
On the Power of Louvain for Graph Clustering
Supplementary Material

A The Stochastic Block Model and Definitions

In the following, we use X ∼ P to denote that the random variable X follows the law P . For any
integer n and 1 ≥ p, q ≥ 0, p > q, we write SBM(n, p, q) to denote the Stochastic Block Model on
2n vertices where the vertices belonging to equisized clusters V1, V2 unknown to the algorithm.

A graph G = (V1 ∪ V2, E) is generated from SBM(n, p, q) by drawing each edge (u, v) ∈ E
independently from the following distribution

P [ (u, v) ∈ E ] =


p if u, v ∈ Vi, u 6= v

q if u ∈ Vi and v ∈ Vj , j 6= i

0 if u = v

.

See Figure 1a for an illustration of such a graph generated by the Stochastic Block Model.

Interestingly, Newman [31] has shown that the modularity objective is the maximum likelihood of a
variant of the SBM on two communities, with prescribed degree distribution.

However, it leaves the natural question open of whether the Louvain heuristic on the SBM with
two communities indeed converges to this solution (the hidden partition). Proving the convergence
shows that Louvain’s local decisions can indeed be powerful enough to reach the global optimum.

A.1 Further Notation

Let G be a graph generated from SBM(n, p, q). Let V be the vertices of G, and (V1, V2 be the
ground truth partition of V . For any Vi, we refer vertices of Vi as vertices or elements of community
i. For any vertex u of community i, we let COMMUNITY(u) = i.

For any i ∈ {1, 2}, for any partition of the vertices ofG into 2 parts (P1, P2), we refer to the part that
contains the larger number of vertices of community i as the home of i and we refer to this part as
HOME(i). Namely, HOME 1 = argmaxU∈{P1,P2}|U ∩V1| and HOME 2 = argmaxU∈{P1,P2}|U ∩V2|.

We will now make use of the following definition, which plays a central role on the analysis of the
algorithms. We say that the partition of the vertices of G into 2 parts has imbalance ∆ if for each
community i, HOME(i) is such that |Vi ∩ HOME(i)| ≥ n/2 + ∆ for j 6= i Given a partition, we use
P (u) to denote the part of the partition containing vertex u.

For any vertex v, we let N(v) denote the set of neighbors of v. Consider any partition (P1, P2) such
that Pi is the HOME for community i. We call the swap value of a vertex v ∈ Pi the quantity

Qv,j =|N(u) ∩ Pj | − |N(u) ∩ Pi|+
deg(u)

2m
(deg(Pi)− deg(Pj))

We call in the following the main part of the swap value to be |N(u) ∩ Pj | − |N(u) ∩ Pi|, and the
Louvain part L(u) = deg(u)

2m (deg(Pold \ {u})− deg(Pnew)).

We also define Edeg to be the event that for G ∼ SBM(n, p, q) the degree of each vertex is in the
interval

[
1
2n(p+ q), 3

2n(p+ q)
]
.

From Chernoff bounds, this event happens with high probability, and we condition on its success
from now on. We will also use throughout the paper the following theorem, that gives a Chernoff-
like bound for slightly correlated variables:
Theorem A.1 ([18]). We say a family Y1, ..., Yr of indicator variables is read-k if there exists a
sequence X1, ..., Xm of independent variables and a sequence S1, ..., Sr of subsets of {1, ...,m}
such that
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• Yi is a function of {Xj , j ∈ Si}

• no element of {1, ...,m} appears in more than k of the Si’s

For any sequence of read-k variables we have that P [Y1 + ...+ Yr > E [Y1 + ...+ Yr ] + εr ] and
P [Y1 + ...+ Yr < E [Y1 + ...+ Yr ]− εr ] are bounded by exp(−2ε2r/k).

B Proofs of Section 3

Proof of Lemma 3.2. We aim at bounding the sum of swap values of vertices in S0. We start by
looking at the main term of the swap values, namely |N(u) ∩ V \ S| − |N(u) ∩ S| for a vertex of
S. We define two types of edges for the edges attached to the vertices of S0. The type-1 edges are
the edges with one extremity in S0 and the other in V \ S. The type-2 edges are the edges with one
extremity in S0 and the other in S \ S0. The type-3 edges are the edges with both extremities in S0.
Thus, for a given vertex u ∈ S0, the sum of majority swap values is given by the number of type-1
edges e1(u) adjacent to u minus the number of type-2 edges e2(u) adjacent to u, minus the number
of type-3 edges e3(u) adjacent to u. Moreover, for i ∈ {1, 2, 3}, let ei =

∑
u∈S0

ei(u) and let ΣMS0

denote the sum of main term of swap values of the vertices in S0, namely ΣMS0
= e1 − e2 − 2e3.

Hence,

E [ e1 ] = |S0|
(

(
n

2
−∆)p+ (

n

2
+ ∆)q

)
;

and

E [ e2 ] = |S0|
(

(
n

2
+ ∆− |S0|)p+ (

n

2
−∆)q

)
= |S0|

(
(
n

2
−∆)(

2p

3
+ q) + 2∆p

)
,

since |S0| = 1
3 (n2 −∆), and

E [ e3 ] =
|S0|(|S0| − 1)p

2
.

Therefore,
E
[

ΣMS0

]
= −2|S0|(∆(p− q) + p).

We now show that e1, e2, e3 are concentrated by applying a standard multiplicative Chernoff bound.
We first show that type-3 edges are concentrated.

