
Theorem 3.1. Under Assumption 2.1 and Assumption 3.1, if (1), i.e.,

h∗ ∈ argminh E(h) s.t. V(h) ≤ 0,

is feasible (i.e., a solution exists), the Bayes-optimal classifier is given by h∗(x) = h∗(z,a) =
βah1(x) + (1 − βa)h2(x), where βa ∈ (0, 1),∀a ∈ A and hi(x) are weighted classifiers with
weights {{Wi,a}i∈{1,2}}a∈A.

Proof. The key idea of the proof is to exploit the problem representation in terms of confusion
matrices. The proof has two main steps (i) population analysis for feasible confusion matrices, and
(ii) plug-in of the classifiers that achieve the Bayes optimal confusion.

Confusion space. As the first step, let Cg = {Cg(h) |h ∈ H} be all group g specific confusion
matrices, and let CGfair =

∏
g∈Gfair

Cg be the product space of all confusion matrices corresponding
to fair groups associated with a given instance of the problem. Similarly, let CA =

∏
g∈Gintersectional

Cg
be the product space of all confusion matrices corresponding to intersectional groups. A standard
property of confusion matrices is that each Cg is a convex set [21, 20, 24]. Thus, each C ∈ Cg can be
described as a mixture of two boundary points, i.e.,

∀C ∈ Cg ∃C1,C2 ∈ ∂Cg, β ∈ [0, 1], s.t.C = βC1 + (1− β)C2

Another useful fact is that all confusion matrices on the boundary can be achieved by a weighted
classifier [21, 20, 24]. This fact follows from the convexity of the set Cg, and is simply a dual
representation – via support functions, i.e.,

∀C ∈ ∂Cg, ∃W s.t.C = Confg(h∗), where h∗ ∈ argmax
h∈H

〈W,Confg(h)〉 ,

and where, for notation clarity, we have Conf(h) as the confusion matrix of classifier h, and Confg(h)
as the group-restricted confusion matrix. Further, the solution h∗ can be represented as a weighted
classifier (Definition 3.2) [20, 24].

Population confusion problem. Recall that the population confusion can be decoposed into their
intersectional counterparts C =

∑
a∈Gintersectional

P(a)Ca. Similarly, each overlapping group confusion
can be decomposed using the intersection confusions as Cg ∈ CGfair , C

g =
∑
a∈Gintersectional

P(a|g)Ca.

As the overall metric is a function of confusion matrices only, we can re-state (1) as the equivalent
confusion problem (with slight abuse of notation) for any Gfair as:

C∗, {Cg,∗} = argmin ψ(C) s.t. Φ(C, {Cg}) ≤ 0,

C =
∑

a∈Gintersectional

P(a)Ca

Cg =
∑

a∈Gintersectional

P(a|g)Ca

Ca = Confa(h).

After substituting the population C and the group confusions Cg with the presented linear functions
of Ca, this is equivalent to the problem

{Ca,∗} = argmin ψ({Ca}) s.t. Φ({Ca}) ≤ 0, Ca = Confa(h).

Here, we have used the linearity of the cost functions ψ and Φ, and the linearity of the confusion
matrix decompositions into intersectional confusion matrices.

Putting it together. The final step is noting that a solution, if it exists, can be represented by feasible
intersectional confusion matrices {Ca,∗}, and in turn, each intersectional confusion matrix can
be recovered as a weighted average of two intersectional boundary confusion matrices. Thus the
corresponding classifiers can be recovered by a mixture of two weighted classifiers.

A Independent vs. intersectional group fairness

Proposition 3.2. For any Gfair that satisfies assumption 2.1, suppose φ : [0, 1]K×K×[0, 1]K×K→R+

is quasiconcave in its second argument, φ(C,Cg) ≤ 0 ∀g ∈ Gintersectional =⇒ φ(C,Cg) ≤ 0 ∀g ∈
Gfair. The converse does not hold.
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Proof. (For the forward direction)

Recall that f is quasiconcave if f(
∑
i λizi) ≤ maxi{f(zi)}. When φ is quasiconvex, for any Gfair,

we can compute φ(C,Cg) = φ(C,
∑
a∈Gintersectional

λaC
a) ≤ maxa∈Gintersectional φ(C,Ca), where λa are

linear weights (corresponding to inclusion probabilities).

