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S1 Hierarchical Policies for Semantic Navigation
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We use the learned value function f (7, ¢) from Section 3.1 (main paper) in a hierarchical navigation
policy for semantic navigation. Our hierarchical policy is motivated by Chaplot et al. [2], and consists
of a high-level policy and a low-level policy. The high-level policy outputs short-term goals that are
achieved by the low-level policy. The high-level policy uses value predictions on images seen so
far (at short-term goal locations), to sample a short-term goal in the most promising direction. This
short-term goal is expressed as a relative offset from the agent’s current location. The low-level policy
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Figure S1: Hierarchical navigation policy. High-level policy does semantic reasoning (using the
learned value functions) over images in different directions and outputs short-term goals, that are
consumed by the low-level policy. The low-level policy employs classical mapping and planning to
achieve the short-term goal, and returns control to the high-level policy if it achieves the short-term
goal, or determines it to be infeasible. Black nodes depict nodes stored by the high-level policy in
the topological graph, and blue nodes show the value predictions in different directions from each
of the black nodes (size indicates predicted value, we use 12 uniformly sampled directions but only
show few for clarity). Current location is indicated by the hollow circle. High-level policy outputs
the most promising direction to pursue as the short-term goal. Relative offset of this location from
the current location (APose) is passed to the low-level policy. Low-level policy incrementally builds
occupany map. It uses the fast-marching method to plan a path to the desired short-term goal, and
outputs low-level robot actions. Low-level policy returns control on success (reaching the short-term
goal), infeasible goal (short-term goal determined to be in occupied space), or timeout.

emits low-level robot actions to navigate to this short-term goal, or returns that the short-term goal
is infeasible. This process is repeated, i.e., the high-level policy takes feedback from the low-level
policy, along with the image at the agent’s new location to sample the next short-term goal. We
describe these two policies in more detail below. Figure S1 shows an overview of this navigation
policy.

S1.1 High-level policy

The high-level policy, II builds a hybrid spatial and topological representation. It stores 360° images
along with their locations at each short-term goal location. 360° images are obtained by incrementally
rotating the agent 12 times by 30° each. High-level policy also stores the value prediction from
f(I,c) on these 12 images, for the category of interest c¢. These 12 values denote the promise of
exploring in the different directions for reaching the objects of the desired class. These predicted
values are combined with object detector output and a spatial consistency term to give the final score:

Jeomb(I,€) = A1 f(I,¢)+ A2 1505 [Deoco(, ¢)] - (1 4+ Deoeo(I, ¢)) +0.05A3 max (10 — d,0) (1)
—_——

Object Detector Spatial Consistency

where f(I,c) is the semantic score for the object class of interest ¢ on the image I, D oco(I, €) is
the maximum confidence for Mask-RCNN detections of class c in I, d is the estimated geodesic
distance (based on the current map) of the proposed short-term goal from the current agent position
in meters, and 1> 5 is an indicator function that outputs 1 if D0 (1, ¢) > 0.5, and 0 otherwise. We
S€t>\1 :)\2 :>\3 =1.

As it is expensive to get these images (it costs 12 steps), we only store these at locations where
the short-term policy returns control to the high-level policy (we call these locations as semantic
reasoning locations, and these are marked in Figure S1 with black dots).

The high-level policy maintains a priority heap of all of these 12N values (along with their location
and associated direction vectors in the agent’s coordinate frame), where N is the number of semantic
reasoning nodes currently stored in the topological graph. At each time step, the high-level policy
pops the highest of these 12V values' from the priority heap, and samples k (= 100) short-term

' As we keep popping values from the priority heap, there are 11N + 1 (and not 12N) entries in the heap at
the popping time.



goals in this direction (£7°) that are between 1m and 2m from the parent node. These k short-term
goals are passed onto the low-level policy, which pursues the first of these k goals that is not known
to be infeasible, and returns control to the high-level policy if it succeeds, or determines that the
sampled short-term goal is infeasible or too far away.

