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Abstract

Many dynamic processes, including common scenarios in robotic control and
reinforcement learning (RL), involve a set of interacting subprocesses. Though
the subprocesses are not independent, their interactions are often sparse, and the
dynamics at any given time step can often be decomposed into locally independent
causal mechanisms. Such local causal structures can be leveraged to improve the
sample efficiency of sequence prediction and off-policy reinforcement learning.
We formalize this by introducing local causal models (LCMs), which are induced
from a global causal model by conditioning on a subset of the state space. We
propose an approach to inferring these structures given an object-oriented state
representation, as well as a novel algorithm for Counterfactual Data Augmenta-
tion (CoDA). CoDA uses local structures and an experience replay to generate
counterfactual experiences that are causally valid in the global model. We find
that CoDA significantly improves the performance of RL agents in locally factored
tasks, including the batch-constrained and goal-conditioned settings.1

1 Introduction

High-dimensional dynamical systems are often composed of simple subprocesses that affect one
another through sparse interaction. If the subprocesses never interacted, an agent could realize signif-
icant gains in sample efficiency by globally factoring the dynamics and modeling each subprocess
independently [28, 29]. In most cases, however, the subprocesses do eventually interact and so the
prevailing approach is to model the entire process using a monolithic, unfactored model. In this paper,
we take advantage of the observation that locally—during the time between their interactions—the
subprocesses are causally independent. By locally factoring dynamic processes in this way, we are
able to capture the benefits of factorization even when their subprocesses interact on the global scale.

Consider a game of billiards, where each ball can be viewed as a separate physical subprocess.
Predicting the opening break is difficult because all balls are mechanically coupled by their initial
placement. Indeed, a dynamics model with dense coupling amongst balls may seem sensible when
considering the expected outcomes over the course of the game, as each ball has a non-zero chance
of colliding with the others. But at any given timestep, interactions between balls are usually sparse.

One way to take advantage of sparse interactions between otherwise disentangled entities is to use
a structured state representation together with a graph neural network or other message passing
transition model that captures the local interactions [26, 39]. When it is tractable to do so, such
architectures can be used to model the world dynamics directly, producing transferable, task-agnostic
models. In many cases, however, the underlying processes are difficult to model precisely, and
model-free [46, 87] or task-oriented model-based [18, 63] approaches are less biased and exhibit
superior performance. In this paper we argue that knowledge of whether or not local interactions
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Figure 1: Counterfactual Data Augmentation (CoDA). Given 3 factual samples, knowledge of the
local causal structure lets us mix and match factored subprocesses to form counterfactual samples.
The first proposal is rejected because one of its factual sources (the blue ball) is not locally factored.
The third proposal is rejected because it is not itself factored. The second proposal is accepted, and
can be used as additional training data for a reinforcement learning agent.

occur is useful in and of itself, and can be used to generate causally-valid counterfactual data even in
absence of a forward dynamics model. In fact, if two trajectories have the same local factorization
in their transition dynamics, then under mild conditions we can produce new counterfactually
plausible data using our proposed Counterfactual Data Augmentation (CoDA) technique, wherein
factorized subspaces of observed trajectory pairs are swapped (Figure 1). This lets us sample from a
counterfactual data distribution by stitching together subsamples from observed transitions. Since
CoDA acts only on the agent’s training data, it is compatible with any agent architecture (including
unfactored ones).

In the remainder of this paper, we formalize this data augmentation strategy and discuss how it can
improve performance of model-free RL agents in locally factored tasks. Our main contributions are:

1. We define local causal models (LCMs), which are induced from a global model by conditioning
on a subset of the state space, and show how local structure can simplify counterfactual reasoning.

2. We introduce CoDA as a generalized data augmentation strategy that is able to leverage local
factorizations to manufacture unseen, yet causally valid, samples of the environment dynamics.
We show that goal relabeling [36, 1] and visual augmentation [2, 46] are instances of CoDA that
use global independence relations and we propose a locally conditioned variant of CoDA that
swaps independent subprocesses to form counterfactual experiences (Figure 1).

3. Using an attention-based method for discovering local causal structure in a disentangled state
space, we show that our CoDA algorithm significantly improves the sample efficiency in standard,
batch-constrained, and goal-conditioned reinforcement learning settings.

2 Local Causality in MDPs

2.1 Preliminaries and Problem Setup

The basic model for decision making in a controlled dynamic process is a Markov Decision Process
(MDP), described by tuple 〈S,A, P,R, γ〉 consisting of the state space, action space, transition
function, reward function, and discount factor, respectively [72, 83]. Note that MDPs generalize
uncontrolled Markov processes (set A = ∅), so that our work applies also to sequential prediction.
We denote individual states and actions using lowercase s ∈ S and a ∈ A, and variables using the
uppercase S and A (e.g., s ∈ range(S) ⊆ S). A policy π : S × A → [0, 1] defines a probability
distribution over the agent’s actions at each state, and an agent is typically tasked with learning a
parameterized policy πθ that maximizes value EP,π

∑
t γ

tR(st, at).

In most non-trivial cases, the state s ∈ S can be described as an object hierarchy together with global
context. For instance, this decomposition will emerge naturally in any simulated process or game that
is defined using a high-level programming language (e.g., the commonly used Atari [7] or Minecraft
[35] simulators). In this paper we consider MDPs with a single, known top-level decomposition of the
state space S = S1⊕S2⊕· · ·⊕Sn for fixed n, leaving extensions to hierarchical decomposition and
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multiple representations [32, 17], dynamic factor count n [92], and (learned) latent representations
[13] to future work. The action space might be similarly decomposed: A = A1 ⊕A2 ⊕ · · · ⊕ Am.