We show that the 2e3 > |S0|2p − |S0|∆(p − q)/3 with probability at least 1 − exp(−5(n/2 −
∆) log n). First observe that if |S0|2 < |S0|∆(p− q)/3 the statement holds trivially. Thus, assume
that |S0| > ∆(p− q)/3. Then, let

δ =
∆(p− q)

3|S0|p
.

We have that
δ|S0|2p = δE [ 2e3 ] = |S0|∆(p− q)/3.

Hence, we need to bound P [ 2e3 > (1 + δ)E [ 2e3 ] ]. Assume first that ∆(p − q) < 3|S0|p and so
standard a multiplicative Chernoff bound gives

P [ 2e3 < (1− δ)E [ 2e3 ] ] ≤ exp(−1

2
δ2E [ e3 ])

≤ exp(−∆2(p− q)2

72p
)

≤ exp(−5(n/2−∆) log n),

where we have used
p− q
√
p
≥ 100

√
log n√

∆
max

(
1,

√
(n/2−∆)√

∆

)
.
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Similarly, if ∆(p− q) ≥ 3|S0|p, then

P [ 2e3 < (1− δ)E [ 2e3 ] ] ≤ exp(−1

2
δE [ e3 ])

≤ exp(−∆(p− q)|S0|
24

)

≤ exp
(
− ∆(p− q)(n/2−∆)

72

)
.

Notice that the assumption p−q√
p ≥ 100

√
log n/∆ implies p − q ≥ 100

√
p log n/∆ ≥

100
√

log n/∆p−q√
p (using p ≥ p − q), and so p − q ≥ 10000 log n/∆. Pluging this into the

right-hand-side of the inequality yields P [ 2e3 < (1− δ)E [ 2e3 ] ] ≤ exp(−10000 log n|S0|).

We now turn to show concentration bounds on e1 and e2. Let

µ = E [ e3 ] = |S0|
(

(
n

2
−∆)(

2p

3
+ q) + 2∆p

)
and δ = ∆(p−q)|S0|

3µ . We now apply a multiplicative Chernoff bound and obtain, when δ < 1,

P [ e2 < (1− δ)E [ e2 ] ]

≤ exp(−1

2
δ2E [ e2 ])

≤ exp(− 1

72

∆2(p− q)2|S0|2

µ
)

≤ exp(− 1

72

∆2(p− q)2|S0|(
(n2 −∆)( 2p

3 + q) + 2∆p
) )

≤ exp(− 1

216

∆2(p− q)2(n/2−∆)(
(n2 −∆)( 2p

3 + q) + 2∆p
) )

≤ exp(− 1

432

∆2(p− q)2(n/2−∆)

2pmax((n2 −∆),∆)
).

≤ exp(− 1

432

∆2(p− q)2(n/2−∆)

2pmax((n2 −∆),∆)
)

≤ exp(−5(n/2−∆) log n).

where the last line is obtained by using

p− q
√
p
≥ 100

√
log n√

∆
max

(
1,

√
(n/2−∆)√

∆

)
.

The concentration bound for e1 is identical.

To conclude, observe that if e2 > E [ e2 ] − |S0|∆(p − q)/3 e3 > E [ e3 ] − |S0|∆(p − q)/3 and
e1 < E [ e1 ] + |S0|∆(p− q)/3, then we have that

ΣMS0
< −|S0|(∆(p− q)). (3)

By the above inequalities and a standard application of union bound, this happens with probability
at least 1− 3 exp(−5(n/2−∆) log n).

We can now turn to bounding the sum of the Louvain swap values for vertices in S0, namely

ΣLS0
= (2m)−1

∑
v∈S0

deg(v)(
∑
u∈S

deg(u)−
∑

u∈V \S

deg(u)).

Using Edeg, it holds that m−1 ≤ (1/2n2(p + q))−1 and that
∑
v∈S0

deg(v) ≤ 3|S0|/2n(p + q),
hence (2m)−1

∑
v∈S0

deg(v) ≤ 3|S0|/(2n). It remains to bound D = (
∑
u∈S deg(u) −
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∑
u∈V \S deg(u)). We write deg(S) =

∑
u∈S deg(u), and bound the deviation of deg(S) from

its expectation as for ΣMS0
, by defining two types of edges: let e′1 be the number of edges with two

extremities in S, e′2 the number of ones with one extremity in S and the other in V \ S. It holds that
deg(S) = 2e′1 + e′2.

We start by analyzing e′1. E [ e′1 ] =
(
(n/2 − ∆)2 + (n/2 + ∆)2

)
p + (n/2 − ∆)(n/2 + ∆)q =

n2/2(p+ q/2) + ∆2(2p− q). Note that E [ e′1 ] ∈ [n2p/2, n2p]. Let δ = ∆(p−q)
10np . In the case where

δ ≤ 1, the multiplicative Chernoff bound yields:
P
[
|E [ e′1 ]− e′1| ≤ δn2p

]
≥ P [ |E [ e′1 ]− e′1| ≤ δE [ e′1 ] ]

≥ 1− exp(−δ2E [ e′1 ] /3)

≥ 1− exp(−δ2n2p/6)

≥ 1− exp

(
−∆2(p− q)2

600p

)
≥ 1− exp(−5(n/2−∆) log n)

where the last inequality uses the assumption on p−q√
p .

In the case where δ > 1, we have ∆(p− q) > np and so

P
[
|E [ e′1 ]− e′1| ≤ δn2p

]
≥ 1− exp(−δn2p/6)

≥ 1− exp(−∆(p− q)n
60p

)

≥ 1− exp(−5n log n)

using as before p− q ≥ 10000 log n/∆.