S1.2  Low-level policy

The low-level policy uses metric occupancy maps [3] along with fast-marching method (FMM) path
planners [7] to incrementally plan paths to provided short-term goals. The low-level policy filters
the provided & goals for feasibility (using the current occupancy map). It takes the first one of these
filtered short-term goals, plans a path to it, and outputs planned robot actions. Low-level policy
continues to re-plan when the occupancy map updates. Low-level policy executes actions output
from the FMM planner. It stops and returns control when a) it has reached the goal, b) it has already
executed enough steps (based on estimate from original FMM computation), or ¢) the short-term goal
turns out to be infeasible or much further than originally anticipated (as more of the map becomes
visible). We assume access to depth images, and adapt code from the map and plan implementation
from [4], to implement the low-level policy.

As our focus is on high-level semantic cues, for simplicity we assume access to perfect agent pose for
this hierarchical policy. This can be achieved using additional sensors on the robot (depth cameras,
and IMU units), or using a SLAM system [5], or just with RGB images by using learned pose
estimators and free space estimators [1].

S1.3 Stopping Criteria

We elaborate on the stopping criteria used for Policy Stop setting. At every semantic reasoning step,
we compute a proxy measure for whether we are close to an object of the desired category or not by
using the depth image and D.,. For all high-scoring detections for class ¢ from D, (detection
score more than 7. = 0.75), we approximate the distance to the detected object instance by the
median depth value within the predicted instance segmentation mask. If any detected instance is
within a distance d,, the agent emits a stop signal. d,. is a per-category hyper-parameter (as object
sizes vary drastically across categories). We set it using 100 episodes sampled in Eain.

As noted in Section 4.2, we found that this hand-crafted stopping criteria also led to best performance
for all methods that we compare to (as opposed to using the method’s own stopping method).
Threshold 7, was fixed to 0.75 for all methods, while d. was optimized for each category for each
method on the same 100 episodes from &, using the exact same procedure. For behavior cloning
and RL methods, stopping criteria is evaluated at all times steps, where as for our method and
baselines based on our method, it is evaluated at every semantic reasoning step.



S2 Experimental Details

S2.1 Environment Splits

Table S1: List of Gibson environments in different splits. See Section 4 for details.

Split Environments

Emin  Andover, Annona, Adairsville, Brown, Castor, Eagan, Goodfield, Goodwine, Kemblesville, Mau-
gansville, Nuevo, Springerville, Stilwell, Sussex

Elest Collierville, Corozal, Darden, Markleeville, Wiconisco

Evideo  Airport, Albertville, Allensville, Anaheim, Ancor, Arkansaw, Athens, Bautista, Beechwood, Benev-

olence, Bohemia, Bonesteel, Bonnie, Broseley, Browntown, Byers, Chilhowie, Churchton, Clairton,
Coffeen, Cosmos, Cottonport, Duarte, Emmaus, Forkland, Frankfort, Globe, Gofts, Goodyear,
Hainesburg, Hanson, Highspire, Hildebran, Hillsdale, Hiteman, Hominy, Irvine, Klickitat, Lakeville,
Leonardo, Lindenwood, Lynchburg, Maida, Marland, Marstons, Martinville, Merom, Micanopy,
Mifflinburg, Musicks, Neibert, Neshkoro, Newcomb, Newfields, Onaga, Oyens, Pamelia, Parole,
Pinesdale, Pomaria, Potterville, Ranchester, Readsboro, Rogue, Rosser, Shelbiana, Shelbyville, Silas,
Soldier, Stockman, Sugarville, Sunshine, Sweatman, Thrall, Tilghmanton, Timberon, Tokeland,
Tolstoy, Tyler, Victorville, Wainscott, Willow, Wilseyville, Winooski, Woodbine

