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Abstract

We challenge the longstanding assumption that the mean-field approximation for
variational inference in Bayesian neural networks is severely restrictive, and show
this is not the case in deep networks. We prove several results indicating that deep
mean-field variational weight posteriors can induce similar distributions in function-
space to those induced by shallower networks with complex weight posteriors.
We validate our theoretical contributions empirically, both through examination
of the weight posterior using Hamiltonian Monte Carlo in small models and by
comparing diagonal- to structured-covariance in large settings. Since complex
variational posteriors are often expensive and cumbersome to implement, our
results suggest that using mean-field variational inference in a deeper model is both
a practical and theoretically justified alternative to structured approximations.

1 Introduction

While performing variational inference (VI) in Bayesian neural networks (BNNs) researchers often
make the ‘mean-field’ approximation which assumes that the posterior distribution factorizes over
weights (i.e., diagonal weight covariance). Researchers have assumed that using this mean-field
approximation in BNNs is a severe limitation. This has motivated extensive exploration of VI methods
that explicitly model correlations between weights (see Related Work §2). Furthermore, Foong et al.
[2020] have identified pathologies in single-hidden-layer mean-field regression models, and have
conjectured that these might exist in deeper models as well.

However, the rejection of mean-field methods comes at a price. Structured covariance methods have
worse time complexity (see Table 1) and even efficient implementations take over twice as long to
train an epoch as comparable mean-field approaches [Osawa et al., 2019]. Moreover, recent work
has succeeded in building mean-field BNNs which perform well (e.g., Wu et al. [2019]), creating a
puzzle for those who have assumed that the mean-field approximation is too restrictive.

We argue that for larger, deeper, networks the mean-field approximation matters less to the down-
stream task of approximating posterior predictive distributions over functions than it does in smaller
shallow networks. In essence: simple parametric functions need complicated weight-distributions to
induce rich distributions in function-space; but complicated parametric functions can induce the same
function-space distributions with simple weight-distributions. Complex covariance is computationally
expensive and often cumbersome to implement though, while depth can be easy to implement and
cheap to compute with standard deep learning packages.

Rather than introducing a new method, we provide empirical and theoretical evidence that some of
the widely-held assumptions present in the research community about the strengths and weaknesses
of existing methods are incorrect. Even when performing VI in weight-space, one does not care
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about the posterior distribution over the weights, p(θ|D), for its own sake. Most decision processes
and performance measures like accuracy or log-likelihood only depend on the induced posterior
predictive, the distribution over function values p(y|x,D) =

∫
p(y|x,θ)p(θ|D)dθ. One way to have

an expressive approximate posterior predictive is to have a simple likelihood function and a rich
approximate posterior over the weights, q(θ), to fit to p(θ|D). But another route to a rich approximate
predictive posterior is to have a simple q(θ), and a rich likelihood function, p(y|x,θ)—e.g., a deeper
model mapping x to y. These arguments lead us to examine two subtly different hypotheses: one
comparing mean-field variational inference (MFVI) to VI with a full- or structured- covariance; and
the other comparing the expressive power of a mean-field BNN directly to the true posterior predictive
over function values, p(y|x,D):

Weight Distribution Hypothesis. For any BNN with a full-covariance weight distribution, there
exists a deeper BNN with a mean-field weight distribution that induces a “similar” posterior
predictive distribution in function-space.

True Posterior Hypothesis. For any sufficiently deep and wide BNN, and for any posterior pre-
dictive, there exists a mean-field distribution over the weights of that BNN which induces
the same distribution over function values as that induced by the posterior predictive, with
arbitrarily small error.

