−p))2

2

Let c = Φ−1(1 − p) and f0 = 1x1>c. It is easy to check that f0 satisfies the above-mentioned
constraints. We show that any f ′ that satisfies the two constraints equals to f almost everywhere.
This is equivalent to saying f0 − f ′ is 0 almost everywhere. We see∫

Rd
(f ′(x)− f0(x))

( 1

2πσ2

)d/2
e−
‖x‖22

2 dx = 0∫
Rd

(f ′(x)− f0(x))
( 1

2πσ2

)d/2
x1e
− ‖x‖

2
2

2 dx = 0
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Moreover, we have that for x1 > c, f ′(x) − f0(x) ≤ 0 and for x1 ≤ c, f ′(x) − f0(x) ≥ 0. Thus,
we can rewrite the first constraint as∫

x1>c

|f ′(x)− f0(x)|dµ(x) =

∫
x1≤c

|f ′(x)− f0(x)|dµ(x)

For brevity we replaced the Gaussian integral over Lebesgue measure with an integral over the
Gaussian measure. Now, for the second constraint we can re-write it as∫

Rd
(f ′(x)− f0(x))x1dµ(x) =

∫
x1≤c

|f ′(x)− f0(x)|x1dµ(x)−
∫
x1>c

|f ′(x)− f0(x)|x1dµ(x)

≤ c
∫
x1≤c

|f ′(x)− f0(x)|dµ(x)− c
∫
x1>c

|f ′(x)− f0(x)|dµ(x)

= c(

∫
x1≤c

|f ′(x)− f0(x)|dµ(x)−
∫
x1>c

|f ′(x)− f0(x)|dµ(x))

= 0

=⇒ 0 =

∫
Rd

(f ′(x)− f0(x))x1dµ(x) ≤ 0

Thus the equality must hold in all the equations. Thus
∫
x1>c

|f ′(x)− f0(x)|x1dµ(x) =

c
∫
x1>c

|f ′(x)− f0(x)|dµ(x) which means
∫
x1>c

|f ′(x)− f0(x)|dµ(x) = 0. Then using the re-
sults from the first constraint

∫
x1≤c |f

′(x)− f0(x)|dµ(x) = 0. Thus,∫
Rd
|f ′(x)− f0(x)|dµ(x) = 0

As a result, f ′ is equal to f(0) almost everywhere w.r.t the Gaussian measure µ. Thus, g′ = f ′ ? µ =
f0 ? µ. Thus, we have only one feasible solution for g′ which is g. Thus, forall x ∈ Rd px(x) = g(x)
and the certified safety region

SR(x0) = {x | x ∈ Rd; px(x) > 0.5} = {x | x ∈ Rd; g(x) > 0.5}

Finally using the form of g from [5, Appendix B]

SR(x0) = {x | sign(wTx+ b) = sign(wTx0 + b)}

C.1 Discussion

Using the result from Proposition 3 we see that using both zeroth and first order information allows
us to give the optimal certified safety region for binary linear classifiers.

Although the results from zeroth order information give us the optimal `2 radius as seen in Figure
3, the radius for other threat models like `1, `∞ can be sub-optimal. Using additional first-order
information allows us to overcome this problem. As seen in Figure 3, the safety region we achieve
using the proposed work provides optimal radius for all `1, `2, `∞ threat models.
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D Proofs for Numerical Estimation of First-Order Information

Theorem 4. Given a black-box classifier f and the random vector z = w(f(x+ w)c − 1
2 ) where

w ∼ N (0, σ2I), we have that z−σ2y(1) is a sub-gaussian random vector with parameter k = σ2( 1
4 +

3√
8πe

). For convenience, we do some abuse of notation to denote this as (z − σ2y(1)) ∼ subG(k).