S2.2 Difficulty Distribution of Test Episodes

We plot the distribution of difficulty (distance to near- 29% ard
est object of interest) of the evaluation episodes in so1 L
Eiest In figure on right. We group these episodes into
3 difficulty levels, based on distance to the nearest
instance of the target category: easy (< 3m, green),
medium (3m to 5m, orange), and hard (5m to 15m,
red). In total there were 313 easy, 324 medium and
438 hard episodes. There were 200, 250, 200, 125,
300 episodes each for object categories Bed, Chair,
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S2.3 Generation of Vyy,

We use environments in Eyigeo to render out egocentric navigation tours. We employ a path planner to
compute shortest path between random pairs of points in each environment. We render out panorama
images (4 images: straight facing, left facing, back facing, and right facing, relative to the direction
of motion) along these shortest paths and throw out the sequence of actions that were executed, to
arrive at the dataset of videos Vy,. To make these tours more realistic, we execute a random action
with 20% probability at each time step (and replan accordingly). We sample 300 trajectories in each
of the 85 environments. Average trajectory length is 40 steps.

S2.4

More Implementation Details

‘We note further implementation details for our method and baselines.

1. Topological Exploration and Detection Seeker are implemented by setting (A1, A2, A3) to

be (0,0, 1), and (0, 1, 1) respectively in Eq. 1. This assures a fair comparison between the
three methods, and tests the effectiveness of our learned function f (I, ¢).

. For End-to-End RL, we experimented with different architectures as noted in Table 1 in the

main paper. Baselines as part of Habitat [6] use a 3 layered CNN (denoted by 3CNN and
SimpleCNN interchangeably in the main paper) to represent RGB, Depth or RGB-D input.
We report performance with this default network (RL (RGB-D 3CNN, RL Depth 3CNN)) in
Table 1 in main paper. We found that using a ResNet-18 model (initialized by pre-training
on ImageNet) worked better than using this SimpleCNN to represent RGB images. Thus we



additionally also reported performance with ResNet-18 models (RGB-D ResNet-18+3CNN,
RGB ResNet-18). For RGB-D models, we could only use ResNet-18 for the RGB part.
Depth is still processed through the same 3-layer CNN (as there is no standard initialization
for Depth models that is commonly used). Output from ResNet-18 for RGB and 3CNN for
Depth were concatenated before feeding into the LSTM model.

3. Our Q-learning models were optimized using Adam with a learning rate of 1074, 8; = 0.9

and By = 0.999. Model was trained for 300 K mini-batches of size 16 and the model after
the last update was used for experiments.

4. Architecture of Q-network: The architecture of the Q-network was based off of ResNet-18.

We used a ResNet-18 pretrained on ImageNet removing the last convolution layer and all
later layers. We add to the pre-trained head, an additional convolution layer with kernel size
3 x 3 and 64 channels. After this convolution layer there are 3 fully-connected layers of size
[512, 256, 15] respectively. The output of the final layer is reshaped to 3 X 5 to represent
the value of taking each of the 3 possible actions with respect to the 5 possible classes.

5. Compute Infrastructure: All experiments were conducted on a single GPU server with 8

GPUs (NVidia 2080 Ti). Model training for our method was done on a single GPU and took
22 hours.

S3 Detailed Results
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Figure S2: Oracle Stop SPL for various methods against the number of direct interaction samples
used.

S3.1

Main Results (corresponding to Section 4.1)



Table S2: Results: SPL and Success Rate for ObjectGoal wth Oracle Stop in novel environments
Eest by episode difficulty. Details in Section 4.2.