Similarly, E [ e′2 ] =
(
(n/2 − ∆)2 + (n/2 + ∆)2

)
q + 2(n/2 − ∆)(n/2 + ∆)p = n2/2(p + q) −

2∆2(p− q). With the same argument,

P
[
|E [ e′2 ]− e′2| ≤ δn2p

]
≥ 1− exp(−5(n/2−∆) log n).

We can now bound deg(S)− deg(V \ S). Note that E [ |N(V \ S)| ] = E [S ], since |S| = |V \ S|.
Hence, combining the two previous bounds with an union bound,

P
[
|deg(S)− deg(V \ S)| ≤ 2δn2p

]
≥

≥ 1− 2 exp(−5(n/2−∆) log n).

Therefore, the whole sum of Louvain swap value is with probability 1−2 exp(−10(n/2−∆) log n)
bounded by ∣∣ΣLS0

∣∣ ≤ 3|S0|
2n
· 2δn2p =

3|S0|∆(p− q)
10

. (4)

Adding the sum of majority swap values (Equation 3) with the sum of Louvain swap values (Equa-
tion 4), we get that the sum of swap values of vertices in S0 is ΣMS0

+ ΣLS0
≥ − |S0|∆(p−q)

2 . This
concludes the first statement of the lemma.

The proof of the second statement is similar to the previous one, and is skipped.

Proof of Lemma 3.1. Consider a cut S, V \S with imbalance ∆ together with a set S0 of size (n/2−
∆)/3 of bad vertices where each such vertex has positive swap value. Lemma 3.2 implies that the
probability for S0 to have total swap value greater than 0 > −((n/2 − ∆)/3)∆(p − q) is at most
3 exp(−5(n/2−∆) log n).

We now bound the probability that there exists at least one such set. Taking a union bound over all
subsets of size (n/2−∆)/3, we have that the probability that such a set S0 exists is at most

3 exp(−5(n/2−∆) log n) · exp(
(n/2−∆)

3
log n)

≤ 3 exp(−4(n/2−∆) log n).
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Hence, with probability at least 1 − 3 exp(−4(n/2 − ∆) log n), the number of bad vertices with
positive swap value is at most (n/2 −∆)/3. By applying the second statement of Lemma 3.2, we
get that there cannot be a set of of size (n/2 − ∆)/3 containign good vertices with sum of swap
values negative, with the exact same probability bound. Since there are at least n/2 − ∆ good
vertices, the lemma follows.

Proof of Theorem 1.1. Lemma 3.1 implies that for a random cut with imbalance ∆, with probability
at least 1−exp(−4(n/2−∆) log n) the number of bad vertices with positive swap values is at most
(n/2 −∆)/3 and the number of good vertices with positive swap values is at least 2(n/2 −∆)/3.
Define a cut satisfying such a property to be an improving cut. Thus, for any improving cut the
algorithm swaps a good vertex with probability at least 2/3.

By union bound over all cuts with imbalance ∆ we can bound the probability that there exists a
non-improving cut. Indeed, the number of cuts with imbalance ∆ is(

n

n/2 + ∆

)
·
(

n

n/2−∆

)
=

(
n

n/2 + ∆

)2

≤ (nn/2−∆)2 = exp(2(n/2−∆) log n)

By Union bound, the probability that there exists one non-improving cut with imbalance ∆ is there-
fore at most exp(2(n/2−∆) log n) · exp(−4(n/2−∆) log n) = exp(−2(n/2−∆) log n). Now,

making another Union bound for all ∆ such that p−q√p ≥ 100
√

logn√
∆

max

(
1,

√
(n/2−∆)√

∆

)
holds, the

probability that there exist a non improving cut is at most
n/2−1∑
∆=1

exp(−2(n/2−∆) log n) ≤ 2/n2.

Note that the cut with ∆ = n/2 is not improving, but has no positive swap and is therefore a local
optimum.

Let ζ be the smallest value for ∆ such that p−q√p ≥ 100
√

logn√
∆

max

(
1,

√
(n/2−∆)√

∆

)
holds. Recall

that, by assumption we start with ∆ ≥ 2ζ. Putting everything together, we have that for every cut
with ∆ ≥ ζ the following holds. The probability of a swap to be good is p′ ≥ 2/3 meaning that the
size of the imbalance increases by 1. We assume that with the remaining probability the swap is bad
meaning it decreases the imbalance.

By Proposition E.2, we start with ∆ ≥ ζ+s. Therefore, we can model this as a biased random walk
on the integers starting at z and absorbing states 0 and n. The probability to increase for any state
6∈ {0, b} is given by p′ and the probability to decrease is at most 1 − p′. Thus, by Proposition E.2
parameters p = p′, s = ζ, b = n we have that

P [ZT = 0 ] =

(
1−p
p

)b
−
(

1−p
p

)s
(

1−p
p

)b
− 1

≤
(

1− p
p

)s
,

Where we used that x−yx−1 ≤ y for all 0 < x < 1, y ≤ 1. Thus the probability of success, that is

reaching imbalance of n is at least 1 −
(

1−p
p

)s
≥ 1 − 1/2ζ ≥ 1 − 1/n2. By Proposition E.2, the

expected convergence time is linear in n.