The Weight Distribution Hypothesis would suggest that we can trade a shallow complex-covariance
BNN for deeper mean-field BNN without sacrificing the expressiveness of the induced function
distribution. We start by analyzing linear models and then use these results to examine deep neural
networks with piecewise linear activations (e.g., ReLUs). In linear deep networks—with no non-linear
activations—a model with factorized distributions over the weights can be “collapsed” through matrix
multiplication into a single product matrix with a complex induced distribution. In §3, we analytically
derive the covariance between elements of this product matrix. We show that the induced product
matrix distribution is very rich, and that three layers of weights suffice to allow non-zero correlations
between any pair of product matrix elements. Although we do not show that any full-covariance
weight distribution can be represented in this way, we do show that the Matrix Variate Gaussian
distribution—a commonly used structured-covariance approximation—is a special case of a three-
layer product matrix distribution, allowing MFVI to model rich covariances. In §4 we introduce the
local product matrix—a novel analytical tool for bridging results from linear networks into deep
neural networks with piecewise-linear activations like ReLUs. We apply this more general tool to
prove a partial local extension of the results in §3.

The True Posterior Hypothesis states that mean-field weight distributions can approximate the true
predictive posterior distribution, and moreover we provide evidence that VI can discover these
distributions. In §5 we prove that the True Posterior Hypothesis is true for BNNs with at least
two hidden layers, given arbitrarily wide models. In §6.1, we investigate the optima discovered
by mean-field VI using Hamiltonian Monte Carlo [Neal, 1995]. We show empirically that even in
smaller networks, as the model becomes deeper, we lose progressively less information by using
a mean-field approximation rather than full-covariance. We also conduct experiments with deep
convolutional architectures and find no significant difference in performance between a particular
diagonal and full covariance method (SWAG, [Maddox et al., 2019]), an effect which we find is
consistent with results from other papers working with various posterior approximations.

2 Related Work Complexity

Time Parameter

MFVI [Hinton and van Camp, 1993] K2 K2

Full [Barber and Bishop, 1998] K12 K4

MVG [Louizos and Welling, 2016] K3 K2

MVG-Inducing Point [ibid.] K2 + P 3 K2

Noisy KFAC [Zhang et al., 2018] K3 K2

Table 1: Complexity for forward pass in K—the
number of hidden units for a square weight layer.
Mean-field VI has better time complexity and
avoids a numerically unstable matrix inversion.
Inducing point approximations can help, but in-
ducing dimension P is then a bottleneck.

The mean-field approximation has been widely
used for variational inference (VI) [Hinton and van
Camp, 1993, Graves, 2011, Blundell et al., 2015]
(see Appendix A for a brief primer on VI methods
for Bayesian neural networks). But researchers
have assumed that using the mean-field approxi-
mation for Bayesian inference in neural networks
is a severe limitation since MacKay [1992] wrote
that for BNNs the “diagonal approximation is no
good because of the strong posterior correlations
in the parameters.” Full-covariance VI was there-
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fore introduced by Barber and Bishop [1998], but it requires many parameters and has poor time com-
plexity. The intractability of full-covariance VI led to extensive research into structured-covariance
approximations [Louizos and Welling, 2016, Zhang et al., 2018, Mishkin et al., 2019, Oh et al.,
2019]. However, these still have unattractive time complexity compared with mean-field variational
inference (MFVI) (see Table 1) and are not widely used. Researchers have also sought to model richer
approximate posterior distributions [Jaakkola and Jordan, 1998, Mnih and Gregor, 2014, Rezende
and Mohamed, 2015, Louizos and Welling, 2017] or to perform VI directly on the function—but this
becomes intractable for high-dimensional input [Sun et al., 2019].

Despite widespread assertions that the mean-field approximation results in a problematically restricted
approximate posterior in deep neural networks, there has been no work in deep neural networks
demonstrating this; theoretical analysis and experimental work supporting this claim is typically
based on shallow network architectures. For example, recent work has argued that the mean-field
approximation is too restrictive and has identified pathologies in single-layer mean-field VI for
regression [Foong et al., 2020]. We emphasise their theorems are entirely consistent with ours: we
agree that the mean-field approximation could be problematic in small and single-layer models.
While Foong et al. [2020] conjecture that the pathologies they identify extend to deeper models and
classification problems, they do not prove this (see Appendix B).