Given such state and action decompositions, we may model time slice (t, t+1) using a structural
causal model (SCM)Mt = 〈Vt, Ut,F〉 ([65], Ch. 7) with directed acyclic graph (DAG) G, where:

• Vt = {V it[+1]}
2n+m
i=0 ={S1

t . . . S
n
t , A

1
t . . . A

m
t , S

1
t+1 . . . S

n
t+1} are the nodes (variables) of G.

• Ut = {U it[+1]}
2n+m
i=0 is a set of noise variables, one for each V i, determined by the initial

state, past actions, and environment stochasticity. We assume that noise variables at time
t + 1 are independent from other noise variables: U it+1 ⊥⊥ U jt[+1]∀i, j. The instance u =

(u1, u2, . . . , u2n+m) of Ut denotes an individual realization of the noise variables.

• F = {f i}2n+mi=0 is a set of functions (“structural equations”) that map from U it[+1] × Pa(V it[+1])

to V it[+1], where Pa(V it[+1]) ⊂ Vt \ V it[+1] are the parents of V it[+1] in G; hence each f i is
associated with the set of incoming edges to node V it[+1] in G; see, e.g., Figure 2 (center).

Note that while Vt, Ut, andMt are indexed by t (their distributions change over time), the structural
equations f i ∈ F and causal graph G represent the global transition function P and apply at all times
t. To reduce clutter, we drop the subscript t on V , U , andM when no confusion can arise.

Critically, we require the set of edges in G (and thus the number of inputs to each f i) to be structurally
minimal ([67], Remark 6.6).
Assumption (Structural Minimality). V j ∈ Pa(V i) if and only if there exists some {ui, v−ij} with
ui ∈ range(U i), v−ij ∈ range(V \ {V i, V j}) and pair (vj1, v

j
2) with vj1, v

j
2 ∈ range(V j) such that

vi1 = f i({ui, v−ij , vj1}) 6= f i({ui, v−ij , vj2}) = vi2.

Intuitively, structural minimality says that V j is a parent of V i if and only if setting the value of V j
can have a nonzero direct effect2 on the child V i through the structural equation f i. The structurally
minimal representation is unique [67].

Given structural minimality, we can think of edges in G as representing global causal dependence.
The probability distribution of Sit+1 is fully specified by its parents Pa(Sit+1) together with its noise
variable Ui; that is, we have P (Sit+1 |St, At) = P (Sit+1 |Pa(Sit+1)) so that Sit+1 ⊥⊥ V j |Pa(Sit+1)

for all nodes V j 6∈ Pa(Sit+1). We call an MDP with this structure a factored MDP [37]. When edges
in G are sparse, factored MDPs admit more efficient solutions than unfactored MDPs [28].

2.2 Local Causal Models (LCMs)

Limitations of Global Models Unfortunately, even if states and actions can be cleanly decomposed
into several nodes, in most practical scenarios the DAG G is fully connected (or nearly so): since the
f i apply globally, so too does structural minimality, and edge (Sik, S

j
k+1) at time k is present so long

as there is a single instance—at any time t, no matter how unlikely—in which Sit influences Sjt+1.
In the words of Andrew Gelman, “there are (almost) no true zeros” [24]. As a result, the factorized
causal modelMt, based on globally factorized dynamics, rarely offers an advantage over a simpler
causal model that treats states and actions as monolithic entities (e.g., [12]).

LCMs Our key insight is that for each pair of nodes (V it , S
j
t+1) with V it ∈ Pa(Sjt+1) in G, there

often exists a large subspaceL(j⊥⊥i) ⊂ S×A for which Sjt+1 ⊥⊥ V it |Pa(Sjt+1)\V it , (st, at) ∈ L(j⊥⊥i).
For example, in case of a two-armed robot (Figure 2), there is a large subspace of states in which
the two arms are too far apart to influence each other physically. Thus, if we restrict our attention
to (st, at) ∈ L(j⊥⊥i), we can consider a local causal modelML(j⊥⊥i)

t whose local DAG GL(j⊥⊥i)

is
strictly sparser than the global DAG G, as the structural minimality assumption applied to GL(j⊥⊥i)

implies that there is no edge from V it to Sjt+1. More generally, for any subspace L ⊆ S ×A, we can
induce the Local Causal Model (LCM)MLt = 〈V Lt , ULt ,FL〉 with DAG GL from the global model
Mt as:

2Thus parentage does describe knock-on effects, e.g. V1 on V3 in the Markov chain V1 → V2 → V3.
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Figure 2: A two-armed robot (left) might be modeled as an MDP whose state and action spaces
decompose into left and right subspaces: S = SL⊕SR,A = AL⊕AR. Because the arms can touch,
the global causal model (center left) between time steps is fully connected, even though left-to-right
and right-to-left connections (dashed red edges) are rarely active. By restricting our attention to the
subspace of states in which left and right dynamics are independent we get a local causal model
(center right) with two components that can be considered separately for training and inference.

• V Lt = {V L,it[+1]}
2n+m
i=0 , where P (V L,it[+1]) = P (V it[+1] | (st, at) ∈ L).

• ULt = {UL,it[+1]}
2n+m
i=0 , where P (UL,it[+1]) = P (U it[+1] | (st, at) ∈ L).

• FL = {fL,i}2n+mi=0 , where fL,i = f i|L (f i with range of input variables restricted to L). Due
to structural minimality, the signature of fL,i may shrink (as the range of the relevant variables
is now restricted to L), and corresponding edges in G will not be present in GL.3

In case of the two-armed robot, conditioning on the arms being far apart simplifies the global DAG to
a local DAG with two connected components (Figure 2). This can make counterfactual reasoning
considerably more efficient: given a factual situation in which the robot’s arms are far apart, we can
carry out separate counterfactual reasoning about each arm.