Proof. For any unit norm vector v consider the moment generating function for the variable

E[esv
T (z−σ2y(1))] = e−sv

Tσ2y(1)

E[esv
T z]

As the black-box classifier has binary output for every class, i.e, f(x+ w)c is either 0 or 1, we have

esv
T z = (e

svT w
2 − e−sv

T w
2 )f(x+ w)c + e

−svT w
2

E[esv
T (z−σ2y(1))] = e−sσ

2vT y(1)

E[(e
svT w

2 − e
−svT w

2 )f(x+ w) + e
−svT w

2 ]

= e
s2σ2

8 −sσ2vT y(1)

(1 + e
−s2σ2

8 E[(e
svT w

2 − e
−svT w

2 )f(x+ w)])

Using Generalized Neymann-Pearson Lemma with the condition E[vTwf(x+ w)] = σ2vT y(1), we
have

e−
s2σ2

8 E[(e
svT w

2 − e
−svT w

2 )f(x+ w)] ≤ 1√
2πσ2

∫ σ2|s|
2

−σ2|s|
2

e−
(−β+z)2

2σ2 + e−
(β+z)2

2σ2 − e−
z2

2σ2 dz

where sσ2vT y(1) = σ2|s|√
2πσ2

(e−
(−β)2

2σ2 + e−
β2

2σ2 − e−
02

2σ2 ).

Let φ(w) = 1√
2πσ2

e−
(−β+w)2

2σ2 + e−
(β+w)2

2σ2 − e−
w2

2σ2 . Then we have

E[esv
T (z−σ2y(1))] = e

s2σ2

8 −svTσ2y(1)

(1 + e
−s2σ2

8 E[(e
svT w

2 − e
−svT w

2 )f(x+ w)])

≤ e s
2σ2

8 −σ2|s|φ(0)

(
1 +

∫ σ2|s|
2

−σ2|s|
2

φ(w)dw

)

≤ e s
2σ2

8 e

∫ σ2|s|
2

−σ2|s|
2

(φ(w)−φ(0))dw

We see that the global Lipschitz constant for φ(w) is given as sup ‖φ′(w)‖ ≤

3 sup

∥∥∥∥ wσ2
1√

2πσ2
e
−w2

2σ2

∥∥∥∥ = 3
σ2
√

2πe
. Then we see that

∫ σ2|s|
2

−σ2|s|
2

(φ(w) − φ(0))dw ≤

3
σ2
√

2πe

∫ σ2|s|
2

−σ2|s|
2

|w|dw = 3s2σ2

4
√

2πe
. Thus.

E[esv
T (z−σ2y(1))] ≤ e s

2σ2

8 e
3s2

4
√

2πe

= e
s2

2 σ
2( 1

4 + 3√
8πe

)

Corollary 4.1. For any α, let Zn be the empirical mean of n samples of the random variable z, then

given t1 =
√

2kd(d log 2−logα)
n , t∞ =

√
2k(log 2d−logα)

n

P
(∣∣∣∥∥∥y(1)

∥∥∥
1
− ‖Zn‖1

∣∣∣ ≤ t1) ≥ 1− α, P
(∣∣∣∥∥∥y(1)

∥∥∥
∞
− ‖Zn‖∞

∣∣∣ ≤ t2) ≥ 1− α

Proof. Using Theorem 4 and the properties of subgaussian random vectors, we see that Zn ∼
subG( kn ). Let the set of vectors S = {v | v ∈ Rd; |vi| = 1},then ‖x‖1 = maxv∈S v

Tx. Using the
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maximal property of sub-gaussian random variables over the set of 2d variables {vtZn | v ∈ S} we
get,

P
(∥∥∥y(1) − Zn

∥∥∥
1
≤ t1

)
≥ 1− α

By the triangle inequality
∣∣∥∥y(1)

∥∥
1
− ‖Zn‖1

∣∣ ≤ ∥∥y(1) − Zn
∥∥

1
we get the first result. Similarly,

‖x‖∞ = maxi max(eTi x,−eTi x) and once again using the maximal property of sub-gaussian random
variables over the set of 2d variables {eTi Zn,−eTi Zn | ei is a basis vector} we get,

P
(∥∥∥y(1) − Zn

∥∥∥
∞
≤ t∞

)
≥ 1− α

Again using triangle inequality, we see
∣∣∥∥y(1)

∥∥
∞ − ‖Zn‖∞

∣∣ ≤ ∥∥y(1) − Zn
∥∥
∞ proving the second

inequality.