Method Training Supervision SPL
# Active Frames ~ Reward Other Easy Medium Hard Overall
Topological Exploration - - - 0.47£0.03 031£0.03 0.16+0.02 0.30+0.02
Detection Seeker - - - 0.73+£0.03 053+0.03 022+0.02 0.46=+0.02
RL (RGB-D ResNet+3CNN) 100K (Eirain) Sparse - 0.30+0.03 0.19+0.03 0.07+£0.02 0.17+£0.02
RL (RGB-D ResNet+3CNN) 1OM (Epain U Evigeo)  Dense - 0.42+0.03 029+0.03 0.11+0.02 026+0.02
RL (RGB-D 3CNN) 38M (Eirain U Evideo)  Dense - 042+0.03 0324003 0.15+£0.02 0.28+0.02
RL (RGB ResNet) 20M (Eirain) Dense - 0.40+0.04 030+0.03 0.21 £0.02 0.29+0.02
RL (Depth 3CNN) 38M (Eirain) Dense - 0.40+0.04 0244003 0.15+£0.02 0.25+0.02
Behavior Cloning 40K (Eirain) - f)y[ 044 +0.04 0294003 0.07+0.01 0.25%+0.02
Behavior Cloning + RL 12M (Eirain) Dense fiy[ 041 +0.03 0.26+0.03 0.09+0.01 0.24+0.02
Our (Value Learning from Videos) 40K (Eirain) - f/y[ 0.75+0.03 0.63+0.03 0.30+£0.02 0.53+0.02
Behavior Cloning 40K (Eirain) - f&y“ 048 +£0.04 0.34+0.03 0.24+£0.02 0.34+0.02
Behavior Cloning + RL 12M (Eirain) Dense f)sy“ 042+0.03 0224003 0.11 £0.02 0.24 +0.02
Our (Value Learning from Videos) 40K (Eirain) - f}Sy“ 0.71 £0.03 0.55+0.03 0.26+0.02 0.48 +0.02
Strong Supervision Values Labeled Maps (Eyigeo) 0.73+0.03 0.60+0.03 0.33+0.02 0.53+0.02
Strong Supervision + VLV (Ours) Labeled Maps (Eyigeo) + Vyl 0.80 £0.03 0.65+0.03 0.35+0.03 0.57+0.02
Method Training Supervision Success Rate
# Active Frames  Reward Other Easy Medium Hard Overall

Topological Exploration - - - 0.89+£0.03 0.80+0.04 0.41=£0.04 0.67=+0.02
Detection Seeker - - - 0.95+0.02 090+0.03 0.50+0.04 0.75+0.02
RL (RGB-D ResNet+3CNN) 100K (Eirain) Sparse - 0.62+0.05 0.41+0.05 0.15+£0.03 0.37+0.02
RL (RGB-D ResNet+3CNN) 1OM (Eipain U Evigeo)  Dense - 0.81 £0.04 0.65+0.05 0.26+£0.03 0.54+0.03
RL (RGB-D 3CNN) 38M (Eirain U Evideo)  Dense - 0.79+£0.04 0.65+0.04 0.35+£0.04 0.57=+0.03
RL (RGB ResNet) 20M (Eirain) Dense - 0.75+0.04 0.59+0.05 0.40+0.04 0.56=+0.03
RL (Depth 3CNN) 38M (Eirain) Dense - 0.73+0.04 0.58+0.05 0.32+0.04 0.52+0.02
Behavior Cloning 40K (Eirain) - f}yl 0.81 +£0.04 0.68+0.04 0.21 £0.03 0.53+0.02
Behavior Cloning + RL 12M (Eirain) Dense f}yl 0.86 +0.03 0.69+0.04 0.29+0.03 0.58 +0.02
Our (Value Learning from Videos) 40K (Eirain) - l}y[ 095+0.02 090+0.03 0.58+0.04 0.79+0.02
Behavior Cloning 40K (Eyrain) - Vsy“ 0.84 £0.03 0.74 £0.04 0.55+£0.04 0.69+0.02
Behavior Cloning + RL 12M (Eyrain) Dense IZ),“ 0.83+0.03 0.62+0.04 0.31+£0.04 0.55+0.02
Our (Value Learning from Videos) 40K (Eirain) - f)wu 0.96 +0.02 0.88+0.03 0.51+0.04 0.75+0.02
Strong Supervision Values Labeled Maps (Eyigeo) 0.95+0.02 092+0.03 0.64+0.04 0.81+0.02
Strong Supervision + VLV (Ours) Labeled Maps (Eyigeo) + f/y, 098 £0.01 094 +0.02 0.62+0.04 0.82+0.02




Table S3: Results: SPL and Success Rate for ObjectGoal wth Oracle Stop in novel environments
Eiest by object class. Details in Section 4.2.