Proof of Theorem 1.2. Initializing the algorithm with a random cut and repeating log n times to
boost the probability, the conditions of Lemma 4.7 are met with probability 1 − 1/n. Hence,
with Union bound, the conclusions of Lemma 4.7 hold with probability 1 − O(1/n). There-
fore, we have both p−q√

p ≥ 200n−1/6+ε (by assumption) and ∆ ≥ n/ log2 n, which implies

p−q√
p ≥ 200

√
logn√

∆
max

(
1,

√
(n/2−∆)√

∆

)
. Theorem 1.1 concludes therefore the proof of conver-

gence.
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For the convergence time, note that SuppMat D describes how the algorithm can be implemented
using O(deg(u)) time to update node u for all nodes u ∈ V . Note that for our regime of p − q,
all nodes have degrees that are w.h.p. concentrated around n(p + q). Hence the update time per
node is O(n(p + q)). Furthermore, as argued before, the imbalance performs a biased random and
afterO(n) swaps of nodes the imbalance will have reached n, meaning that we recovered the hidden
partition. Thus the total convergence time is O(n2(p+ q)) = O(m).

C Proofs of Section 4

Proof of Lemma 4.1. By Lemma 4.2, Lemma 4.3 and triangle inequality we have∣∣∣∣P [Xi(u) ≥ max
j 6=i

Xj(u) + Li

]
− P [Zi(u) > Zj(u) ]

∣∣∣∣ ≤
≤ L*

2
√

Var [Y2 ]
+ 4

√
2

np(1− p)
.

From this inequality and Lemma 4.4, the claim follows using that Var [Y2 ] ≥ (n/2−∆)p(1− p).

Proof of Lemma 4.2. Fix an arbitrary Xi. We will apply Essen’s inequality (Theorem E.1). Re-
call that is the sum two binomials allowing us to write Xi =

∑n/2+∆
j=1 Bj +

∑n/2−∆
j=1 B′j where

Bj ∼ B(p) and B′j ∼ B(q). Note that µ3(B1)/µ2(B1) = p(1−p)(1−2p+2p2)
p(1−p) ≤ 1. Similarly,

µ3(B′1)/µ2(B′1) ≤ 1. Note that σ2 ≥
∑
i Var [Bi ] ≥ n

2 p(1− p). Thus, by Theorem E.1, for all x
we have

∣∣∣P [Xi ≤ x+ L*
]
− P

[
Yi ≤ x+ L*

]∣∣∣ ≤ 2

√
2

np(1− p)
. (5)

We can now prove the lemma. Let δ = 2
√

2
np(1−p) . We have

P
[
X1 ≥ X2 + L*

]
=

=

∫
x

P
[
X1 = x+ L*

]
P [X2 ≤ x ] dx

≥
∫
x

P
[
X1 = x+ L*

]
(P [Y2 ≤ x ]− δ)dx

≥ −δ +

∫
x

P
[
X1 = x+ L*

]
P [Y2 ≤ x ]

= −δ + P
[
X1 ≥ Y2 + L*

]
,

Similarly,

P
[
X1 ≥ Y2 + L*

]
=

=

∫
x

P [Y2 = x ]P
[
X1 ≥ x+ L*

]
dx

≥
∫
x

P [Y2 = x ] (P
[
Y1 ≥ x+ L*

]
− δ)dx

≥ P
[
Y1 ≥ Y2 + L*

]
− δ.
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Putting everything together yields the first part of the claim

P
[
X1 ≥ X2 + L*

]
− P

[
Y1 ≥ Y2 + L*

]
≤ 2

√
2

np(1− p)
.

By using (5) in the other direction, we can also show that

P
[
Y1 ≥ Y2 + L*

]
− P

[
X1 ≥ X2 + L*

]
≤ 2

√
2

np(1− p)

which concludes the proof.

Proof of Lemma 4.3. We show that there exists a coupling such that

∀j, L ≤ L* : P [Yj + L = Zj ] ≥ 1− L

2σ2
.

Note that Yi follows the same distribution as Zi. We will rewrite Yi + L as a variable Y ′ ∼
N (E [Zi ] + L,Var [Zi ]).

We can bound the total variation distance as follows. For any L ≤ L*

TV(Yj + L,Zj) =

= 1/2

√
Var [Zi ]

Var [Zi ]
− 1 +

(E [Zi ] + L− E [Zi ])2

Var [Zi ]
+ 0

=
1

2

√
L2/σ2

2 ≤
L*

2σ2
.

We can couple Yj + L with Zj w.p. at least 1− TV(Yj + L,Zj) ≥ 1− L*

2σ2
.

Proof of Lemma 4.4. Let Z ′ ∼ Z2 and let D be given by D ∼ N (µD, σ
2
D), with µD = 2∆(p− q).

and σ2
D = 2∆(p(1− p)− q(1− q)). We can rewrite Z1 as Z1 = Z ′ +D.

Let f(x) = 1√
2π
√

Var[Z′ ]
exp

(
− 1

2

(
E[Z′ ]−x√

Var[Z′ ]

)2
)

be the the PDF of Z ′ (and Z2 therefore). Let

R = max{Z ′, Z2}. Note that, due to symmetry, P [Z ′ = R ] = 1/2. Hence,

P [Z1 > Z2 ∧ Z ′ = R ] = P [Z ′ = R ∧D ≥ 0 ]

≥ 1/2− P [D < 0 ] .

Note that, using σ2
D ≤ µD by Chebychev’s inequality with k = µD

σD
, P [D < 0 ] ≤

P [D < µD − σDk ] ≤ 1
k2 ≤ σ2

D

µ2
D
≤ 1

µD
. Let y = µD and σ =

√
Var [Z ′ ] =

√
Var [Z2 ].