Lemma 4. If we have two sub-gaussian random vectors X ∼ subG(k1), Y ∼ subG(k2) then

P(XTY < −t) ≤ max

(
e
− t2√

2dk1k2 , e
− t

4
√
k1k2

)
, P(XTY > t) ≤ max

(
e
− t2√

2dk1k2 , e
− t

4
√
k1k2

)

Proof. Consider the moment generating function for the variable XTY . We have for |s| ≤
√

2
k1k2

E[esX
TY ] ≤ E[e

k2s
2‖X‖2
2 ]

= E[Ea∼N (0,r)[e
aTX ]], r =

k2s
2

2

= Ea∼N (0,r)[E[ea
TX ]] ≤ Ea∼N (0,r)[e

k1‖a‖
2

2 ]

=

( 1
1
r−k1

r

) d
2

=

(
1− s2k1k2

2

)−d
2

Now we see that
P(XTY < −t) = P(e−sX

TY < est), s ≥ 0

≤ E[e−sX
TY ]

est

≤
(

1− s2k1k2

2

)−d
2

e−st

Taking s =
√

d2

4t2 + 2
k1k2
− d

2t we see

P(XTY < −t) ≤

(
1 +

√
d2

4t2 + 2
k1k2
− d

2t

2 d
2t

) d
2

e
−
(√

d2

4t2
+ 2
k1k2

− d
2t

)
t

≤ e
d
2

√
d2

4t2
+ 2
k1k2

− d
2t

2 d
2t e

−
(√

d2

4t2
+ 2
k1k2

− d
2t

)
t

= e
−
(√

d2

4t2
+ 2
k1k2

− d
2t

)
t
2 = e

−
(√

d2k1k2
8t2

+1− d
√
k1k2√
8t

)
t√

2k1k2

≤ e
− t√

2k1k2
min
(

t

d
√
k1k2

, 1√
8

)
P(XTY < −t) ≤ max

(
e
− t2√

2dk1k2 , e
− t

4
√
k1k2

)
We can use a similar proof to show

P(XTY > t) ≤ max

(
e
− t2√

2dk1k2 , e
− t

4
√
k1k2

)
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Theorem 5. For any α ≥ 2e−
d
16 , if we have two random vectors X,Y such that (X − β) ∼

subG(k1) and (Y − β) ∼ subG(k2) then we can show that using t =
√
−
√

2k1k2d log α
2 , εu =√

−(k1+k2) log α
2

2(XTY+t)
, εl =

√
−(k1+k2) log α

2

2(XTY−t) ,

P
(
‖β‖2 ≤

√
XTY + t√

1 + ε2u − εu

)
≥ 1− α, P

(
‖β‖2 ≥

√
XTY − t√
1 + ε2l + εl

)
≥ 1− α

Proof. Using Lemma 4, we see P
(
XTY − ‖β‖22 ≤ −t + β · ((X − β) + (Y − β))

)
≤

max

(
e
− t2√

2k1k2d , e
− t

4
√
k1k2

)
. Taking t =

√
−
√

2k1k2d log α
2 , we see that for α ≥ 2e−

d
16 the

first term is bigger. So

P
(
‖β‖22 ≤ X

TY + t− β · (X + Y − 2β)) ≥ 1− α

2

From the sub-gaussian property of X,Y , we have P(β · (X + Y − 2β) ≤ −t1) ≤ e
− t21

2(k1+k2)‖β‖22 .