In contrast, Hinton and van Camp [1993] hypothesized that even with a mean-field approximating
distribution, during optimization the parameters will find a version of the network where this restric-
tion is least costly, which our work bears out. Moreover, others have successfully applied mean-field
approximate posteriors [Khan et al., 2018, Osawa et al., 2019, Wu et al., 2019, Farquhar et al., 2020]
or even more restrictive approximations [Swiatkowski et al., 2020] in deep models, by identifying
and correcting problems like gradient variance that have nothing to do with the restrictiveness of the
mean-field approximation.

3 Emergence of Complex Covariance in Deep Linear Mean-Field Networks

In this section, we prove that a restricted version of the Weight Distribution Hypothesis is true in
linear networks. Although we are most interested in neural networks that have non-linear activations,
linear neural networks can be analytically useful [Saxe et al., 2014]. In §4 we give first steps to extend
this analysis to non-linear activations.

Defining a Product Matrix: Setting the activation function of a neural network, φ(·), to be the
identity turns a neural network into a deep linear model. Without non-linearities the weights of the
model just act by matrix multiplication. L weight matrices for a deep linear model can therefore
be ‘flattened’ through matrix multiplication into a single weight matrix which we call the product
matrix—M (L). For a BNN, the weight distributions induce a distribution over the elements of this
product matrix. Because the model is linear, there is a one-to-one mapping between distributions
induced over elements of this product matrix and the distribution over linear functions y = M (L)x.
This offers us a way to examine exactly which sorts of distributions can be induced by a deep linear
model on the elements of a product matrix, and therefore on the resulting function-space.

Covariance of the Product Matrix: We derive the analytic form of the covariance of the product
matrix in Appendix D.1, explicitly finding the covariance of M (2) and M (3) as well as the update
rule for increasing L. These results hold for any factorized weight distribution with finite first- and
second-order moments, not just Gaussian weights. Using these expressions, we show:

Proposition 1. For L ≥ 3, the product matrix M (L) of factorized weight matrices can have non-zero
covariance between any and all pairs of elements. That is, there exists a set of mean-field weight
matrices {W (l)|1 ≤ l < L} such that M (L) =

∏
W (l) and the covariance between any possible

pair of elements of the product matrix:

Cov(m
(L)
ab ,m

(L)
cd ) 6= 0, (1)

where m(L)
ij are elements of the product matrix in the ith row and jth column, and for any possible

indexes a, b, c, and d.

This shows that a deep mean-field linear model is able to induce function-space distributions which
would require covariance between weights in a shallower model. This is weaker than the Weight
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(a) One weight
matrix.

(b) 5-layer product
matrix.
(Linear)

(c) 10-layer product
matrix.
(Linear)

(d) 5-layer local prod-
uct matrix.
(Leaky ReLU)

(e) 10-layer local
product matrix.
(Leaky ReLU)

Figure 1: Covariance heatmap for mean-field approximate posteriors trained on FashionMNIST. (a)
A single layer has diagonal covariance. (b-c) In a deep linear model the product matrix composed of
L mean-field weight matrices has off-diagonal covariance induced by the mean-field layers. Redder
is more positive, bluer more negative. (d-e) For piecewise non-linear activations we introduce
‘local product matrices’ (defined in §4) with similar covariance. Shared activations introduce extra
correlations. This lets us extend results from linear to piecewise-linear neural networks.

Distribution Hypothesis, because we do not show that all possible fully parameterized covariance
matrices between elements of the product matrix can be induced in this way.1 However, we emphasise
that the expressible covariances become very complex. Below, we show that a lower bound on their
expressiveness exceeds a commonly used structured-covariance approximate distribution.

Numerical Simulation: To build intuition, in Figure 1a–c we visualize the covariance between
entries of the product matrix from a deep mean-field VI linear model trained on FashionMNIST.
Even though each weight matrix makes the mean-field assumption, the product develops off-diagonal
correlations. The experiment is described in more detail in Appendix C.1.