P[Z1 > Z2 ∧ Z ′ 6= R] = P[Z1 > Z2 ∧ Z2 = R]

=

∫
P [Z1 > Z2 ∧ Z2 = R | Z2 = r ] f(r) dr

>

∫ µ+σ

µ

P [Z ′ +D > r ] · P [Z ′ ∈ (r − y, r) ] f(r) dr

>

∫ µ+σ

µ

P [D > y ] · P [Z ′ ∈ (r − y, r) ] f(r) dr

= P [D > y ] ·
∫ µ+σ

µ

P [Z ′ ∈ (r − y, r) ] f(r) dr.
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We now bound these terms separately. By symmetry of the normal distribution, P [D > y ] ≥ 1
2 .

By using the symmetry of normal distributions and the 68-95-99.7 rule, we get
∫ µ+σ

µ
f(r) dr ≥

(1− 0.69)/2 > 0.15. Thus, together with monotonicity of the normal distribution for x > µ, we get
for y ≤ σ, ∫ µ+σ

µ

P [Z ′ ∈ (r − y, r) ] f(r)dr ≥

≥
∫ µ+σ

µ

y min
r′∈[r−y,r]

f(r′)f(r)dr

≥ y min
r′∈[µ−y,µ+σ−y]

f(r′)

∫ µ+σ

µ

f(r)dr

> 0.15yf(µ+ σ) ≥ 0.15
y√
2πσ

e−1/2.

For y ≥ σ we get ∫ µ+σ

µ

P [Z ′ ∈ (r − y, r) ] f(r) dr ≥

≥ σP [Z ′ ∈ (µ− y, µ) ] f(µ+ σ)

≥ σP [Z ′ ∈ (µ− σ, µ) ]
1√
2πσ

e−1/2

≥ 0.15√
2π
e−1/2.

Putting everything together and using that σ =
√

Var [Z ′ ] ≤
√
np(1− p) yields

P [Z1 > Z2 ∧ Z ′ 6= R ] >

> P [D > y ] ·
∫ µ+σ

µ

P [Z ′ ∈ (r − y, r) ] f(r) dr

>
1

2
· 0.15√

2π
e−1/2 ·min

{ y
σ
, 1
}

≥ 0.018 min

{
∆(p− q)√
np(1− p)

, 1

}
.

The claim follows by using the law of total probabilities:

P [Z1 > Z2 ] =

= P[Z1 > Z2 ∧ Z ′ = R] + P [Z1 > Z2 ∧ Z ′ 6= R ]

≥ 1/2 + 0.018 ·min

{
∆(p− q)√
np(1− p)

, 1

}
− 1

2∆(p− q)
.

Proof of Lemma 4.5. Recall that L(u) = deg(u)
2m (deg(Pold)− deg(Pnew)).

By Edeg, deg(u) ∈
[

1
2 (n(p+ q)), 3

2 (n(p+ q))
]
. The number of edges m verifies therefore m ∈

[n · (n(p+ q)), 3n · (n(p+ q))] .

We now bound the degree deg(P ) of a community P of size n with imbalance ∆. The expected
value of deg(P ) is n2(p+ q), and this variable is the sum of 2n2 indicator variables. However, they
are not independent: the variables corresponding to edges between vertices of P appear twice in the
sum. We define type-1 edges as edges with two extremities in P , and type-2 the ones with only one
extremity in P . We write deg(P ) = 2E1 + E2, where Ei is the set of type-i edges.
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We use the Chernoff inequality to show the concentration of each of these variables. E [E1 ] =
(n/2 − ∆)(n/2 + ∆)q + (n/2 − ∆)2p + (n/2 + ∆)2p = (1 + o(1))n2(p/2 + q/4) Let δ =

∆(p−q)
100n(p/2+q/4) , so that δE [E1 ] = (1 + o(1))n∆(p− q)/100. By the multiplicative Chernoff bound,

P [ |E1 − E [E1 ] | ≤ n∆(p− q)/100 ] ≥
≥ 1− exp(−δ2E

[
Edi
]
/3)

= 1− exp(−(1 + o(1))δn∆(p− q)/300)

= 1− exp(−(1 + o(1))
∆2(p− q)2

30000(p+ q)
)

Similarly,

P [ |E2 − E [E2 ] | ≤ n∆(p− q)/100 ] ≥

≥ 1− exp(−(1 + o(1))
∆2(p− q)2

30000(p+ q)
),

Combining those equations with triangular inequality, we get that with probability 1− 3 exp(−(1 +

o(1))∆2(p−q)2

30000p ) it holds that

|deg(P )− n2(p+ q)| ≤ 4n∆(p− q)/100.

Using the equations we have on every term of L(u), we get that with probability 1 − 2 exp(−(1 +

o(1))∆2(p−q)2

30000p )

L(u) =
deg(u)

2m
(deg(Pold)− deg(Pnew))

≤ 3/2n(p+ q)

1/2n2(p+ q)
4n∆(p− q)/10 ≤ 24∆(p− q)/100.

Taking a Union bound over the 2n vertices concludes the lemma.

Using Chernoff bound with δ′ = 1/
√
n(p/2 + q/4), we have (using δ′E [E1 ] ≤ n√np):

P [ |E1 − E [E1 ] | ≤ n√np ] ≥
≥ 1− exp(−δ′2E

[
Edi
]
/3)

= 1− exp(− (1 + o(1))n2(p/2 + q/4)

3n(p/2 + q/4)

= 1− exp(−(1 + o(1))n/3)

Similarly,

P [ |E2 − E [E2 ] | ≤ n√np ] ≥ 1− exp(−(1 + o(1))n/3),

Hence, with probability at least 1− 2 exp(−(1 + o(1))n/3),

|deg(P )− n2(p+ q)| ≤ 2n
√
np.