Since φ(C,Ca) ≤ 0 by the claim, it follows that φ(C,Ca) ≤ 0 ∀a ∈ Gintersectional =⇒ φ(C,Cg) ≤
0 ∀g ∈ Gfair.

Converse. Though the above applies to any quasiconcave metric, in this manuscript we mainly
consider linear metrics. As a corollary, intersectional group fairness with respect to common fairness
metrics such as demographic parity or equal opportunity implies independent group fairness. A
simple xor-like example from [15] shows that the converse is not true.

We provide another counterexample to the converse, showing a gap between independent and
intersectional demographic parity (DP) group fairness, on an example with more realistic structure.

Example A.1. Let A1, A2, A3 be binary attributes and {Am} denote the event {Am = 1}. If
P(Y ) = P(A1) = P(A2) = P(A3) = 0.5, A1, A2, A3 are both independent and conditionally
independent given Y , and P(Am | Y ) = 0.6, then for every P,N ⊂ {1, 2, 3} with P ∩N = ∅

P(Y | ∩i∈PAi,∩j∈N Āj) = 0.5(1.2)|P |(0.8)|N |.

Proposition A.1. An optimal (DP) intersectionally fair Ŷ has, over every possible subgroup G =

∩i∈PAi ∩j∈N Aj , P(Ŷ | G) = 0.384 = 0.5(1.2)2(0.8) and has an error of 0.148.

On the other hand, an optimal (DP) independently fair classifier has P(Ŷ | A1, A2, A3) =

0.464, P(Ŷ | Ai, Aj , Āk) = 0.576, P(Ŷ | Ai, Āj , Āk) = 0.384, P(Ŷ | Āi, Āj , Āk) = 0.656
and has an error of 0.1.

Interestingly, even though P(Y | A1, A2, A3) = 0.864 and P(Y | Ā1, Ā2, Ā3) = 0.256 have the
highest and lowest probabilities, the reverse is true of the predictor Ŷ – it sacrifices accuracy on these
groups to obtain higher accuracy on mixed positive/complement intersections.

Here we set up and discuss the example in 3.2 in more detail. First we begin with a rigorous and
more general description of the structure of the example – here, one can think of a binary attribute as
being synonymous with a partition with two sections. The first section corresponds to individuals
with a value of 1 for that attribute and the other section to those with a value of 0.

Assumption A.2 (Independence). Assume that the binary attributes A1, A2, . . . , AM and label Y
satisfy:

1. A1, . . . , AM are independent.

2. A1, . . . , AM are independent conditioned on Y .

In the following, when Aj is used to denote an event inside a probability, it refers to the event
{Aj = 1}. Āj refers to the event {Aj = 0}. We also use the notation Aj = A1

j and Āj = A0
j .

Proposition A.2. For every j = 1, . . . ,M, define qj = P (Aj | Y ) and aj = P (Aj). Then, under
Assumption A.2, for any index set J = {j1, j2, . . . , jJ} and (bj)j∈J ∈ {0, 1}J ,

P (Y | Abjj , j ∈ J) =

J∏
k=1

(
qjk
ajk

)bk ( 1− qjk
1− ajk

)1−bk
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Proof.

P (Y | Ab1j1 , . . . , A
bJ
jJ

) =
P (Y,Ab1j1 , . . . , A

bJ
jJ

)

P (Ab1j1 , . . . , A
bJ
jJ

)

= P (Y )

J∏
k=1

P (Abkjk | Y,A
b1
j1
, . . . , A

bk−1

jk−1
)

P (Abkjk | A
b1
j1
, . . . , A

bk−1

jk−1
)

= P (Y )

J∏
k=1

P (Abkjk | Y )

P (Abkjk )

= P (Y )

J∏
k=1

(
qjk
ajk

)bk ( 1− qjk
1− ajk

)1−bk
.