How Expressive is the Product Matrix? We show that the Matrix Variate Gaussian (MVG) distri-
bution is a special case of the mean-field product matrix distribution. The MVG distribution is used
as a structured-covariance approximation by e.g., Louizos and Welling [2016], Zhang et al. [2018] to
approximate the covariance of weight matrices while performing variational inference.2 We prove in
Appendix D.2:

Proposition 2. The Matrix Variate Gaussian (Kronecker-factored) distribution is a special case
of the distribution over elements of the product matrix. In particular, for M (3) = ABC, M (3) is
distributed as an MVG random variable when A and C are deterministic and B has its elements
distributed as fully factorized Gaussians with unit variance.

This directly entails in the linear case that:

Weak Weight Distribution Hypothesis–MVG. For any deep linear model with an MVG weight
distribution, there exists a deeper linear model with a mean-field weight distribution that
induces the same posterior predictive distribution in function-space.

Remark 1. This is a lower bound on the expressiveness of the product matrix. We have made very
strong restrictions on the parameterization of the weights for the sake of an interpretable result. The
unconstrained expressiveness of the product matrix covariance given in Appendix D.1 is much greater.
Also note, we do not propose using this in practice, it is purely an analysis tool.

1E.g., a full-covariance layer has more degrees of freedom than a three-layer mean-field product matrix (one
of the weaknesses of full-covariance in practice). An L-layer product matrix of K×K Gaussian weight matrices
has 2LK2 parameters, but one full-covariance weight matrix has K2 mean parameters and K2(K2 + 1)/2
covariance parameters. Note also that the distributions over the elements of a product matrix composed of
Gaussian layers are not in general Gaussian (see Appendix D.3 for more discussion of this point).

2In some settings, MVG distributions can be indicated by the Kronecker-factored or K-FAC approximation.
In MVGs, the covariance between elements of an n0 × n1 weight matrix can be described as Σ = V ⊗U where
U and V are positive definite real scale matrices of shape n0 × n0 and n1 × n1.
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4 Weight Dist. Hypothesis in Deep Piecewise-Linear Mean-Field BNNs

Neural networks use non-linear activations to increase the flexibility of function approximation. On
the face of it, these non-linearities make it impossible to consider product matrices. In this section we
show how to define the local product matrix, which is an extension of the product matrix to widely
used neural networks with piecewise-linear activation functions like ReLUs or Leaky ReLUs. For
this we draw inspiration from a proof technique by Shamir et al. [2019] which we extend to stochastic
matrices. This analytical tool can be used for any stochastic neural network with piecewise linear
activations. Here, we use it to extend Lemma 1 to neural networks with piecewise-linear activations.

Defining a Local Product Matrix: Neural nets with piecewise-linear activations induce piecewise-
linear functions. These piecewise-linear neural network functions define hyperplanes which partition
the input domain into regions within which the function is linear. Each region can be identified by a
sign vector that indicates which activations are ‘switched on’. We show in Appendix D.4.1:

Lemma 1. Consider an input point x∗ ∈ D. Consider a realization of the model weights θ. Then,
for any x∗, the neural network function fθ is linear over some compact set Aθ ⊂ D containing x∗.
Moreover, Aθ has non-zero measure for almost all x∗ w.r.t. the Lebesgue measure.

Using a set of N realizations of the weight parameters Θ = {θi for 1 ≤ i ≤ N} we construct a
product matrix within A =

⋂
iAθi

. Since each fθi
is linear over A, the activation function can be

replaced by a diagonal matrix which multiplies each row of its ‘input’ by a constant that depends
on which activations are ‘switched on’ (e.g., 0 or 1 for a ReLU). This allows us to compute through
matrix multiplication a product matrix of L weight layers M (L)

x∗,θi
corresponding to each function

realization within A. We construct a local product matrix random variate Px∗ , for a given x∗, within
A, by sampling these M (L)

x∗,θi
. The random variate Px∗ is therefore such that y given x∗ has the same

distribution as Px∗x
∗ within A. This distribution can be found empirically at a given input point, and

resembles the product matrices from linear settings (see Figure 1d–e).