Method Training Supervision SPL
# Active Frames Reward Other Bed Chair Couch Dining Table Toilet
Topological Exploration - - - 0.35+0.04 0.394+0.03 0.29+0.03 0.27+0.04 0.19+0.03
Detection Seeker - - - 0.49 +0.05 0.64 +0.04 048 +£0.04 0.53+0.06 0.26+0.03
RL (RGB-D ResNet+3CNN) 100K (Eirain) Sparse - 0.12£0.03 0.294+0.04 0.16+£0.03 0.20+0.05 0.11 £0.03
RL (RGB-D ResNet+3CNN) 1OM (Erain U Evigeo)  Dense - 024 £0.04 0.37+0.04 029+0.04 038+0.05 0.09=+0.02
RL (RGB-D 3CNN) 38M (Eirain U Evideo)  Dense - 0.30 £0.04 0.394+0.04 0.26+0.04 0.36+0.05 0.14+0.03
RL (RGB ResNet) 20M (Eirain) Dense - 0.30 £0.04 044 +0.04 0.24+0.04 0.27+0.05 0.21+0.03
RL (Depth 3CNN) 38M (Eirain) Dense - 029 £0.04 0.324+0.04 026+0.04 032+0.05 0.13+0.02
Behavior Cloning 40K (Eirain) - Vyl 024 £0.04 0344004 028+0.04 036+0.05 0.10+0.02
Behavior Cloning + RL 12M (Eirain) Dense ffy‘ 023 +0.04 033+0.03 025+0.03 028+0.04 0.13+0.02
Our (Value Learning from Videos) 40K (Eirain) - f/y‘ 0.49 +£0.04 0.68+0.03 0.60+0.04 0.71+0.05 0.32+0.03
Behavior Cloning 40K (Eirain) - fisy“ 0.36 £0.05 0454+0.04 037+0.04 0.35+0.05 0.20+0.03
Behavior Cloning + RL 12M (Eirain) Dense f/sy“ 0.21£0.03 0.314+0.03 0.23+0.03 0.35+0.05 0.14+0.03
Our (Value Learning from Videos) 40K (Eirain) - f}sy“ 0.44 £0.04 0.60+0.04 048 £0.04 0.56+0.06 0.37+0.04
Strong Supervision Values Labeled Maps (Evideo) 0.46 +0.04 0.59 £0.03 0.57 +£0.04 0.68+0.05 0.43+0.03
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + l)yl 0.50 +£0.04 0.69 +0.03 0.58 £0.04 0.77 +£0.04 0.43 £0.04
Method Training Supervision Success rate
# Active Frames Reward Other Bed Chair Couch Dining Table Toilet