The third line follows by independence, Assumption A.2.

The idea behind the above proposition is that with the independence assumption A.2, the structure
of P (Y | Ab11 , . . . , A

bM
M ) is such that we have P (Y ) scaled either by qj/aj or (1 − qj)/(1 − aj)

depending on whether we are in Aj or Āj . This in a sense makes the effects of protected attributes
“pile on.” If we assume WLOG that qj/aj ≥ 1, then (1− qj)/(1− aj) ≤ 1.
Example A.3. Suppose that M = 3, P (Y ) = 0.5, and for every j = 1, 2, 3, aj = P (Aj) = 0.5
and qj = P (Aj | Y ) = 0.6. (This is possible because for every J, 0 ≤ P (Y | Aj , j ∈ J) ≤ 1, aka
is a well defined probability.) Applying Proposition A.2 noting qj

aj
= 1.2,

1−qj
1−aj = 0.8,

P (Y | A1) = P (Y | A2) = P (Y | A3) = 0.5 · 1.2 = 0.6,

P (Y | Ā1) = P (Y | Ā2) = P (Y | Ā3) = 0.5 · 0.8 = 0.4,

P (Y | A1, A2) = P (Y | A1, A3) = P (Y | A2, A3) = 0.5 · (1.2)2 = 0.72

∀1 ≤ j, k ≤ 3, P (Y | Aj , Āk) = 0.5 · 1.2 · 0.8 = 0.48

∀1 ≤ j, k ≤ 3, P (Y | Āj , Āk) = 0.5 · 0.8 · 0.8 = 0.32

P (Y | A1, A2, A3) = 0.5 · (1.2)3 = 0.864

∀1 ≤ i, j, k ≤ 3, P (Y | Ai, Aj , Āk) = 0.5 · (1.2)2 · 0.8 = 0.576

∀1 ≤ i, j, k ≤ 3, P (Y | Ai, Āj , Āk) = 0.5 · 1.2 · (0.8)2 = 0.384

P (Y | Ā1, Ā2, Ā3) = 0.5 · (0.8)3 = 0.256

.
Fact A.4. Assuming Assumption A.2 and the accuracy metric, the optimal intersectionally fair
predictor Ŷ assigns the probabilities

∀b ∈ {0, 1}M , P (Ŷ | Ab11 , . . . , A
bM
M ) = wmedianA

P (Y )

M∏
j=1

(
qj
aj

)bj ( 1− qj
1− aj

)1−bj


where the weighted median wmedianA of a set of 2M numbers {rb1 ≤ . . . ≤ rb2M : bi ∈ {0, 1}M}
is

rbi∗ , i
∗ = min{i ∈ N :

∑
k≥i

P (A
bk1
1 , . . . , A

bkM
M ) ≥ 0.5}.

(Proof sketch). By thinking about it (or taking subgradient of E|Y − Ŷ |), since we have the freedom
to pick any constant to be the one to assign to every P (Ŷ | Ab11 , . . . , A

bM
M ), we get the weighted

median formula.

Fact A.5. In example A.3, using Fact A.4 (an) optimal intersectionally fair predictor assigns P (Ŷ |
Ab11 , A

b2
2 , A

b3
3 ) = 0.384 and has an error of

1

8
(|0.864− 0.384|+ 3 · |0.576− 0.384|+ |0.256− 0.384|) = 0.148.
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On the other hand, an optimal independently group fair predictor assigns

P (Y | A1, A2, A3) = 0.5 · (1.2)3 = 0.464

∀1 ≤ i, j, k ≤ 3, P (Y | Ai, Aj , Āk) = 0.5 · (1.2)2 · 0.8 = 0.576

∀1 ≤ i, j, k ≤ 3, P (Y | Ai, Āj , Āk) = 0.5 · 1.2 · (0.8)2 = 0.384

P (Y | Ā1, Ā2, Ā3) = 0.5 · (0.8)3 = 0.656.