Covariance of the Local Product Matrix: We can examine this local product matrix in order to
investigate the covariance between its elements. We prove in D.4 that:

Proposition 3. Given a mean-field distribution over the weights of neural network f with piecewise
linear activations, f can be written in terms of the local product matrix Px∗ within A.

For L ≥ 3, for activation functions which are non-zero everywhere, there exists a set of weight
matrices {W (l)|1 ≤ l < L} such that all elements of the local product matrix have non-zero
off-diagonal covariance:

Cov(px
∗

ab , p
x∗

cd ) 6= 0, (2)

where px
∗

ij is the element at the ith row and jth column of Px∗ .

Proposition 3 is weaker than the Weight Distribution Hypothesis. Once more, we do not show that all
full-covariance weight distributions can be exactly replicated by a deeper factorized network. We
now have non-linear networks which give richer functions, potentially allowing richer covariance,
but the non-linearities have introduced analytical complications. However, it illustrates the way in
which deep factorized networks can emulate rich covariance in a shallower network.

Remark 2. Proposition 3 is restricted to activations that are non-zero everywhere although we
believe that in practice it will hold for activations that can be zero, like ReLU. If the activation can be
zero then, for some x∗, enough activations could be ‘switched off’ such that the effective depth is
less than three. This seems unlikely in a trained network, since it amounts to throwing away most
of the network’s capacity, but we cannot rule it out theoretically. In Appendix D.4 we empirically
corroborate that activations are rarely all ‘switched off’ in multiple entire layers.

Numerical Simulation: We confirm empirically that the local product matrix develops complex off-
diagonal correlations using a neural networkwith Leaky ReLU activations trained on FashionMNIST
using mean-field variational inference. We estimate the covariance matrix using 10,000 samples of
a trained model (Figure 1d–e). Just like in the linear case (Figure 1a–c), as the model gets deeper
the induced distribution on the product matrix shows complex off-diagonal covariance. There are
additional correlations between elements of the product matrix based on which activation pattern is
predominantly present at that point in input-space. See Appendix C.1 for further experimental details.
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5 True Posterior Hypothesis in Two-Hidden-Layer Mean-Field Networks

We prove the True Posterior Hypothesis using the universal approximation theorem (UAT) due to
Leshno et al. [1993] in a stochastic adaptation by Foong et al. [2020]. This shows that a BNN with
a mean-field approximate posterior with at least two layers of hidden units can induce a function-
space distribution that matches any true posterior distribution over function values arbitrarily closely,
given arbitrary width. Our proof formalizes and extends a remark by Gal [2016, p23] concerning
multi-modal posterior predictive distributions.

Proposition 4. Let p(y = Y|x,D) be the probability density function for the posterior predictive
distribution of any given multivariate regression function, with x ∈ A where A is a compact set
in RD, y ∈ RK , and Y the posterior predictive random variable. Let f(·) be a Bayesian neural
network with two hidden layers. Let Ŷ be the random vector defined by f(x). Then, for any ε, δ > 0,
there exists a set of parameters defining the neural network f such that the absolute value of the
difference in probability densities for any point is bounded:

∀y,x ∈ A, i : Pr
(
|p(yi = Ŷi)− p(yi = Yi|x,D)| > ε

)
< δ, (3)

so long as: the activations of f are non-polynomial, non-periodic, and have only zero-measure
non-monotonic regions, the first hidden layer has at least D + 1 units, the second hidden layer has
an arbitrarily large number of units, the cumulative density function of the posterior predictive is
continuous in output-space, and the probability density function is continous and finite non-zero
everywhere. Here, the probability bound is with respect to the distribution over a subset of the weights
described in the proof, θPr, while one weight distribution θZ induces the random variable Ŷ.