Topological Exploration - - - 0.67 £0.05 0.854+0.04 0.71 £0.05 0.68+0.07 0.48 +0.05
Detection Seeker - - - 0.74 £0.05 0.924+0.03 0.80+0.05 0.80+0.06 0.57=+0.05
RL (RGB-D ResNet+3CNN) 100K (Eirain) Sparse - 0.36 £0.06 0.54 +0.05 0.34+£0.05 043+0.07 0.21+0.04
RL (RGB-D ResNet+3CNN) 10M (Eirain U Evideo)  Dense - 0.48 £0.06 0.77+0.04 0.62+0.05 0.86+0.05 0.19+0.04
RL (RGB-D 3CNN) 38M (Eirain U Evideo)  Dense - 0.66 £0.05 0.74+0.05 0.57+£0.06 0.74+0.07 0.30+0.04
RL (RGB ResNet) 20M (Eirain) Dense - 0.64 £0.05 0.74+0.05 0.55+0.06 0.50+0.07 0.38+0.04
RL (Depth 3CNN) 38M (Eirain) Dense - 0.54 £0.06 0.71 £0.05 0.54 £0.06 0.63+0.07 0.30+0.04
Behavior Cloning 40K (Eirain) - f/y[ 0.46 £0.06 0.74+£0.05 0.63 £0.06 0.72+0.07 0.24 +0.04
Behavior Cloning + RL 12M (Eirain) Dense f/),l 0.59 £0.06 0.794+0.04 0.66+0.06 0.67+0.07 0.30=+0.04
Our (Value Learning from Videos) 40K (Eirain) - f/’yl 0.76 = 0.05 0.94+0.03 0.86 +0.04 0.91+0.04 0.57+0.05
Behavior Cloning 40K (Eiain) - f/,-y., 0.70 £0.05 0.844+0.04 0.70+0.05 0.82+0.06 0.51+0.05
Behavior Cloning + RL 12M (Eirain) Dense fisy,, 0.59 £0.06 0.77+£0.04 0.60 £0.06 0.68+0.07 0.25+0.04
Our (Value Learning from Videos) 40K (Eirain) - f/sy“ 0.70 £0.05 0.90+0.03 0.77+0.05 0.82+0.06 0.62 =+ 0.05
Strong Supervision Values Labeled Maps (Eyigeo) 0.72 +£0.05 0.91 £0.03 0.86 +0.04 0.94+0.03 0.71 +0.04
Strong Supervision + VLV (Ours) Labeled Maps (Evideo) + f}y! 0.81 +£0.05 0.944+0.02 0.82+0.04 0.94+0.03 0.69+0.04

Table S4: Results: SPL and Success Rate for ObjectGoal wth Policy Stop in novel environments
Eest by episode difficulty. Details in Section 4.2.

Method Training Supervision SPL
# Active Frames  Reward  Other Easy Medium Hard Overall
Topological Exploration - - - 0224003 0.12+£0.02 0.06+0.01 0.1340.01
Detection Seeker - - - 031 £0.04 022£0.03 0.09=£001 0.19£0.02
RL (RGB ResNet) 20M (Eirain) Dense - 0.10+£0.02 0.09+0.02 0.05+0.01 0.08+0.01
Behavior Cloning 40K (Eirain) - Vit 0.16£0.03 0.10+£0.02 0.02+0.01 0.08 +0.01
Our (Value Learning from Videos) 40K (Eyrain) - Yy 032+0.04 029+003 0.11£0.02 0.22+0.02
Behavior Cloning 40K (Eirain) - f}gyn 0.13+0.02 0.12+0.02 0.07+0.01 0.10£0.01
Our (Value Learning from Videos) 40K (Eirain) - f/sy,, 029+004 023+0.03 013+0.02 0.21 £0.02
Strong Supervision Values Labeled Maps (Evideo) 0.34 £ 0.04 0.25 +0.03 0.15+£0.02 0.24 +£0.02
Strong Supervision + VLV (Ours) Labeled Maps (Eyideo) + Vit 0.31+£0.04 029+£0.03 0.13£0.02 0.23+0.02
Method Training Supervision Success Rate
# Active Frames  Reward  Other Easy Medium Hard Overall

Topological Exploration - - - 043 +0.04 031+0.04 0.17+0.03 0.29+0.02
Detection Seeker - - - 0524+005 043+0.05 0.21+0.03 0.37+0.02
RL (RGB ResNet) 20M (Eirain) Dense - 027+0.04 026+0.04 0.124+0.03 0.21 £0.02
Behavior Cloning 40K (Eirain) - Vit 036+0.04 025+0.04 0.05+0.02 0.20+0.02
Our (Value Learning from Videos) 40K (Eyrain) - f/y, 053004 048005 022+£0.03 0.39=£0.02
Behavior Cloning 40K (Eirain) - f}gyn 035+0.04 028+0.04 0.18+0.03 0.26+0.02
Our (Value Learning from Videos) 40K (Eirain) - Viyn 0.50£0.05 0424005 0.26+0.03 0.38 +0.02
Strong Supervision Values Labeled Maps (Evideo) 0.58+£0.05 045+0.05 030+£0.04 043+0.02
Strong Supervision + VLV (Ours) Labeled Maps (Eyideo) + ﬁy, 0.50£0.05 050£005 027004 041=£0.02




Table S5: Results: SPL and Success Rate for ObjectGoal wth Policy Stop in novel environments
Eiest DY Object class. Details in Section 4.2.