This predictor has an error of 1
8 (|0.864− 0.464|+ |0.256− 0.656|) = 0.1. This is strictly less than

the optimal intersectional error 0.148, i.e. there is a gap.

Proof. By basically the same argument as for the intersectional case, it is optimal to have
P (Ŷ | A1) = P (Ŷ | Ā1) be the median of P (Y | A1), P (Y | Ā1). Now we just need to verify that
Ŷ as defined above is independently group fair.

P (Y | Ai) =
1

4

(
P (Y | Ai, Aj , Ak) + P (Y | Ai, Āj , Ak) + P (Y | Ai, Aj , Āk) + P (Y | Ai, Āj , Āk)

)
=

1

4
(0.464 + 2(0.576) + 0.384) = 0.5

P (Y | Āi) =
1

4

(
P (Y | Āi, Aj , Ak) + P (Y | Āi, Āj , Ak) + P (Y | Āi, Aj , Āk) + P (Y | Ai, Āj , Āk)

)
=

1

4
(0.576 + 2(0.384) + 0.656) = 0.5.

Since i ∈ {1, 2, 3} is arbitrary independent group fairness is satisfied.

B Consistency and Generalization

Theorem 5.2. With probability at least 1− δ, if projected gradient ascent is run (Updatet(λ, v) =
proj[0,B]J (λ + ηv)) for T iterations with step size η = 1

B
√
T

and for t = 1, . . . , T, ht =

plugin(η̂, (π̂g)g∈Gfair , ψ,Φ), letting ρ = max{‖ψ‖1, ‖φ1‖1, . . . , ‖φJ‖1}, then

Uψ(h̄
T

) ≤ U∗ψ +
JB√
T

+ ((1 + J)B + 1)ρ

4

√
K2 log(2nmin)

nmin
+

√
log(2(1 + |Gfair|)K2/δ)

nmin


+ E‖η(x)− η̂(x)‖1B

ρX +
∑
g∈Gfair

+
ρg
πg

+ 2

√
log(|Gfair|/δ)

n

∑
g∈Gfair

ρgB

π2
g

‖VΦ(h̄
T

)‖∞ ≤
2J√
T

+ 4(4(1 + J) + 1)ρ

√K2 log(2nmin)

nmin
+

√
log(2(|1 + |Gfair|)K2/δ)

ng


+ 4E‖η(x)− η̂(x)‖1

ρX +
∑
g∈Gfair

ρg
πg

+ 8

√
log(|Gfair|/δ)

n

∑
g∈Gfair

ρg
π2
g

.

Proof. First step is to extract the error incurred by plugging in η̂ rather than η. Denoting ĥ =
plugin(η̂, (π̂g)g, ψ,Φ,λ) and ng = |{i : xi ∈ g}| so that π̂g =

ng

n ,

ĥ(x) = argmink∈{1,...,K}

{
η̂(x)>

[
D +

J∑
l=1

λl
(
Ul −

∑
g∈Gfair

1x∈g

π̂g
Vg
l

)]}
k

.

Denote h = plugin(η, (πg)g, ψ,Φ,λ). We quantify the discrepancy. Define k̂ = ĥ(x) and k∗ =
h(x). Also, define

M = D +

J∑
l=1

λl

(
Ul −

∑
g∈Gfair

1x∈g

π̂g
Vg
l

)
.
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(η(x)>M)k̂ − (η(x)>M)k∗ = (η̂(x)>M)k̂ + [(η(x)− η̂(x))>M]k̂ − (η(x)>M)k∗

