
We thank the reviewers for their insightful feedback. We are encouraged that they found our approach to be interesting1

(R2, R4) and distinct from existing approaches (R1) with thorough and detailed experiments (R3) and reasonable2

baselines for a fair evaluation (R1). We are pleased that R1 recognizes the novelty and value of using both upper3

and lower bounds, in contrast to existing approaches, for resource allocation and for the provision of performance4

guarantees (regret) that current methods lack. Indeed, incorporating existing estimators of MI that are biased in known5

directions as bounds (rather than proxies for true MI) is the critical insight that directly leads to both algorithmic6

improvement and performance guarantees.7

(R2, R4) Baselines R1 feels the paper does “a good job of including reasonable baselines” while R2 and R4 prefer8

comparison to additional MI bounds. We emphasize that our goal is not to identify the most accurate MI proxies, but to9

propose an approach which exploits available bounds to guarantee performance with minimal computation. While we10

consider specific bounds (Eqn. 4) other bounds are easily substituted including variational bounds suggested by R211

(Supplement Sec 3). R4 considers the comparisons to be “a variant of proposed methods”, which we disagree with12

since the typical Bayesian optimal experimental design (BOED) approach uses our chosen bounds (‘bed-lb’, ‘bed-ub’)13

as proxies [5, 2, 3]. Additional comparisons suggested address a different, continuous design, problem (R2 [3], R3 [4]).14

(R3) Dimension Experiment or Discussion R3 is concerned that the experiments are 1D designs. Design dimension15

is relevant only for continuous designs, whereas in discrete settings the number of distinct design elements is a better16

measure of complexity. For the Gaussian MRF we use a set size of 100 and for the Tracking experiment there are 666917

choices. We do not have experiments explicitly analyzing the impact of increasing set size, but expect our approach to18

yield greater savings (w.r.t. baseline) as allocating resources to promising designs is increasingly important.19

(R2) One needs to compute the expected information gain (EIG), requiring a nested estimator, given Eq(2),20

right? Not exactly. The bounds (e.g. Eqn. 4) are typically used as proxies for the true MI (Eqn. 2), but we explicitly21

treat them as bounds. We select the design with the highest performance guarantee (L104-110) which is afforded by22

two-sided bounds. We use nested estimators in our experiments because they are simple – and common in the BOED23

literature [1, 3]. One could use (non-nested) alternatives (Supp. Sec 3), but we illustrate the benefits of an approach24

incorporating two-sided bounds. We will also add references as suggested by R1, R3.25

(R2) Added cost of knapsack algorithm, scaling with variables The algorithm only adds a small cost (< .01% of26

the total computational cost for GMRF experiment) because the marginal utility (MU) of each design doesn’t require27

any computation over the samples. In general, cost of bound evaluation (quadratic in samples) will far outweigh that of28

knapsack. The knapsack cost is linear in the number of designs since the MUs depend on each lower and upper bound.29

(R2) Motivation for the cost function formulation (L125) unclear. The computational cost arises from the particular30

bounds used in the BOEDIR framework. The nested bound evaluations in Eqn. (4) are quadratic in the total number of31

samples (= |Y| +N where N is the incremental update when refining), resulting in the cost function of L125. The32

costs take a different form for other bounds (Supp. Sec 3).33

(R3, R4) Estimating Costs The costs for sampling can be directly estimated using any method for measuring code34

performance, including functions that measure wall time. The coefficients of the bounding function can be estimated by35

a quadratic fit to timing measurements at various sample sizes. Alternatively, one could learn these parameters online;36

measuring and adaptively estimating the computational cost adds little computation.37

(R2) Does Eq(4) need to be computed for each experimental design setup? Yes, we bound EIG of each design38

(Eqn. 4) with an initial amount of computation. This may suffice to exclude some designs from further computational39

resources; over half of the designs in the tracking experiment do not receive additional evaluation.40

(R1) Why are approximations in Sec. 3.1 made? One can exactly evaluate the change in performance guarantee41

under an assumed update to the lower/upper bounds. However, the result is sensitive to the update assumption due to42

the discontinuous max function, so we use a standard smooth approximation: LogSumExp.43

(R4) Selection of the refinement set should be described. The refinement set, R in Alg. 2, consists of all designs44

with upper bound greater than the highest lowest bound. These are all designs that may feasibly be optimal.45

(R1, R3, R4) Presentation In addition to comments above we will: clarify the definition of g(Ia, I∗a) (R1), give an46

example of cost parameter estimation (R3, R4), explicitly reference Alg. 1 (R3), discuss suboptimality gap of greedy47

(myopic) vs. non-myopic BOED (R3), and expand derivations of the bounds (Eqn. 4) in the supplement (R3). Additions48

to the main text are minor, but we will shift details of the GMRF experiment to the supplement (R1) for extra space.49
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