The full proof is provided in Appendix D.5. Intuitively, we define a q(θ) to induce an arbitrary
distribution over hidden units in the first layer and using the remaining weights and hidden layer we
approximate the inverse cumulative density function of the true posterior predictive by the UAT. It
follows from Proposition 4 that it is possible, in principle, to learn a mean-field approximate posterior
which induces the true posterior distribution over predictive functions. Our proof strengthens a result
by Foong et al. [2020] which considers only the first two moments of the posterior predictive.

There are important limitations to this argument to bear in mind. First, the UAT might require
arbitrarily wide models. Second, to achieve arbitrarily small error δ it is necessary to reduce the
weight variance. Both of these might result in very low weight-space evidence lower-bounds (ELBOs).
Third it may be difficult in practice to choose a prior in weight-space that induces the desired prior
in function space. Fourth, although the distribution in weight space that maximizes the marginal
likelihood will also maximize the marginal likelihood in function-space within that model class, the
same is not true of the weight-space ELBO and functional ELBO. Our proposition therefore does not
show that such an approximate posterior will be found by VI. We investigate this empirically below.

6 Empirical Validation

We have already considered the Weight Distribution Hypothesis theoretically and confirmed through
numerical simulation that deeper factorized networks can show off-diagonal covariance in the product
matrix. We now examine the True Posterior Hypothesis empirically from two directions. First, we
examine the true posterior of the weight distribution using Hamiltonian Monte Carlo and consider
the extent to which the mean-field assumption makes it harder to match a mode of the true posterior.
Second, we work off the assumption that a worse approximation of the true posterior would result in
significantly worse performance on downstream tasks, and we show that we are unable to find such a
difference in both large- and small-scale settings.

6.1 Examining the True Posterior with Hamiltonian Monte Carlo

Proposition 4 proves the True Posterior Hypothesis in sufficiently wide models of two or more layers.
Here, we examine the true posterior distribution using Hamiltonian Monte Carlo (HMC) and show
that even in narrow deep models there are modes of the true posterior that are approximately mean-
field. We examine a truly full-covariance posterior, not even assuming that layers are independent of
each other, unlike Barber and Bishop [1998] and most structured covariance approximations.
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Figure 2: For all activations and both error measures, large error in shallow networks almost disappears
with depth. All models have ∼1,000 parameters. Shaded depths: less reliable HMC samples.

Methodology: To approximate the true posterior distribution—p(θ)—we use the No-U-turn HMC
sampling method [Hoffman and Gelman, 2014]. We then aim to determine how much worse a
mean-field approximation to these samples is than a full-covariance one. To do this, we fit a full-
covariance Gaussian distribution to the samples from the true posterior—q̂full(θ)—and a Gaussian
constrained to be fully-factorized—q̂diag(θ). We deliberately do not aim to sample from multiple
modes of the true posterior—VI is an essentially mode-seeking method.3 Each point on the graph
represents an average over 20 restarts (over 2.5 million model evaluations per point on the plot).
For all depths, we adjust the width so that the model has roughly 1,000 parameters and train on the
binary classification ‘two-moons’ task. We report the sample test accuracies and acceptance rates in
Appendix C.3 and provide a full description of the method. We consider two measures of distance:

1. Wasserstein Distance: We estimate the L2-Wasserstein distance between samples from
the true posterior and each Gaussian approximation. Define the Wasserstein Error:

EW = W (p(θ), q̂diag(θ))−W (p(θ), q̂full(θ)). (4)

If the true posterior is fully factorized, then EW = 0. The more harmful a fully-factorized
assumption is to the approximate posterior, the larger EW will be.