≤ (η̂(x)>M)k∗ + [(η(x)− η̂(x))>M]k̂ − (η(x)>M)k∗ + ξ

= (η − η̂)>M(ek̂ − ek∗) + ξ ≤ ‖η − η̂‖1

 ∑
g∈Gfair

ρg
πg

+ ρX

B + ξ

where ρg =
∑J
l=1 ‖V

g
l ‖∞, ρX = ‖D‖∞ +

∑J
l=1 ‖Vl‖∞ and ξ = 2

√
log(|Gfair|/δ)

n

∑
g∈Gfair

ρgB
π2
g

–

we are considering the fact that |πg − π̂g| ≤
√

log(2|Gfair|/n)
n for every g ∈ Gfair with probability

1− δ/2. Taking expectation, we arrive at

L(C(ĥ),λ)−L(C(h),λ) ≤ E‖η(x)−η̂(x)‖1

 ∑
g∈Gfair

ρg
πg

+ ρX

B+2

√
log(|Gfair|/δ)

n

∑
g∈Gfair

ρgB

π2
g

.

(4)
By standard subgradient descent/online learning analysis, if the stepsize η = 1/(B

√
T ) is used,

1

T
max

λ∈[0,B]2M

T∑
t=1

L̂(ht,λ)− 1

T

T∑
t=1

L̂(ht,λt) ≤ JB√
T

because L(h, ·) is concave and
√
J-Lipschitz (all fairness violations assumed to be in [0, 1]) and the

`2 radius of [0, B]J is
√
JB.

Now we show how good of a saddle point
(

1
T

∑T
t=1 h

t, 1
T

∑T
t=1 λ

t
)

=: (h̄
T
, λ̄

T
) for the population

problem. By convexity of L in the first argument,

1

T
max

λ∈[0,B]M

T∑
t=1

L̂(ht,λ) ≥ max
λ∈[0,B]M

L̂(h̄
T
,λ).

Using equation 4 and the fact that ht is the minimizer of L(C[h],λt), but using η̂ instead of η,

1

T

T∑
t=1

L̂(ht,λt) ≤ 1

T

T∑
t=1

L(ht,λt) + L̂(ht,λt)− L(ht,λt)

≤ 1

T

T∑
t=1

min
h:X → [0,1]

L(h,λt) + L̂(ht,λt)− L(ht,λt)

+B(ρX +
∑
g∈Gfair

ρg
πg

)E‖η(x)− η̂(x)‖1 + ξ

≤ min
h:X → [0,1]

L(h,λ
T

) + 4(1 + J)Bρ

√K2 log(K) log(2nmin)

nmin
+

√
log(2(|1 + |Gfair|)K2/δ)

nmin


+B(ρX

∑
g∈Gfair

ρg
πg

)E‖η(x)− η̂(x)‖1 + ξ

where the middle term is from Lemma C.1. Let us absorb the error terms into γ. Now we can write:

max
λ∈[0,B]J

L̂(h̄
T
,λ)− min

h:X → [0,1]
L(h,λ

T
) ≤ JB√

T
+ γ.

Letting (h∗,λ∗) be primal dual optimal, we have

∀λ ∈ [0, B]K , L(h∗,λ∗) ≥ L̂(h̄
T
,λ)− JB√

T
− γ. (5)

The choices λ = 0 and λ = λ∗ + B
2 egm, give

Û(h̄
T

) ≤ U(h∗) + γ +
JB√
T

V̂(h̄
T

)k ≤
2

B

(
JB√
T

+ 2γ

)
.
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By Lemma C.1

∀g ∈ Gfair, sup
h∈Hplg

‖Cg[h]−Ĉg[h]‖∞ ≤ 4

√
K2 log(2ng)

ng
+

√
log(2(|1 + |Gfair|)K2/δ)

ng
=: ζ(ng).

we have that with probability ≥ 1− δ

U(h̄
T

) ≤ U(h∗) + γ +
JB√
T

+ ρζ(nmin)

V(h̄
T

)k ≤
2

B

(
JB√
T

+ 2γ

)
+ ρζ(nmin).