Leveraging LCMs To see the efficiency therein, consider a general case with global causal model
M. To answer the counterfactual question, “what might the transition at time t have looked like if
component Sit had value x instead of value y?”, we would ordinarily apply Pearl’s do-calculus to
M to obtain submodelMdo(Si

t=x)
= 〈V,U,Fx〉, where Fx = F \ f i ∪ {Sit = x} and incoming

edges to Sit are removed from Gdo(Si
t=x)

[65]. The component distributions at time t + 1 can be
computed by reevaluating each function f j that depends on Sit . When Sit has many children (as is
often the case in the global G), this requires one to estimate outcomes for many structural equations
{f j |V j ∈ Children(V it )}. But if both the original value of St (with Sit = y) and its new value (with
Sit = x) are in the set L, the intervention is “within the bounds” of local modelML and we can
instead work directly with local submodelMLdo(Si

t=x)
(defined accordingly). The validity of this

follows from the definitions: since fL,j = f j |L for all of Sit’s children, the nodes V kt for k 6= i at
time t are held fixed, and the noise variables at time t + 1 are unaffected, the distribution at time
t+ 1 is the same under both models. When Sit has fewer children inML than inM, this reduces the
number of structural equations that need to be considered.

3 Counterfactual Data Augmentation

We hypothesize that local causal models will have several applications, and potentially lead to
improved agent designs, algorithms, and interpretability. In this paper we focus on improving off-
policy learning in RL by exploiting causal independence in local models for Counterfactual Data
Augmentation (CoDA). CoDA augments real data by making counterfactual modifications to a
subset of the causal factors at time t, leaving the rest of the factors untouched. Following the logic
outlined in the Subsection 2.2, this can understood as manufacturing “fake” data samples using the
counterfactual modelM[L]

do(Si...j
t =x)

, where we modify the causal factors Si...jt and resample their
children. While this is always possible using a model-based approach if we have good models of the
structural equations, it is particularly nice when the causal mechanisms are independent, as we can
do counterfactual reasoning directly by reusing subsamples from observed trajectories.

3As a trivial example, if f i is a function of binary variable V j , and L = {(s, a) |V j = 0}, then fL,i is not
a function of V j (which is now a constant), and there is no longer an edge from V j to V i in GL.
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Figure 3: Four instances of CoDA; orange nodes are relabeled, noise variables omitted for clarity.
First: Goal relabeling [36], including HER [1], augments transitions with counterfactual goals.
Second: Visual feature augmentation [2, 46] uses domain knowledge to change visual features SVt
(such as textures, lighting, and camera positions) that the designer knows do not impact the physical
state SPt+1. Third: Dyna [82], including MBPO [34], augments real states with new actions and
resamples the next state using a learned dynamics model. Fourth (ours): Given two transitions that
share local causal structures, we propose to swap connected components to form new transitions.

Definition. The causal mechanisms represented by subgraphs Gi,Gj ⊂ G are independent when Gi
and Gj are disconnected in G.

When G is divisible into two (or more) connected components, we can think of each subgraph as an
independent causal mechanism that can be reasoned about separately.

Existing data augmentation techniques can be interpreted as specific instances of CoDA (Figure 3).
For example, goal relabeling [36], as used in Hindsight Experience Replay (HER) [1] and Q-learning
for Reward Machines [33], exploits the independence of the goal dynamics Gt 7→ Gt+1 (identity
map) and the next state dynamics St × At 7→ St+1 in order to relabel the goal variable Gt with a
counterfactual goal. While the goal relabeling is done model-free, we typically assume knowledge of
the goal-based reward mechanism Gt × St ×At × St+1 7→ Rt+1 to relabel the reward, ultimately
mixing model-free and model-based reasoning. Similarly, visual feature augmentation, as used in
reinforcement learning from pixels [46, 41] and sim-to-real transfer [2], exploits the independence of
the physical dynamics SPt ×At 7→ SPt+1 and visual feature dynamics SVt 7→ SVt+1 such as textures
and camera position, assumed to be static (SVt+1 = SVt ), to counterfactually augment visual features.
Both goal relabeling and visual data augmentation rely on global independence relationships.

We propose a novel form of Counterfactual Data Augmentation that uses knowledge of local indepen-
dence relationships. In particular, we observe that whenever an environment transition is within the
bounds of some local modelML whose graph GL has the locally independent causal mechanism
Gi as a disconnected subgraph (note: Gi itself need not be connected), that transition contains an
unbiased sample from Gi. Thus, given two transitions in L, we may mix and match the samples of Gi
to generate counterfactual data, so long as the resulting transitions are themselves in L.
Remark 3.1. How much data can we generate using our CoDA algorithm? If we have n independent
samples from subspace L whose graph GL has m connected components, we have n choices for each
of the m components, for a total of nm CoDA samples—an exponential increase in data! One might
term this the “blessing of independent subspaces.”
Remark 3.2. Our discussion has been at the level of a single transition (time slice (t, t+ 1)), which
is consistent with the form of data that RL agents typically consume. But we could also use CoDA to
mix and match locally independent components over several time steps (see, e.g., Figure 1).
Remark 3.3. As is typical, counterfactual reasoning changes the data distribution. While off-policy
agents are typically robust to distributional shift, future work might explore different ways to control or
prioritize the counterfactual data distribution [77, 43]. We note, however, that certain prioritization
schemes may introduce selection bias [31], effectively entangling otherwise independent causal
mechanisms (e.g., HER’s “future” strategy [1] may introduce “hindsight bias” [45, 78]).
Remark 3.4. The global independence relations relied upon by goal relabeling and image aug-
mentation are incredibly general, as evidenced by their wide applicability. We posit that certain
local independence relations are similarly general. For example, the physical independence of
objects separated by space (the billiards balls of Figure 1, the two-armed robot of Figure 2, and the
environments used in Section 4), and the independence between an agent’s actions and the truth of
(but not belief about) certain facts the agent is ignorant of (e.g., an opponent’s true beliefs).
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Algorithm 1 Mask-based Counterfactual Data Augmentation (CoDA)