Method Training Supervision SPL
# Active Frames  Reward  Other Bed Chair Couch Dining Table Toilet
Topological Exploration - - - 0.18+0.04 0.174+0.03  0.09 +0.02 0.11 +0.03 0.09 + 0.02
Detection Seeker - - - 0.25+0.04 025+0.04 0.13+£0.03 0.23 + 0.05 0.14 £ 0.02
RL (RGB ResNet) 20M (Eirain) Dense - 0.02+0.01 0.15£0.03 0.05+0.02 0.07 +0.03 0.08 £ 0.02
Behavior Cloning 40K (Eain) - Vit 0.134+0.03 0.124+0.03  0.02+0.01 0.12 £ 0.04 0.05 +0.02
Our (Value Learning from Videos) 40K (Eain) - f/y. 0.25+0.04 0.28+0.04 0.22+0.04 0.20 £ 0.05 0.17 £ 0.03
Behavior Cloning 40K (Eain) - fky., 0.06 £0.02 0.164+0.03  0.09 +0.02 0.14 £ 0.04 0.08 + 0.02
Our (Value Learning from Videos) 40K (Eain) - l)sy., 021+0.04 025+0.03 0.13+0.03 0.17 £ 0.04 0.24 +0.03
Strong Supervision Values Labeled Maps (Eyigeo) 0.24+0.04 024+0.03 0.22+0.04 0.28 £ 0.05 0.22+0.03
Strong Supervision + VLV (Ours) Labeled Maps (Eyideo) + f}y! 0.14+0.04 0.31+0.04 0.18+0.04 0.32 £ 0.05 0.24 £+ 0.03
Method Training Supervision Success Rate
# Active Frames  Reward  Other Bed Chair Couch Dining Table Toilet

Topological Exploration - - - 0.274+0.05 035+£0.05 0.26 £0.05 0.29 + 0.07 0.27 4+ 0.04
Detection Seeker - - - 038+ 0.06 048+0.05 0.23+£0.05 0.37 + 0.07 0.36 4 0.05
RL (RGB ResNet) 20M (Eirain) Dense - 0.07+0.03 038+£0.05 0.12+0.04 0.15+0.05 0.23 £+ 0.04
Behavior Cloning 40K (Eirain) - Yy 0.234+0.05 030£0.05 0.06 +0.03 0.33 +0.07 0.14 4 0.03
Our (Value Learning from Videos) 40K (Eain) - lA/'y. 040 £0.06 0.52+0.05 0.36 = 0.06 0.31 £0.07 0.32 £ 0.04
Behavior Cloning 40K (Eirain) - 17<y., 0.114+0.04 043+£0.05 0.24+0.05 0.34 4+ 0.07 0.20 £ 0.04
Our (Value Learning from Videos) 40K (Eyrain) - Viyn 0.30£0.05 049+0.05 0.26+0.05 0.34 £0.07 0.43 + 0.05
Strong Supervision Values Labeled Maps (Eyigeo) 0.34+£0.06 0.50+0.05 0.37=+0.05 0.54 £0.07 0.42 £ 0.05
Strong Supervision + VLV (Ours) Labeled Maps (Eyigeo) + f)y, 0.20+0.05 0.53+£0.05 0.30=£0.05 0.52 +0.08 0.47 £+ 0.05




S3.2 Ablations (corresponding to Section 4.2)

Table S6: We report various ablations of our method, when using automatic stopping behavior,
evaluated on &,y Base setting uses noisy trajectores, action labels from inverse models and
panorama images. We ablate these settings. See Section 4.3 for details.