Therefore we obtain the bounds

Uψ(h̄
T

) ≤ U∗ψ +
JB√
T

+ ((1 + J)B + 1)ρ

4

√
K2 log(2nmin)

nmin
+

√
log(2(1 + |Gfair|)K2/δ)

nmin


+ E‖η(x)− η̂(x)‖1B

ρX +
∑
g∈Gfair

+
ρg
πg

+ 2

√
log(|Gfair|/δ)

n

∑
g∈Gfair

ρgB

π2
g

‖VΦ(h̄
T

)‖∞ ≤
2J√
T

+ 4(4(1 + J) + 1)ρ

√K2 log(2nmin)

nmin
+

√
log(2(|1 + |Gfair|)K2/δ)

ng


+ 4E‖η(x)− η̂(x)‖1

ρX +
∑
g∈Gfair

ρg
πg

+ 8

√
log(|Gfair|/δ)

n

∑
g∈Gfair

ρg
π2
g

.

C Estimators

In this section, we give plugin and weighted ERM methods of solving the linear probabilistic
minimization problems arising from the Lagrangian of our fairness problem. For clarity, we go over
the choices of cost and constraint matrices corresponding to what we use in our experiments.

In our experiments, we maximize accuracy while enforcing independent demographic parity con-
straints and group-weighted gerrymandering demographic parity constraints. Under the framework
of our probabilistic optimization problem, the former corresponds to the choice Gfair = Gindependent,
and Φ containing the 2|Gindependent| = 4M constraints

∀ g ∈ Gindependent, ±(Cg
+,1 −C+,1) ≤ ν,

where the + subscript denotes summing over indices 0, 1 in place of +. I.e. for g ∈ Gindepdendent,

Vg
g,± = ±

[
0 1
0 1

]
, Vg′

g,± = 0 for g 6= g′, Ug,± = ±
[
0 1
0 1

]
. D =

[
0 1
1 0

]
.

The latter corresponds to the choice Gfair = Ggerrymandering, and the 2|Ggerrymandering| constraints

∀g ∈ Ggerrymandering, ±P(g)(Cg
+,1 −C+,1) ≤ ν.

This corresponds to, for g ∈ Ggerrymandering, V
g
g,± = ±P(g)

[
0 1
0 1

]
, Vg′

g,± = 0 for g 6= g′, Ug,± =

±P(g)

[
0 1
0 1

]
. The P(g)’s will cancel out with the P(g)’s in the expressions below.
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C.1 Plugin Estimator

Using linearity of ψ and φ, if η is known, the population minimizer h∗ = argminh:X → [K] L(h, λ) is
deterministic and has a convenient closed form solution (the same is true of any linear minimization).

L(h, λ) = 〈D +

L∑
l=1

λlUl,C[h]〉 −
∑
g∈Gfair

L∑
l=1

λl 〈Vg
l ,C

g[h]〉

= E
{
〈D +

L∑
l=1

λlUl,η(x)h(x)>〉 −
∑
g∈Gfair

L∑
l=1

λl
〈
Vg
l ,
1{x∈g}

P(g)
η(x)h(x)>

〉}

= Eη(x)>
[
D +

L∑
l=1

λl

(
Ul −

∑
g∈Gfair

1x∈g

P(g)
Vg
l

)]
h(x).

where we noticed that the conditional group confusion equals Cg[h] = E1{x∈g}η(x)h(x)>/P(g).
Denote πg = P(g) for g ∈ Gfair as the group probabilities. Thus, the minimizer has the deterministic
form

h∗(x) = argmink∈{1,...,K}

{
η(x)>

[
D +

L∑
l=1

λl

(
Ul −

∑
g∈Gfair

1x∈g

P(g)
Vg
l

)]}
k

. (6)

Finally, since we do not actually have access to the true η, we replace η with an estimated η̂.

C.2 Weighted ERM

In the weighed ERM approach (referred to as cost-sensitive classification for the binary case [1])
we parametrize h : X → [K] by a function class F of functions : X →RK. The classification is
the argmax of the predicted vector, h(x) = argmaxj(f(x)j), so we denote the set of classifiers as
Hwerm = argmax ◦F . For a standard classification problem with 0-1 error, minimizing the dataset
error êrr[h] = 1

n

∑n
i=1 1{h(xi)6=yi} is done by minimizing a surrogate loss ` : RK × [K]→R+, e.g.,

using softmax cross-entropy, over the dataset, as Ê`(f(x), y) = 1
n

∑n
i=1 `(f(xi), yi). Then we take

h = argmax ◦f .