function CODA(transition t1, transition t2):
s1, a1, s1’← t1
s2, a2, s2’← t2
m1, m2← MASK(s1, a1),MASK(s2, a2)
D1← COMPONENTS(m1)
D2← COMPONENTS(m2)
d← random sample from (D1 ∩ D2)
s̃, ã, s̃’← copy(s1, a1, s1’)
s̃[d], ã[d], s̃’[d]← s2[d], a2[d], s2’[d]
D̃← COMPONENTS(MASK(s̃, ã))
return (s̃, ã, s̃’) if d ∈ D̃ else ∅

function MASK(state s, action a):
Returns (n+m)×(n) matrix indicating if the n
next state components (columns) locally depend
on the n state and m action components (rows).

function COMPONENTS(mask m):
Using the mask as the adjacency matrix for GL
(with dummy columns for next action), finds the
set of connected components C = {Cj}, and
returns the set of independent components
D = {Gi =

⋃
k C

i
k | Ci ⊂ powerset(C)}.

Implementing CoDA We implement CoDA, as outlined above and visualized in Figure 3(d), as a
function of two factual transitions and a mask function M(st, at) : S × A → {0, 1}(n+m)×n that
represents the adjacency matrix of the sparsest local causal graph GL such that L is a neighborhood
of (st, at).4 We apply M to each transition to obtain local masks m1 and m2, compute their connected
components, and swap independent components Gi and Gj (mutually disjoint and collectively exhaus-
tive groups of connected components) between the transitions to produce a counterfactual proposal.
We then apply M to the counterfactual (s̃t, ãt) to validate the proposal—if the counterfactual mask
m̃ shares the same graph partitions as m1 and m2, we accept the proposal as a CoDA sample. See
Algorithm 1.

Note that masks m1, m2 and m̃ correspond to different neighborhoods L1,L2 and L̃, so it is not
clear that we are “within the bounds” of any model ML as was required in Subsection 2.2 for
valid counterfactual reasoning. To correct this discrepancy we use the following proposition and
additionally require the causal mechanisms (subgraphs) for independent components Gi and Gj to
share structural equations in each local neighborhood: fL1,i = fL2,i = f L̃,i and fL1,j = fL2,j =

f L̃,j .5 This makes our reasoning valid in the local subspace L∗ = L1 ∪ L2 ∪ L̃. See Appendix A for
proof.

Proposition 1. The causal mechanisms represented by Gi,Gj ⊂ G are independent in GL1∪L2 if and
only if Gi and Gj are independent in both GL1 and GL2 , and fL1,i = fL2,i, fL1,j = fL2,j .

Since CoDA only modifies data within local subspaces, this biases the resulting replay buffer to
have more factorized transitions. In our experiments below, we specify the ratio of observed-to-
counterfactual data heuristically to control this selection bias, but find that off-policy agents are
reasonably robust to large proportions of CoDA-sampled trajectories. We leave a full characterization
of the selection bias in CoDA to future studies, noting that knowledge of graph topology was shown
to be useful in mitigating selection bias for causal effect estimation [5, 6].

Inferring local factorization While the ground truth mask function M may be available in rare
cases as part of a simulator, the general case either requires a domain expert to specify an approximate
causal model (as in goal relabeling and visual data augmentation) or requires the agent to learn the
local factorization from data. Given how common independence due to physical separation of objects
is, the former option will often be available. In the latter case, we note that the same data could
also be used to learn a forward model. Thus, there is an implicit assumption in the latter case that
learning the local factorization is easier than modeling the dynamics. We think this assumption is
rather mild, as an accurate forward dynamics model would subsume the factorization, and we provide
some empirical evidence of its validity in Section 4.

Learning the local factorization is similar to conditional causal structure discovery [81, 75, 67],
conditioned on neighborhood L of (st, at), except that the same structural equations must be applied
globally (if the structural equations were conditioned on L, Proposition 1 would fail). As there are
many algorithms for general structure discovery [81, 75], and the arrow of time simplifies the inquiry

4If Jacobian ∂P/∂x exists at x = (st, at), the ground truth M(st, at) equals |(∂P/∂x)T | > 0.
5To see why this is not trivially true, imagine there are two rooms, one of which is icy. In either room the

ground conditions are locally independent of movement dynamics, but not so if we consider their union.
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[27, 67], there may be many ways to approach this problem. For now, we consider a generalization
of the global network mask approach used by MADE [25] (eq. 10) for autoregressive distribution
modeling and GraN-DAG [44] (eq. 6) for causal discovery, which additionally conditions the mask
on the current state and action.