And so

L(u) =
deg(u)

2m
(deg(Pold)− deg(Pnew))

≤ 3/2n(p+ q)

1/2n2(p+ q)
2n
√
np ≤ 6

√
np
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Proof of Lemma 4.6. Using Lemma 4.1 and Theorem A.1, one can bound the number of good and
bad vertices with positive swap value. This gives directly the claimed bounds.

Assume first that ∆(p− q)/
√
n ≤ 1, and consider first the vertices that are not in their home. From

Lemma 4.1, the probability that a such a vertex has positive swap value is

1/2+0.018 ·min

{
∆(p− q)√
np(1− p)

, 1

}
− 1

2∆(p− q)
−

− L*

2
√

(n/2−∆)p(1− p)
− 4

√
2

np(1− p)
.

By assumption on ∆, p, q, it holds that ∆(p−q)√
np(1−p)

≥ 100n−1/6+ε. Moreover, 1
2∆(p−q) =

√
p

2
√
np(p−q) ≤

n−1/3−ε

100
√
p ≤ n

−1/6/100 (using
√
p ≥ (p− q)/√p).

From Lemma 4.5, we get that L* ≤ ∆(p − q)/100, hence L*

2
√

(n/2−∆)p(1−p)
≤ ∆(p−q)

100
√

(n)p(1−p)
(using ∆(p− q) ≤ √np, which implies n/2−∆ ≥ n/4).

Finally, 4
√

2
np(1−p) ≤

∆(p−q)
100
√
np(1−p)

.

Combining all these equations simplifies the probability that a given vertex not in its home is positive
to 1/2 + 0.009 ∆(p−q)√

np(1−p)
.

Hence, the expectation of the number of good positive vertices is µ ≥ n/2 + 0.009
√
n∆(p − q).

Since these variables are read-2, Theorem A.1 gives a concentration inequality: the expected number
good vertices with positive swap value is µ±εn with probability 1−exp(−ε2n) taking ε = ∆(p−q)

10
√

(n)

gives that with probability 1−exp
(
−∆2(p−q)2

100

)
the number good vertices with positive swap value

is µ±
√
n∆(p−q)

10 ≥ n/2 + Θ (
√
n∆(p− q)).

By the same argument, with probability 1 − exp
(
−∆2(p−q)2

100

)
the number of bad vertices with

positive swap value is less than n/2−Θ (
√
n∆(p− q)).

Therefore, with probability 1− exp
(
−∆2(p−q)2

100

)
we have

P [ good | positive ] = 1/2 + c1
∆(p− q)√

n
,

for some constant c1.

In the case where ∆(p − q)/
√
n ≥ 1, Lemma 4.1 gives that the expected number of good positive

swaps is n/2 + nc2, for some constant c2. We can therefore take ε = c2/2 in Theorem A.1 to have
the claimed bound.

Proof of Lemma 4.7. At the beginning, ∆0 =
√
n. Let ∆k = n1/2+εk. We show that going from

∆k to ∆k+1 happens with probability 1 − O(1/n) within
√
n

p−q log n steps. We consider first the
case where ∆k(p − q)/

√
n ≤ 1. We base our reasoning on a result proved in [15] (Chapter XIV.2,

XIV.3), that gives probability for a biaised random on N walk to double before being divided by 2.

1. Assume first that Lemma 4.6 holds for enough steps, meaning that we have
P [ good | positive ] = 1/2 + c1

∆(p−q)√
np . With Corollary E.3, this ensures that within

O(
√
np

p−q log n) steps ∆ is doubled with probability 1 − O(1/n2), and that the imbalance
never drops below ∆k/2.

2. Starting from ∆k, repeating (1) r = log nε times ensures to double the imbalance log nε

times, and hence to reach an imbalance ∆k · 2lognε

= ∆k+1 and the number t of steps is,
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with a Union bound,
lognε∑
i=0

√
np log2 n

p−q with probability 1 − ε log n/n2. This term sums up

to t =
√
np log3 n

p−q ≤ 2n2/3+ε log3 n.

3. We prove now that we can indeed assume that Lemma 4.6 holds long enough. The number
of cuts that the algorithm can reach after t steps is 2t logn. Over all these steps, we know that
the imbalance is bigger than ∆k/2, and therefore at every fixed step P [ good | positive ] =

1/2+c1
∆k(p−q)

2
√
np with probability 1−exp

(
−∆2

k(p−q)2

100p

)
= 1−exp

(
−n

2/3+2(k+1)ε

100p

)
. Since

2t logn = 2n
2/3 logn with probability 1−O(1/n2), we can simply take an union bound over

all these t steps, and therefore, with probability at least 1−1/n the new imbalance is ∆k+1

(the bottleneck in the probabilities being the time to double ∆).

4. To reach a k such that either ∆k = O(n) or ∆k(p − q)/
√
n ≥ 1, repeating O(1/ε) times

these three steps is enough. This is constant, and therefore it is possible to take another
Union bound on the probability of (3) to ensure that all the repetitions run through with
probability 1−O(1/n).

Hence, with high probability, it holds that after O(1/ε · log nε ·
√
np

p−q ) = O(
√
np logn

p−q ) steps, the

imbalance ∆ verifies ∆(p−q)√
np = 1. Hence, ∆ = Ω(

√
np

p−q ) = Ω(n2/3−ε).