2. KL-divergence: We estimate the KL-divergence between the two Gaussian approximations.
Define the KL Error:

EKL = KL
(
q̂full(θ) ‖ q̂diag(θ)

)
. (5)

This represents a worst-case information loss from using the diagonal Gaussian approx-
imation rather than a full-covariance Gaussian, measured in nats (strictly, the infimum
information loss under any possible discretization [Gray, 2011]). EKL = 0 when the mode
is naturally diagonal, and is larger the worse the approximation is. (Note that we do not
directly involve p(θ) here because KL-divergence does not follow the triangle inequality.)

Note that we are only trying to establish how costly the mean-field approximation is relative to full
covariance, not how costly the Gaussian approximation is.

Results: In Figure 2a we find that the Wasserstein Error introduced by the mean-field approximation
is large in shallow networks but falls rapidly as the models become deeper. In Figure 2b we similarly
show that the KL-divergence Error is large for shallow networks but rapidly decreases. Although
these models are small, this is very direct evidence that there are mean-field modes of the true
posterior of a deeper Bayesian neural network.

In all cases, this is true regardless of the activation we consider, or whether we use any activation at all.
Indeed we find that a non-linear model with a very shallow non-linearity (LeakyReLU with α = 0.95)
behaves very much like a deep linear model, while one with a sharper but still shallow non-linearity
(α = 0.5) behaves much like a ReLU. This suggests that the shape of the true posterior modes varies

3In fact, in order to ensure that we do not accidentally capture multiple modes, we use the dominant mode of
a mixture of Gaussians model selected using the Bayesian Information Criterion (see Appendix C.3 for details).
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between linear models and non-linear ones more as a matter of degree than kind, suggesting that our
analysis in §3 has bearing on the non-linear case.

6.2 Factorization and Downstream Task Performance

Here, we compare the performance of Bayesian neural networks with complex posterior approxi-
mations to those with mean-field approximations. We show that over a spectrum of model sizes,
performance does not seem to be greatly determined by the approximation.

Depth in Full- and Diagonal-covariance Variational Inference. Training with full-covariance
variational inference is intractable, except for very small models, because of optimization difficulties.
In Figure 3, we show the test cross-entropy of small models of varying depths on the Iris dataset
from the UCI repository. With one layer of hidden units the full-covariance posterior achieves lower
cross-entropy. For deeper models, however, the mean field network matches the full-covariance one.
Full details of the experiment can be found in Appendix C.2.

Structured- and Diagonal-covariance Uncertainty on CIFAR-100. Although we cannot com-
pute samples from the true posterior in larger models, we attempt an approximate investigation using
SWAG [Maddox et al., 2019]. This involves fitting a Gaussian distribution to approximate Stochastic
Gradient-Markov Chain Monte Carlo samples on CIFAR-100. SWAG approximates the Gaussian
distribution with a low rank empirical covariance matrix, while SWAG-Diag uses a full-factorized
Gaussian. The resulting distributions are some indication of large-model posterior behaviour, but
cannot carry too much weight. We show in Figure 4 that there is no observable difference in negative
log-likelihood between the diagonal and low-rank approximation (or accuracy, see Appendix C.4).
All of the models considered have more than two layers of hidden units (the minimum size of a
PresNet). This suggests that there is a mode of the true posterior over weights for these deeper models
that is sufficiently mean-field that a structured approximation provides little or no benefit. It also
suggests that past a threshold of two hidden layers, further depth is not essential.

Large-model Mean-field Approximations on Imagenet. The performance of mean-field and
structured-covariance methods on large-scale tasks can give some sense of how restrictive the mean-
field approximation is. Mean-field methods have been shown to perform comparably to structured
methods in large scale settings like Imagenet, both in accuracy and measures of uncertainty like
log-likelihood and expected calibration error (ECE) (see Table 2). For VOGN [Osawa et al., 2019]
which explicitly optimizes for a mean-field variational posterior, the mean-field model is marginally
better in all three measures. For SWAG, the accuracy is marginally better and log-likelihood and
ECE marginally worse for the diagonal approximation. This is consistent with the idea that there
are some modes of large models that are approximately mean-field (which VOGN searches for but
SWAG does not) but that not all modes are. These findings offer some evidence that the importance
of structured covariance is at least greatly diminished in large-scale models, and may not be worth
the additional computational expense and modelling complexity. A table with standard deviations
and comparison for CIFAR-10 is provided in Appendix C.5.
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Architecture Method Covariance Accuracy NLL ECE