This approach computes a locally conditioned network mask M(st, at) by taking the matrix product
of locally conditioned layer masks: M(st, at) = ΠL

`=1M`(st, at). This mask can be understood as
an upper bound on the network’s absolute Jacobian (see Appendix C). Again, there may be several
models allow one to compute conditional layer masks. We tested two such models: a mixture of MLP
experts and a single-head set transformer architecture [85, 47]. Each is described in more detail in
Appendix C. Both are trained to model forward dynamics using an L2 prediction loss and induce a
sparse network mask either via a sparsity penality (in case of the mixture of experts model) or via a
sparse attention mechanism (in case of the set transformer). In preliminary experiments (Appendix
C) we found that the set transformer performed better, and proceed to use it in our main experiments
(Section 4). The set transformer uses the attention mask at each layer as the layer mask for that layer,
so that the network mask is simply the product of the attention masks. Though trained to model
forward dynamics, the CoDA models are used by the agent to infer local factorization rather than to
directly sample future states as is typical in model-based RL. We found this produced reasonable
results in the tested domains (below). See Appendix C for details. Future work should consider other
approaches to inferring local structure such as graph neural networks [39, 13].

4 Experiments

Our experiments evaluate CoDA in the online, batch, and goal-conditioned settings, in each case
finding that CoDA significantly improves agent performance as compared to non-CoDA baselines.
Since CoDA only modifies an agent’s training data, we expect these improvements to extend to other
off-policy task settings in which the state space can be accurately disentangled. Below we outline our
experimental design and results, deferring specific details and additional results to Appendix B.

Standard online RL We extend Spriteworld [89] to construct a “bouncing
ball” environment (right), that consists of multiple objects (sprites) that move and
collide within a confined 2D canvas. We use tasks of varying difficulty, where the
agent must navigate N ∈ {1, 2, 3, 4} of 4 sprites to their fixed target positions.
The agent receives reward of 1/N for each of the N sprites placed; e.g., the
hardest task (Place 4) gives 1/4 reward for each of 4 sprites placed. For each task,
we use CoDA to expand the replay buffer of a TD3 agent [22] by about 8 times. We compare CoDA
with a ground truth masking function (available via the Spriteworld environment) and learned
masking function to the base TD3 agent, as well as a Dyna agent that generates additional training
data by sampling from a model. For fair comparison, we use the same transformer used for CoDA
masks for Dyna, which we pretrain using approximately 42,000 samples from a random policy. As in
HER, we assume access to the ground truth reward function to relabel the rewards. The results in
Figure 4 show that both variants of CoDA significantly improve sample complexity over the baseline.
By contrast, the Dyna agent suffers from model bias, even though it uses the same model as CoDA.

Figure 4: Standard online RL (3 seeds): CoDA with the ground truth mask always performs the
best, validating our basic idea. CoDA with a pretrained model also offers a significant early boost in
sample efficiency and maintains its lead over the base TD3 agent throughout training. Using the same
model to generate data directly (a la Dyna [82]) performs poorly, suggesting significant model bias.
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|D| Real data MBPO Ratio of Real:CoDA [:MBPO] data (ours)
(1000s) 1R 1R:1M 1R:1C 1R:3C 1R:5C 1R:3C:1M

25 13.2± 0.7 18.5± 1.5 43.8± 2.8 40.9± 2.5 38.4± 4.9 46.8± 3.1
50 22.8± 3.0 36.6± 4.3 66.6± 3.8 64.4± 3.1 62.5± 3.5 70.4± 3.8
75 43.2± 4.9 46.0± 4.7 73.4± 2.8 76.7± 2.6 75.0± 3.4 74.6± 3.2

100 63.0± 3.1 66.4± 4.9 77.8± 2.0 82.7± 1.5 76.6± 3.0 73.7± 2.9
150 77.4± 1.2 72.6± 5.6 82.2± 1.8 85.8± 1.4 84.2± 1.0 79.7± 3.6
250 78.2± 2.7 77.9± 2.4 85.0± 2.9 87.8± 1.8 87.0± 1.0 78.3± 4.9

Table 1: Batch RL (10 seeds): Mean success (± standard error, estimated using 1000 bootstrap
resamples) on Pong environment. CoDA with learned masking function more than doubles the
effective data size, resulting in a 3x performance boost at smaller data sizes. Note that a 1R:5C
Real:CoDA ratio performs slightly worse than a 1R:3C ratio due to distributional shift (Remark 3.3).

Batch RL A natural setting for CoDA is batch-constrained RL, where an agent
has access to an existing transition-level dataset, but cannot collect more data
via exploration [21, 48]. This makes any additional, high quality data invalu-
able. Another reason why CoDA is attractive in this setting is that there is no
a priori reason to prefer the given batch data distribution to a counterfactual
one. For this experiment we use a continuous control Pong environment based
on RoboschoolPong [40]. The agent must hit the ball past the opponent, receiving reward of +1
when the ball is behind the opponent’s paddle, -1 when the ball is behind the agent’s paddle, and 0
otherwise. Since our transformer model performed poorly when used as a dynamics model, our Dyna
baseline for batch RL adopts a state-of-the-art architecture [34] that employs a 7-model ensemble
(MBPO). We collect datasets of up to 250,000 samples from an pretrained policy with added noise.
For each dataset, we train both mask and reward functions (and in case of MBPO, the dynamics
model) on the provided data and use them to generate different amounts of counterfactual data. We
also consider combining CoDA with MBPO, by first expanding the dataset with MBPO and then
applying CoDA to the result. We train the same TD3 agent on the expanded datasets in batch mode
for 500,000 optimization steps. The results in Table 1 show that with only 3 state factors (two paddles
and ball), applying CoDA is approximately equivalent to doubling the amount of real data.

Fig. 5: Goal-conditioned RL (5 seeds): In
FetchPush and the challenging Slide2 envi-
ronment, a HER agent whose dataset has been
enlarged with CoDA approximately doubles the
sample efficiency of the base HER agent.