We now turn to the case where ∆k(p − q)/
√
n ≥ 1. In that scenario, Lemma 4.6 gives that,

with probability 1 − exp(−c22n/4, P [ good | positive ] = 1/2 + c2. Using Corollary E.4, the ex-
pected waiting time to double the imbalance is therefore O(∆), and so the time to reach an imbal-
ance n

100c22 log2 n
is with high probability n

100c22 logn
. Since the probability P [ good | positive ] of

Lemma 4.6 holds with probability 1 − exp
(
− c

2
2n
4

)
it is possible to make a union bound on the

n
100c22 logn

steps of the algorithm.

D An Efficient Implementation

In this section we show how Louvain can be implemented so that the cost for swapping node u
is simply O(deg(u)) for a const number of communities. In particular our results on the SBM
imply that the total convergence time is O(m), which is asymptotically optimal. The core idea is to
maintain for every node u and every part Pj the modularity (Equation 1) if we moved u to Pj . Our
implementation relies on keeping the following data for community i:

1. Di : The sum of degrees of nodes in Pi, i.e., Di =
∑
u∈Pi

deg(u).

2. D∗i : The sum of degree pairs of nodes in Pi scaled by 1/(2m), i.e.,D∗i =
∑
u,v∈Pi

deg(u)·
deg(v)/(2m).

3. For all x ∈ {−n, n}: Li,j [x]: A list of nodes in Pi with swap value of x w.r.t. Pj .

When moving a node u to Pi, it’s easy to see that updating Di can be done in constant time. Fur-
thermore, using Di one can easily update D∗i in constant time. Finally, updating Li,j [x] is possible
in time O(deg(u)), by considering each neighbor v ∈ Pi. Let xv be the swap value of v w.r.t. to the
Pi and Pj . If (u, v) 6∈ G, then xv does not change and hence v remains in Li,j [xv]. Otherwise xv
decreases by either one or two depending on whether u ∈ Pj or some other P`. Therefore it suffices
to move v to either Li,j [xv − 1] or Li,j [xv − 2]. This move can be implemented using linked lists
so that it takes O(1) operations.

Using the above implementation is it easy to sample a node u.a.r. from the nodes with positive swap
value between Pi and Pj : Determine the smallest xmin such that xmin ≥ D∗i . Then sample u from
all ∪x≥xmin

Li,j [x] uniformly at random. The sampling step only takes O(1) time.
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E Auxiliary Claims

In this section, we show that the assumption of making swaps, i.e.: enforcing that the algorithm
keeps a balanced partition, instead of allowing to move a vertex from one side to the other if it
improves the modularity, is without loss of generality. Namely, we show that the bounds claimed in
Theorems 1.1, 1.2 also apply to the latter variant of the algorithm. We show that the size imbalance
between the two parts times p remains small compared to ∆(p− q) throughout the execution of the
algorithm, and so that this imbalance has a negligible role in the execution of the algorithm.

The following is a slightly weaker version of Theorem 1 in [6].

Theorem E.1 (Esseen inequality [6]). Let µk(X) denote the kth absolute central moment µk =∫
|x − E [X ] |kP [X = x ] dx. Let X1, . . . , Xn be a collection of n random variables, with

µ2(Xi) > 0 for all i. Let µ = E [X ] and σ2 =
∑
i Var [Xi ]. Let F (·) be the commutative

density function (cdf) of X =
∑
iXi and let G(·) be the cdf of N (µ, σ2). Then,

sup
−∞<x<∞

|F (x)−G(x))| ≤ 1.88

σ
max
i

µ3(Xi)

µ2(Xi)
.

Proposition E.2 (Chapter XIV.2, XIV.3 in [15]). Let p ∈ (0, 1) \ {1/2} and b, s ∈ N. Consider a
discrete time Markov chain (Zt)t≥0 with state space Ω = [0, b] where

• Z0 = s ∈ [0, b]

• P [Zt = i | Zt−1 = i− 1 ] = p for i ∈ [1, b− 1], t ≥ 1

• P [Zt = i | Zt−1 = i+ 1 ] = 1− p for i ∈ [1, b− 1], t ≥ 1

• P [Zt = i | Zt−1 = i ] = 1 for i ∈ {0, b}, t ≥ 1

Let T = min{t ≥ 0 | Zt ∈ {0, b}}. Then,

P [ZT = b ] =

(
1−p
p

)s
− 1(

1−p
p

)b
− 1

and

P [ZT = 0 ] =

(
1−p
p

)b
−
(

1−p
p

)s
(

1−p
p

)b
− 1

.

Moreover,

E [T ] =
s

1− 2p
− b

1− 2p
·

1−
(

1−p
p

)s
1−

(
1−p
p

)b .
Corollary E.3. Let Xn be a random walk on the integer line, such that ∀t,P [Xt+1 = Xt + 1 ] =

1/2 + c1
∆(p−q)
2
√
np if Xt 6= ∆/2, 2∆ and Xt+1 = Xt with probability 1 otherwise. Then, if X0 = ∆,

∆ ≥
√
n and p−q√

p ≥ n−1/6, it holds with probability at least 1 − 1/n2 that for T =
√
np

p−q log2 n,
XT = 2∆.

Proof. We use Proposition E.2 with s = ∆/2, b = 3∆/2, p = 1/2+c1
∆(p−q)
2
√
np and Zt = Xt−∆/2.