SPL Success Rate

Method Easy Medium Hard Overall Easy Medium Hard Overall

Base setting 0.62+0.04 0.42+£0.04 0.23£0.03 0.40+0.02 0.95£0.03 0.86+0.05 0.56+0.05 0.75£0.03
True actions 0.61+0.05 0.45£0.05 0.25+0.03 0414+0.03 0.94+0.03 0.86+0.05 0.514+0.05 0.73+£0.03
True detections 0.62£0.05 0.45+0.05 0.22+0.03 0.40+£0.03 0.95£0.03 0.86+0.05 0.48+0.05 0.72£0.03
True rewards 0.64+0.05 0.46+0.05 0.21+0.03 0414+0.03 0.95+£0.03 0.86+0.05 0.48+0.05 0.72+0.03
No noise in videos 0.65£0.05 0.46+0.04 0.25+0.03 043+£0.03 0.95£0.03 0.92+0.04 0.59+£0.05 0.78£0.03
Deoco score 0.73+£0.04 0.48+£0.05 0.26+0.03 0.46+0.03 0.98+0.02 0.88+0.05 0.58+0.06 0.78+0.03

Train on 360° videos ~ 0.664+0.04 0.51£0.05 0.32+0.03 0.474+0.02 0.98£0.02 0.92+0.04 0.664+0.05 0.82+0.03




S4 Visualizations

S4.1 Value Predictions on Panorama

Bed

Chair

Couch

D. Table

Toilet

Bed

Chair

Couch

D. Table

Toilet

Figure S3: Example panoramas from novel environments with scores from our value network. Scores
for each object class (Bed, Chair, Couch, Dining Table, and Toilet) are reported. We can see that
value is high in the likely direction of objects even if the object is not directly visible.
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Toilet

Figure S4: Example panoramas from novel environments with scores from our value network. Scores
for each object class (Bed, Chair, Couch, Dining Table, and Toilet) are reported. We can see that
value is high in the likely direction of objects even if the object is not directly visible.
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S4.2 Executed Trajectories

Object: Dining Table - SPL: 1.00 Object: Couch - SPL: 0.91 Object: Dining Table - SPL: 0.86

Figure S5: Example trajectores from our method navigating in novel environments, sorted by SPL
(first few show successes, last few show failures). The black path indicates the trajectory taken by the
agent. A blue circle indicates potential short-term goal, and a red rectangle indicates the object goal.
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S4.3  Eest Problem Setup Visualization

Corozal floor 1 Darden floor 0 Darden floor 1  Markleeville floor 0 chonisco floor 1

2 553"
v

T

Markleeville floor 1

bed
chair
couch
dining table
toilet

Figure S6: Top-down maps of selected floors from the &y environments. We also show ground truth
object locations. Agent does not have access to any of these maps or ground truth object locations.
Visualizations here are provided only to show the difficulty and realism of our problem setup.
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S4.4 Learned Value Maps on Held-out Environments

Wiconisco floor 1: Couch Corozal floor 0: Couch

bed
chair
couch
® dining table
toilet

0.70

Corozal floor 1: Bed
1.00

0.95
0.90
0.85

0.80 0.80

0.92

0.90

Figure S7: Maps representing the value of different locations in novel environments as predicted by

our method trained on Vy,. We can see that high value regions fall off smoothly as the distance from
object goals increases.
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S4.5 Value in Branching Environment

Gnear

Gfar
[ o
I ——

Q-Learning Policy Eval - TD(0) Policy Eval -Monte Carlo

Figure S8: The predicted value in the branching environment using models trained with Q-learning,
and policy evaluation via TD(0) and Monte Carlo. We see that the policy evaluation methods
drastically under estimate the value in the optimal direction at the branch point. This leads to
sub-optimal policies for those methods while the Q-learning based value function finds the optimal
trajectory. See Section 4.3 for details.
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