Let `(s) ∈ Rk be the vector `(s)k = `(s, k).

In an analogous manner, we would like to minimize the empirical metric defined by the Lagrangian
using a surrogate loss, as

min
h∈Hwerm

L̂(h,λ) =

n∑
i=1

e>yi

[
1

n
D +

L∑
l=1

λl
n

(
Ul −

∑
g∈Gfair

1xi∈g

ng
Vg
l

)]
h(xi).

where ng = |{i : xi ∈ g}|, g ∈ Gfair are the empirical sizes of each group. Notice it has the form

min
h∈Hwerm

n∑
i=1

w>i h(xi) =

n∑
i=1

s(wi)
w>i
s(wi)

h(xi), s(wi) =
1

K − 1

K∑
k=1

(wi)k.

If we interpret 1− wi

s(wi)
as a probability distribution over labels and s(wi) as its weight, then we

have minh Ẽ[(1− η̃(x))>h(x)] where P̃(xi) = s(wi)∑n
i=1 s(wi)

and η̃(xi) = 1− wi

s(wi)
.

A priori, maxk(wi)k
s(wi)

≤ 1, i.e. maxk(wi)k∑K
k=1(wi)k

≤ 1
n−1 , may not hold. But, since shifting each entry of

wi by the same amount does not change the initial optimization problem, we can add the constant
amount (n− 1) maxk(wi)k −

∑K
k=1(wi)k to each entry of wi, after which wi

s(wi)
≤ 1.

If ` is a surrogate loss used to minimize the multiclass error, it is assumed that we can minimize
E[(1 − η(x))h(x)] if we minimize E[η(x)>`(f(x))] and take h = argmax ◦f . Therefore, we can
solve the weighted version by minimizing reweighted surrogate loss:

min
f∈F

Ẽ[η̃(x)>`(f(x))] ≡ min
f∈F

n∑
i=1

s(wi)

(
1− wi

s(wi)

)>
`(f(x)) =: L̂(f). (7)

This provides a convex surrogate for the original problem of minimizing the empirical Lagrangian.
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Lemma C.1 (Confusion matrix generalization). Denote ng as the number of samples belonging to
group g for g ∈ Gfair ∪ {X}. Then with probability at least 1− δ,

∀g ∈ Gfair ∪ {X}, sup
h∈convH

‖Cg[h]− Ĉg[h]‖∞ ≤ 4

√
VC(H) log(ng + 1)

ng
+

√
log((1 + |Gfair|)K2/δ)

ng
.

Proof. By standard binary classification generalization [2], with probability at least 1− δ,

sup
h∈convH

∣∣∣P (Y = i, h(X) = j | g)− P̂ (Y = i, h(X) = j | g)
∣∣∣

≤ 4

√
VC(H) log(ng + 1)

ng
+

√
log(1/δ)

ng
.

Then we take a union bound over |Gfair| confusion matrices and K2 entries per confusion matrix.

Theorem C.2. Suppose ψ : [0, 1]K×K→ [0, 1] and Φ : [0, 1]K×K × ([0, 1]K×K)Gfair→ [0, 1]L are
ρ-Lipschitz w.r.t. ‖ · ‖∞. Recall L̂(h,λ) = Ê(h) + λ>(V̂(h) − ε1). Let γ denote the bound in
Lemma C.1 that applies to C, γg the bound that applies to Cg, and denote γGfair = maxg∈Gfair γg. If
ε ≥ ργ then with probability 1− δ:

If (h̄, λ̄) is a ν-saddle point of maxλ∈[0,B]L minh∈convH L̂(h,λ), in the sense that
maxλ∈[0,B]L L̂(h̄,λ)−minh∈convH L̂(h, λ̄) ≤ ν, and h∗ ∈ convH satisfies V(h∗) ≤ 0, then

E(h̄) ≤ E(h∗) + ν + 2ργ (8)

‖V(h̄)‖∞ ≤
1 + ν

B
+ ργGfair + ε. (9)

Thus, as long as we can find an arbitrarily good saddle point, which follows from weighted ERM if
Hwerm is expressive enough while having finite VC dimension, then we obtain consistency.