Goal-conditioned RL As HER [1] is an instance of prioritized CoDA that
greatly improves sample efficiency in sparse-reward tasks, can our unprioritized
CoDA algorithm further improve HER agents? We use HER to relabel goals on
real data only, relying on random CoDA-style goal relabeling for CoDA data.
After finding that CoDA obtains state-of-the-art results in FetchPush-v1 [71],
we show that CoDA also accelerates learning in a novel and significantly more
challenging Slide2 environment, where the agent must slide two pucks onto their targets (Figure 5).
For this experiment, we specified a heuristic mask using domain knowledge (“objects are disentangled
if more than 10cm apart”) that worked in both FetchPush and Slide2 despite different dynamics.

5 Related Work

Factored MDPs [28, 29, 90] consider MDPs where state variables are only influenced by a fixed
subset of “parent” variables at the previous timestep. The notion of “context specific independence”
(CSI), which was used to compactly represent single factors of a Bayes net [10] or MDP [9] for
efficient inference and model storage,6 is closely related to the local factorizations we study in this
paper. CSI can be understood as going one step beyond CoDA, exploiting not only knowledge of

6Note that these methods were proposed to efficiently encode conditional probability tables at the graph
nodes, requiring that all variables considered be discrete; CoDA on the other hand works in continuous tasks.
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the local factorization, but also the structural equations at play in the local factorization; CSI could
be leveraged for model-based RL approaches where faithful models of factored dynamics can be
realized. Object-oriented and relational approaches to RL and prediction [15, 26, 39, 50, 93, 94]
represent the dynamics as a set of interacting entities. Factored actions and policies have been used to
formulate dimension-wise policy gradient baselines in standard and multi-agent settings [19, 54, 91].

A growing body of work applies causal reasoning the RL setting to improve sample efficiency, inter-
pretability and learn better representations [55, 57, 74]. Particularly relevant is the work by Buesing
et al. [12], which improves sample efficiency by using a causal model to sample counterfactual
trajectories, thereby reducing variance of off-policy gradient estimates in a guided policy search
framework. These counterfactuals use coarse-grained representations at the trajectory level, while
our approach uses factored representations within a single transition. Batch RL [48, 21, 58] and more
generally off-policy RL [88, 60] are counterfactual by nature, and are particularly important when it
is costly or dangerous to obtain on-policy data [84]. The use of counterfactual goals to accelerate
learning goal-conditioned RL [36, 76, 71] is what inspired our local CoDA algorithm.

Data augmentation is also widely used in supervised learning, and is considered a required best
practice in high dimensional problems [42, 46, 66]. Heuristics for data augmentation often encode
a causal invariance statement with respect to certain perturbations on the inputs. Thus model
performance on counterfactual/augmented data can be seen as a measure of robustness. Assuring
that models perform robustly in this sense is relevant to applications where fairness is a concern, as
counterfactuals can be used to achieve robust performance and debias data [23, 64, 8].

6 Conclusion

In this paper we proposed a local causal model (LCM) framework that captures the benefits of
decomposition in settings where the global causal model is densely connected. We used our framework
to design a local Counterfactual Data Augmentation (CoDA) algorithm that expands available training
data with counterfactual samples by stitching together locally independent subsamples from the
environment. Empirically, we showed that CoDA can more than double the sample efficiency and
final performance of reinforcement learning agents in locally factored environments.

There are several interesting avenues for future work. First, the sizable gap between ground truth and
learned CoDA in our Spriteworld results suggest there is room for improvement in our approach to
learning the masking function. Second, we have applied CoDA in a random, unprioritized fashion,
but past work [1, 77] suggests there is significant benefit to prioritization. Third, we have applied
CoDA in a way that might be considered model-free, insofar as we reuse subsamples from the
environment dynamics rather than generating samples using our models of the causal mechanims.
However, our LCM formalism allows for mixing model-free and model-based reasoning, which
could further improve sample efficiency. Fourth, we used fully-observable, disentangled state
spaces with a fixed top-level decomposition, but ultimately we would like to deploy CoDA in
partially observable, entangled settings (e.g. RL from pixels) with multiple dynamic, multi-level
decompositions [32, 17, 92]. Unsupervised learning of factorized latent representations is an active
area of research [16, 39, 52, 53, 89], and it would be interesting to combine these methods with
CoDA. Finally, it would be interesting to explore applications of our LCM framework to other areas
such as interpretability [56, 59], exploration [61, 86], and off-policy evaluation [84].
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Broader Impact

Considerations related to counterfactual reasoning CoDA transforms the observational data
distribution into a counterfactual one. This incurs several risks and benefits, listed below.

• Modern machine learning models and reinforcement learning agents often generalize poorly
under distributional shift (sometimes called “covariate shift”) [49, 14]. CoDA has the potential
to produce out-of-distribution data, that would never show up in the observational distribution.
Thus, care should be taken when applying agent modules that have been trained only on
observational data to counterfactual data, as their performance could decline sharply, thereby
creating safety risks. We anticipate that work on uncertainty will be essential to controlling the
risks associated with distributional shift [80].

• The fact that CoDA creates distributional shift can also provide benefits in the form of distri-
butional robustness and fairness. Training on out-of-distribution data can make models more
robust [79], increasing their trustworthiness and practical applicability. As noted in Section 5,
counterfactual reasoning can be leveraged in areas where fairness is a concern. For example,
[64] propose to reduce gender bias in natural language processing by generating counterfactual
sentences with swapped gender pronouns. We anticipate that a version of CoDA that priori-
tizes fairness concerns in a similar manner could be applied in the reinforcement learning and
computer vision contexts.