Remark that 1−p
p =

1/2−c1 ∆(p−q)
2
√

np

1/2+c1
∆(p−q)
2
√

np

= 1− x with x =
2c1

∆(p−q)
2
√

np

1/2+c1
∆(p−q)
2
√

np

≥ ∆(p−q)√
np .
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We have:

P [ZT = 0 ] =

(
1−p
p

)b
−
(

1−p
p

)s
(

1−p
p

)b
− 1

≤ (1− x)
s

1− (1− x)
b

≤ 2 (1− x)
s ≤ 2 exp(−sx)

≤ 2 exp(−∆2(p− q)
√
np

)

≤ 2 exp(−n1/3)

where the last inequality uses ∆ ≥
√
n and p−q√

p ≥ n−1/6. Moreover, the expected waiting time to
reach T is

E [T ] =
s

1− 2p
− b

1− 2p
·

1−
(

1−p
p

)s
1−

(
1−p
p

)b
≤ 2

b

2p− 1
≤ 2

3∆/2

c1
∆(p−q)
2
√
np

≤ 6

√
np

c1(p− q)

Hence, by Markov inequality, it holds with probability 1 − O(1/n2) that T ≤
√
np

(p−q) log2 n. This
concludes the lemma.

Corollary E.4. Let Xn be a random walk on the integer line, such that ∀t,P [Xt+1 = Xt + 1 ] =
1/2 + c2 if Xt 6= ∆/2, 2∆ and Xt+1 = Xt with probability 1 otherwise. Then, if X0 = ∆ and
∆ ≥

√
n, it holds with probability at least 1− 1/n2 that for T = ∆ log2 n XT = 2∆.

Proof. We use Proposition E.2 with s = ∆/2, b = 3∆/2, p = 1/2 + c2 and Zt = Xt −∆/2. We
have 1−p

p = 1 − x with x = 2c2
1/2+c2

≥ 2c2. As in Corollary E.3, P [ZT = 0 ] ≤ 2 exp(−sx) ≤
2 exp(−∆c2) ≤ 2 exp(−c2

√
n). Moreover, E [T ] ≤ 2b

2p−1 = 3∆
2c2

. Hence, by Markov’s inequality,
E [T ] ≤ ∆ log2 n with probability 1− 1/n2.

F Allowing Size Imbalances

In this section we explain how to deal with different cluster sizes. Let V be the ground truth and let
P = (P1, P2) the current partition. Let µ = |P2|−|P1|

2 be a parameter that controls the difference in
cluster size, and ∆ such that |P2 ∩ V2| = n − µ/2 + ∆ (and therefore |P1 ∩ V2| = n + µ/2 −∆,
|P2 ∩ V1| = n− µ/2−∆ and |P1 ∩ V2| = n+ µ/2 + ∆).

The expected value of a good swap is therefore 2∆(p − q) − µ(p + q). We argue that µ(p + q) is
always negligible compared to ∆(p− q), which allows to adapt all the technical lemmas.

In particular, for the cold start and Lemma 4.6, the definition of variables Y1 and Y2 changes:
Y1(u) ∼ N ((n/2 + ∆ − µ/2)p + (n/2 − ∆ − µ/2)q, σ1) and Y2(u) ∼ N ((n/2 − ∆ + µ/2)p +
(n/2 + ∆ + µ/2)q, σ2). The proof of Lemma 4.2 goes through as before, and the one of Lemma 4.3
is modified to take into account the difference between Y and Z. However, their expectations dif-
fers by µ(p + q), hence the lemma statements remains unchanged assuming µ(p + q) is negligible
compared to ∆(p− q). Lemma 4.6 is unchanged as well, under the same assumption.

The proof of Lemma 4.7 can then be adapted as follows, to take this size imbalance into account.
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• The first and second bullet remain valid. We add to them the following observation: As-
suming Lemma 4.6 holds for enough steps, µ follows a random walk biased towards 0: we
argue that P [µk+1 = µk + 1 ] ≤ 1/2 − µk/n if µk 6= 0. The probability that we pick a
node from the smaller side is n−2µ

2n = 1
2 −

µ
n . The probability to move the smaller side,

condition on picking a node from the larger side is at most 1. Thus, the probability of
increasing µk by one is: P [µk+1 = µk + 1 ] ≤

(
1
2 −

µ
n

)
. Hence, using a simple random

argument, µk’s maximum during the first i steps is w.h.p. at most 6
√
i log n.

• The third bullet is rewritten as follows. We prove now that we can indeed assume that
Lemma 4.6 holds long enough. The number of cuts that the algorithm can reach after t
steps is 2t logn. Over all these steps, we know that the imbalance is bigger than ∆k/2,
and moreover that µ ≤ 6

√
t log n ≤ 6n1/3+ε/2 log5/2 n. Since ∆k ≥ n1/2 and p−q

p ≥
n−1/6+ε, this implies that µp ≤ ∆(p−q)

2000 and that the condition of Lemma 4.6 are met.
Therefore at every fixed step P [ good | positive ] = 1/2 + c1

∆k(p−q)
2
√
np with probability

1 − exp
(
−∆2

k(p−q)2

100p

)
= 1 − exp

(
−n

2/3+2(k+1)ε

100p

)
. Since 2t logn = 2n

2/3 log3 n with

probability 1 − O(1/n2), we can simply take an union bound over all these t steps, and
therefore, with probability at least 1 − 1/n the new imbalance is ∆k+1 (the bottleneck in
the probabilities being the time to double ∆).

• The fourth bullet stays alike, as the conclusion of the proof.

The other lemmas for the regime of large ∆ can be adapted using the fact that, since the number
of steps is linear, µp = O(

√
n log n · p) is negligible compared to the swap value ∆(p − q) =

Ω(n
5/4+ε

logn · p). The proof of Lemma 3.2 is straightforwardly adapted to that regime.
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