
High-level comments.1

We thank the reviewers for their thoughtful feedback. The main focus of our paper has been an extensive theoretical2

analysis of this rich research area. This required tackling a variety of different questions and deriving a number of new3

results in order to handle sample-dependent priors with reasonable generality. We agree that our theory can and should4

be developed into applications, and this is the focus of ongoing work.5

6

Reviewer 4.7

• Main limitation: Please see high-level comments above. We will also work on improving the readability of the final8

version of the paper.9

• Typos: We thank the reviewer for catching them (lines 118, 121, 125, 148, 154, 158) and will fix them all.10

• Line 161: We agree that “the paper could give more detail about how to go from the Rademacher complexity defined11

for sets of hypothesis to the Rademacher complexity for the randomized classifier” and will make this more explicit.12

Reviewer 6.13

• Weakness: Please see high-level comments above.14

• Line 162: We agree that line 162 is missing a subscript (S, as the reviewer pointed out, plus µ).15

• Broader Impact: We will also expand on the Broader Impact section.16

Reviewer 7.17

• Weakness I: Please see high-level comments above. Additionally, we thank the reviewer for the suggestion about18

adding some theoretical applications as in Foster et al. (2019). In our final version, we will initiate a discussion of the19

choice of the parameters (and their implications) and seek to outline a theoretical application along these lines.20

• Weakness II (Theorem 4): We agree with the reviewer. Indeed, this implies a finite class, although the bounds21

would be non-trivial even for a fairly large class, since the dependence on 1/η is only logarithmic. Motivated22

precisely by this concern, in Appendix C, we present an alternative bound without any assumption on the minimum23

probability, at the price of a slightly worse dependence on ε. On the other hand, note that Theorem 4 already yields a24

non-trivial generalization bound based on the observation that |H| ≤ 1/η. This means that Rm(H) ≤
√

2 log(1/η)
m ,25

and hence Theorem 4 yields a generalization bound scaling as O
(

1√
m

)
even for a somewhat modest ε = 1/

√
m,26

comparable to Dziugaite and Roy (2018a).27

• Empirical transductive Rademacher complexity in Theorem 2: That is a good suggestion. A version of the28

theorem with an empirical transductive Rademacher complexity would be more useful in practice and we will include29

that in the final version. That is straightforward to derive using the fact that the empirical transductive Rademacher30

sharply concentrates around its expectation.31

• Clarifications for Theorem 3: We will move these clarifications from the appendix (in the proof) to the main text32

and further explain the special structure, which is that the loss function in our setting, Q 7→ 〈Q, `〉, is linear. This33

linearity yields the bounds in the displayed equations after line 497.34

• Discussion of Theorem 4: As described in the Related Work section, the results of Dziugaite and Roy (2018a) are35

for a completely different setting than ours. In the final version, we will give a more explicit discussion of Theorem 436

and its implications, specifically contrasting Theorem 4 with the results of Dziugaite and Roy (2018a).37

• Clarification forQm and R�m(Qm): Qm is a family of sets of distributions (lines 202-203). This is in contrast with38

QU,m,µ, which is a union (line 398, Appendix). Equation (6) is actually the definition of R�m(Qm) (lines 210-211).39

• Proof of Theorem 2: We will revise the proof of Theorem 2 in the appendix so that all steps are more clear.40