• In reinforcement learning specifically, a shift in data distribution requires either (1) the use of
an off-policy algorithm, or (2) high variance off-policy corrections for on-policy algorithms.
In the former case, it should be noted that in case of function approximation, even off-policy
algorithms may be negatively affected by large shifts in their training distribution [83, 20]. More
work is needed to quantify these effects and their implications for agent performance.

Improving RL in batch-constrained settings In many settings, such as medicine and education,
obtaining large quantities of observational data using a random policy is prohibitively expensive
and/or unethical [84, 60]. As such, agents that can efficiently learn effective policies from batch-
constrained data are needed, as are accurate ways to estimate agent performance from off-policy
data [58, 62, 73]. We see CoDA as complementary to both goals, as subspace swapping is a
powerful tool to produce large quantities of counterfactual data given a modest observational dataset.
However, subspace swapping alone may be insufficient to generate plausible “exploratory” data for
evaluating and learning new policies. For example, medical records from certain demographic groups
may be unavailable or improperly collected/labeled. It is conceivable that a CoDA with a suitable
prioritization scheme could compensate for such sample bias, but applied work in batch-constrained
domains that characterizes the effect of sample bias on CoDA should nevertheless be carried out.

General considerations related to artificial agency To the extent that CoDA is a general tech-
nique for improving the ability of artificial agents to achieve their goals, it inherits the potential risks
and benefits associated with empowered artificial agency, including but not limited to:

(a) the pursuit of misguided or dangerous goals, whether due to mispecification by a benevolent
principal, the self-serving motives of its principals, or interference by malicious parties or other
deviations from proper intents,

(b) the unsafe and improper pursuit of goals due to poor modeling or representation, resource
constraints and lack of capacity, constraint mispecification, partial observability, or inadequate
encoding and understanding of human values, and

(c) improvements to capital processes and automation of human labor, which could improve
economic efficiency and raise the overall social welfare, but also run the risk of increased
inequality, workforce displacement, and technological unemployment.

The risk associated with points (a) and (b) may be exacerbated in case of CoDA due to the risks
associated with counterfactual reasoning outlined above: to the extent that CoDA is done with a
poorly fit local factorization model, or with a local factorization model that does not generalize well to
the counterfactual distribution, this could cause the agent to pursue poorly formulated counterfactual
(imagined) goals, or create causally invalid data that hurts agent performance.
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A Proof of Proposition 1

Lemma 1. If V j ∈ PaL(V i) in DAG GL of (local) causal model ML, and L ⊂ X , then V j ∈
PaX (V i) in DAG GX corresponding to causal modelMX .

Proof. By minimality, there exist {ui, v−j , vj1} and {ui, v−j , vj2}with v−j ∈ PaL(V i)\V j for which
f i({ui, v−j , vj1}) 6= f i({ui, v−j , vj2}). Expand {v−j , vj1} and {v−j , vj2} to (s1, a1), (s2, a2) ∈ L
(with any values of other components). But L ⊂ X , so (s1, a1), (s2, a2) ∈ X and it follows from
minimality in X that V j ∈ PaX (V i).

Corollary 1. If L ⊂ X , GL is sparser (has fewer edges) than GX .

Proposition 1. The causal mechanisms represented by Gi,Gj ⊂ G are independent in GL1∪L2 if and
only if Gi and Gj are independent in both GL1 and GL2 , and fL1,i = fL2,i, fL1,j = fL2,j .

Proof. (⇒) If Gi and Gj are independent in GL1∪L2 , independence in GL1 and GL2 follows from
Corollary 1. That fL1,i = fL2,i (and fL1,j = fL2,j), on their shared domain, follows since each is a
restriction of the same function fL1∪L2,i (or fL1∪L2,j).

(⇐) Suppose Gi and Gj are independent in GL1 and GL2 but not GL1∪L2 . By the definition of
independence applied to GL1∪L2 , we have that, without loss of generality, there is a Vi ∈ Gi, Vj ∈
Gj with Vj ∈ PaL1∪L2(Vi). Then, from the definition of minimality, it follows that there exist
(s1, a1), (s2, a2) ∈ L1 ∪ L2 that differ only in the value of Vj , and ui ∈ range(Ui) for which
f i(s1, a1, ui) 6= f i(s2, a2, ui).

Clearly, if (s1, a1) and (s2, a2) are both in L1 (or L2), there will be an edge from Vj to Vi in GL1

(or GL2) and the claim follows by contradiction. Thus, the only interesting case is when, without
loss of generality, (s1, a1) ∈ L1 and (s2, a2) ∈ L2. The key observation is that (s1, a1) and (s2, a2)
differ only in the value of node Vj 6∈ Gi: since Gi is an independent causal mechanism in both
GL1 and GL2 and the parents of Vi take on the same values in each, we have that f i(s1, a1, ui) =
f i,L1(s1, a1, ui) = f i,L2(s2, a2, ui) = f i(s2, a2, ui) and the claim follows by contradiction.

B Additional Experiment Details

This section provides training details for the experiments discussed in Section 4 as well as some
additional results. Code is available at https://github.com/spitis/mrl [69].

B.1 Online RL

Here we detail the procedure used in the Online RL experiments in the Spriteworld environment.

Implementation We work with the original TD3 codebase, architecture, and hyperparameters
(except batch size; see below), and focus our efforts solely on modifying the agent’s training
distribution.

Environment We extend the base Spriteworld framework [89] as follows:

1. We add basic collisions, wherein a sprites velocity is reversed if it would overlap with
another sprite on the next frame. This induces a local factorization and prevents a global
factorization from being applicable.