Proof. By Lemma C.1, with probability 1− δ,
|E(h)− Ê(h)| ≤ ργ, ‖V(h)− V̂(h)‖∞ ≤ ργGfair . (10)

Therefore, V̂(h∗) ≤ ε. Using this feasibility to argue the first inequality below:
Ê(h̄)− Ê(h∗) ≤ Ê(h̄)− L̂(h∗, λ̄) = L̂(h̄, 0)− L̂(h∗, λ̄) ≤ ν.

Then (8) follows from (10) and triangle inequality. For the next part,
B(V̂(h̄)k − ε) = L̂(h̄, Bek)− L̂(h∗, λ̄) + Ê(h∗)− Ê(h) ≤ ν + 1.

This and (10) imply (9).

D Datasets

Here we dicsuss the datasets used and additional experimental details.

Communities and Crime: contains neighborhoods featurized by various statistics pertaining to the
neighborhoods, e.g. percent employed in various professions, demographics, rent, etc. The label is
whether there is a high (> 70%-ile) rate of violent crimes per capita. There are n = 1994 samples
and N = 12 protected attributes comprising various racial statistics.
Adult census: contains census data for n = 2020 individuals. The label is whether an individual has
high income. N = 7 protected attributes comprising age, sex, and different races.
German credit: [8] contains features such as financial holdings, occupation, housing, and reason
for purchases, and the goal is to predict whether an individual has good credit. Several categorical
variables were converted to one-hot encodings. There are n = 1000 examples and N = 3 protected
attributes corresponding to age, sex, and foreign worker status.
Law school: contains n = 1823 students and their gpas, cluster, and LSAT score. The goal is to
predict whether the student passes the bar, and the protected attributes are age, gender, and family
income.

For the constraint level ν we vary according a logarithmically spaced grid from 0.001 to 1 with 20
points. We set B = 50 for the GroupFair methods. We vary the regularization parameter ρ from
0.01/M to 1000/M across a logarithmically spaced grid with 20 points.
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The authors of [15] apply fictitious play to the gerrymandering problem, searching for the most
violated constraint maxg∈Gfair

ng

n |C
g
0,1 + Cg

1,1 − C0,1 − C1,1| in response to the average of the
predictors computed so far (if the violation exceeds ν), and computing the minimizing predictor in
response to the average of the dual variables obtained from the most violated constraints so far. On
the other hand, we directly apply our GroupFair framework to their original cost function (see[15])
i.e., the problem of maximizing accuracy subject to ∀g ∈ Gfair,

|g|
n |C

g
0,1 + Cg

1,1 −C0,1 −C1,1| ≤ ν.
Both approaches aim to solve this problem.

Here are the full (training in addition to test) plots for the independent and gerrymandering ex-
periments, as well as plots where we constrained the true positive rate to be equal across groups
φ±EO = ±

(
1

P(Y=1|g)C
g
1,1 − 1

P(Y=1)C1,1

)
− ν, and measured this deviation in predicted probability

for the equal opportunity fairness violation. Accordingly, for the Regularizer approach we changed
the penalty to condition on the label being 1.

Figure 4: Experiments on independent group fairness. The pareto frontier closest to the bottom left
represent the best fairness/performance tradeoff.

Figure 5: Experiments on gerrymandering group fairness. The pareto frontier closest to the bottom
left represent the best fairness/performance tradeoff.
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Figure 6: Experiments on equal opportunity. The GroupFair approaches appear to have more issues
with generalization in this setting, which is essentially equivalent to a demographic parity constraint
conditioned on the label being 1. Interestingly, the plugin approach does not generalize on the adult
dataset, but the WERM approach does.
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