ResNet-18 VOGN‡ Diagonal 67.4% 1.37 0.029
ResNet-18 Noisy K-FAC†† MVG 66.4% 1.44 0.080
DenseNet-161 SWAG-Diag† Diagonal 78.6% 0.86 0.046
DenseNet-161 SWAG† Low-rank 78.6% 0.83 0.020
ResNet-152 SWAG-Diag† Diagonal 80.0% 0.86 0.057
ResNet-152 SWAG† Low-rank 79.1% 0.82 0.028

Table 2: Imagenet diagonal- and structure-covariance methods. Both approximations have similar
accuracies, log-likelihoods, and expected calibration errors. Suggests that covariance matters less in
large models, as predicted. † [Maddox et al., 2019]. ‡ [Osawa et al., 2019]. †† [Zhang et al., 2018] as
reported by Osawa et al. [2019].

7 Discussion

We have argued that deeper models with mean-field approximate posteriors can act like shallower
models with much richer approximate posteriors. In deep linear models, a product matrix with rich
covariance structure is induced by mean-field approximate posterior distributions—in fact, the Matrix
Variate Gaussian is a special case of this induced distribution for at least three weight layers (two
layers of hidden units) (§3). We provided a new analytical tool to extend results from linear models
to piecewise linear neural networks (e.g., ReLU activations): the local product matrix. In addition,
examination of the induced covariance in the local product matrix (§4) and posterior samples with
HMC (§6.1) suggest that the linear results are informative about non-linear networks.

Moreover, we have proved that neural networks with at least two layers of hidden units and mean-field
weight distributions can approximate any posterior distribution over predictive functions. In suffi-
ciently deep models, the performance gap between mean-field and structured-covariance approximate
posteriors becomes small or non-existent, suggesting that modes of the true posterior in large settings
may be approximately mean-field.

Our work challenges the previously unchallenged assumption that mean-field VI fails because the pos-
terior approximation is too restrictive. Instead, rich posterior approximations and deep architectures
are complementary ways to create rich approximate posterior distributions over predictive functions.
So long as a network has at least two layers of hidden units, increasing the parameterization of the
neural network allows some modes of the true posterior over weights to become approximately mean-
field. This means that approximating posterior functions becomes easier for mean-field variational
inference in larger models—making it more important to address other challenges for MFVI at scale.
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Broader Impact

Our work addresses a growing need for scalable neural network systems that are able to express
sensible uncertainty. Sensible uncertainty is essential in systems that make important decisions
in production settings. Despite that, the most performant production systems often rely on large
deterministic deep learning models. Historically, uncertainty methods have often prioritized smaller
settings where more theoretically rigorous methods could be applied. Our work demonstrates
the theoretical applicability of cheap uncertainty approximation methods that do not attempt to
model complex correlations between weight distributions in those large-scale settings. This resolves
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something the field has assumed is a tension between good uncertainty and powerful models—we
show that some modes of the variational weight posterior might be closer to mean-field in bigger
models. So using a bigger model causes more restrictive approximation methods to become more
accurate.

In principle, this could allow Bayesian neural networks with robust uncertainty to be deployed in a
wide range of settings. If we are right, this would be a very good thing. The main downside risk of
our research is that if we are wrong, and people deploy these systems and incorrectly rely on their
uncertainty measures, then this could result in accidents caused by overconfidence. We therefore
recommend being extremely cautious in how a business or administrative decision process depends
on any uncertainty measures in critical settings, as is already good practice for non-uncertainty-aware
decisions and in non-neural network uncertain machine learning systems.
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