Taking εu =
√
−(k1+k2) log α

2

2(XTY+t)
and t1 = 2εu‖β‖2

√
XTY , we get that

P
(
XTY + t− β · (X + Y − 2β) ≤ XTY + t+ 2εu‖β‖2

√
XTY + t

)
≥ 1− α

2

Taking a union bound and combining the two inequalities we get

P
(
‖β‖22 ≤ X

TY + t+ 2εu‖β‖2
√
XTY + t

)
≥ 1− α

⇐⇒ P
(

(1 + ε2u)‖β‖22 ≤
(√

XTY + t+ εu‖β‖2
)2
)

≥ 1− α

⇐⇒ P
(
‖β‖2 ≤

√
XTY + t√

1 + ε2u − εu

)
≥ 1− α

(10)

Using a similar proof we can also show that for εl =
√
−(k1+k2) log α

2

2(XTY−t) , we have

P
(
‖β‖2 ≥

√
XTY − t√
1 + ε2l + εl

)
≥ 1− α

Let X = Xn1
, Y = Yn2

be the empirical average of n1, n2 independent samples of the random
variable z.

Corollary 5.1. For any α ≥ 2e−
d
16 , given t =

√
−k2

√
2d

n1n2
log α

2 , εu =

√
−k(n1+n2) log α

2

2n1n2(XTn1
Yn2

+t)
, εl =√

−k(n1+n2) log α
2

2n1n2(XTn1
Yn2
−t) ,

P
(∥∥∥y(1)

∥∥∥
2
≤

√
XT
n1
Yn2 + t√

1 + ε2u − εu

)
≥ 1− α, P

(∥∥∥y(1)
∥∥∥

2
≥

√
XT
n1
Yn2 − t√

1 + ε2l + εl

)
≥ 1− α

Proof. Using Theorem 4 and the properties of subgaussian random vectors, we see that Xn1
∼

subG( kn1
), Yn2 ∼ subG( kn2

). Then, using Theorem 5 we get the required values of t, εu, εl.
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E Additional Experiments

Here, we give additional experiments on the Imagenet dataset. We reuse the models given by Cohen
et al. [5] and calculate the certified accuracy at radius R by counting the samples of the test set that
are correctly classified by the smoothed classifier g with certified radii of at least R. For both our
proposed certificate and the baseline certificate [5], we use a failure probability of α = 0.001 and
N = 200, 000 samples for CIFAR and N = 1, 250, 000 samples for Imagenet.

In the following plots we give a more detailed account of the improvement seen by using both the
first and zeroth order information. For every trained model (depending on variance σ used during
training), we give the certified accuracy under `2 norm threat model, `1 norm threat model and the
subspace `2 norm threat model.

Figure 4: Certified Accuracy for Imagenet seen under various threat models and σ values. The scale
of x-axis is different for the 3 different models (denoted by training noise variance) as the certified
radii we get for these three models have different ranges.

The findings here are similar to the ones reported for CIFAR. As expected we see from Figure
4 that the smallest improvements are for `2 norm threat model where the new framework gives
only marginal improvement over the `2 radius certified by existing methods. This follows from the
fact that the existing methods already produce near-optimal certified `2 radii. However, certifying
a significantly bigger certified safety region allows us to give significant improvements over the
certified `1 radius and the subspace `2 radii (the subspace considered here is the red channel of the
image, i.e., we only allow perturbations over red component of the RGB pixels of the image).

From these figures we are also able to see that, for any given model, most of the improvement in
certified accuracy occurs at smaller values of radius R. We think one of the causes for this is the
interval size of our estimates of y(0), y(1). So, we give the following results using larger number of
samples to estimate both y(0), y(1).

In Figure 5 we show the results by using the observed values from experiments us-
ing Nobs = 1250000 and then constructing the estimates assuming we used N =
200000, 800000, 1250000, 1600000, 3200000, 6400000 samples respectively. Using these estimates
we get a certified `1 radius for both the existing method and for the proposed method. We see that
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Figure 5: Effect of number of samples used on certified accuracy.

using larger number of samples allows us to get improvements at even larger values of R. However,
we note that it is still not possible to get improvements at very high values of R. We think this would
require very precise bounds for y(0), y(1) and thus a very high number of samples.
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