2. We use a new continuous action space that consists of a 2-dimensional “click” on the canvas.
The click changes the velocity of the closest sprite according to distance and angle between
the click and the sprite’s center.

3. We add a disentangled state renderer that returns the position and velocity of each sprite (a
total of 16-dimensions in tasks with four sprites).

4. We add a mask renderer that returns the ground truth masking function. This allows us to
evaluate our masking function in Appendix C.
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5. We add a suite of partial and sparse reward tasks that we use for experiments. The tasks vary
in difficulty along the following two dimensions
• Number of shapes: The agent must place N ∈ {1, 2, 3, 4} of the 4 sprites at their

respective target (one of four quadrants).
• Sparsity of reward signal: The agent receives reward either Partial, 1

N reward for
each of the N sprites placed near its target (up to a maximum reward of 1); or Sparse,
reward of 1 is only observed when all N sprites reach their target.

For example, hardest task—“sparse reward, place 4” in the results—requires placing 4
shapes with sparse reward. Episodes run for 50 timesteps, and there is no termination signal
(i.e., the environment is continuous from the agent’s perspective). We also tried a variant
with dense rewards, but found that the baseline agent was able to easily solve this task and
no benefit was conferred by data augmentation.

These extensions will included with the release of our code.

Data augmentation Every 1000 environment steps, we sample 2000 pairs of random transitions
from the agent’s replay buffer, and apply CoDA to produce a maximum of 5 unique CoDA samples
per pair. We apply two forms of CoDA, using (1) an oracle / ground truth mask function that we back
out of the simulator, and (2) the mask of a pre-trained transformer model (see Section C). The mask
function was trained using approximately 42,000 samples from a random policy (5/6 of 50,000, with
the rest of the data used for validation). CoDA samples are added to a second CoDA replay buffer.
For purposes of this experiment both buffers are have effectively infinite capacity (they are never
filled). During training, the agent’s batches are sampled proportionally from the real and CoDA replay
buffers (this means that approximately 7/8 of the data that the agent trains on is counterfactual).

Baselines In addition to the base TD3 agent and CoDA, we also use the transformer model that is
used as a mask function to generate data by performing forward rollouts with a random policy, as
in Dyna [82]. So that this baseline produces approximately the same number of samples as CoDA
with the learned mask, we roll the model out for 5 steps from 1500 random samples from the replay
buffer, again every 1000 environment steps. This produces 7500 model-based samples for every 1000
environment transitions.

As an additional model-based Dyna baseline, we also fit a plain feedforward neural network with
2 hidden layers of 256 ReLU units as a feedforward model. We found that this forward model
performed much worse than our transformer-based dyna baseline. The results are shown in Figure 6.

Figure 6: Average reward in Partial reward setting with MLP-based Dyna baseline.

Use of the transformer mask function for CoDA requires setting the threshold value τ , which we
do by monitoring accuracy and F1 scores for sparsity prediction (as discussed in Appendix C) on
validation data, ultimately using the value τ = 0.05.

Batch Size Since CoDA samples are plentiful we increase the agent’s batch size from 256 to 1000
to allow it to train on more environment samples in the same number of training steps. We found that
this slightly improved the performance of the base TD3 agent. An increase in batch size also allows
the agent to see more of its own on-policy data in the face of many off-policy CoDA samples.

Additional results in sparse reward task variants In addition to the partial reward tasks described
in Section 4, we also tested CoDA in four sparse reward tasks of varying difficulty. These are the
same as the partial reward tasks, except that a sparse reward of 1 is granted only when all N sprites
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Figure 7: Average reward on Sparse reward bouncing ball environment. As in the partial reward
case (Figure 4), we observe that CoDA agents outperform the other agents (except in Place 4, where
no agent achieves any reward).

are in their target locations. While these tasks were much harder (and perhaps impossible in the case
of Place 4 due to moving sprites), as shown in Figure 7, the CoDA agents maintain a clear advantage.

Results plot The results plot shows the 3 seeds in reduced opacity together with their smoothed
mean.

B.2 Batch RL

Here we detail the procedure used in the Batch RL experiments in the Pong environment.

Implementation This experiment works with a different codebase than the Spriteworld experiment,
in order to simplify the use of CoDA in a Batch RL setting. Our experiment first builds the agent’s
dataset (consisting of real data, dyna data and/or CoDA data), then instantiates a TD3 agent by filling
its replay buffer with the dataset. The replay buffer is always expanded to include the entire enlarged
dataset (for the 5x CoDA ratio at 250,000 data size this means the buffer has 1.5E6 experiences). The
agent is run for 500,000 optimization steps.

Hyperparameters We used similar hyperparameters to the original TD3 codebase, with the fol-
lowing differences:

• We use a discount factor of γ = 0.98 instead of 0.99.
• Since Pong is a sparse reward task with γ = 0.98, we clip critic targets to (−50, 50).
• We use networks of size (128, 128) instead of (256, 256).
• As for our Spriteworld experiment, we use a batch size of 1000.

Environment We base our Pong environment on RoboSchoolPong-v1 [40]. The original envi-
ronment allowed the ball to teleport back to the center after one of the players scored, offered a small
dense reward signal for hitting the ball, and included a stray “timeout” feature in the agent’s state
representation. We fix the environment so that the ball does not teleport, and instead have the episode
reset every 150 steps, and also 10 steps after either player scores. The environment is treated as
continuous and never returns a done signal that is not also accompanied by a TimeLimit.truncated
indicator [11]. We change the reward to be strictly sparse, with reward of ±1 given when the ball
is behind one of the players’ paddles. Finally, we drop the stray “timeout” feature, so that the state
space is 12-dimensional, where each set of 4 dimensions is the x-position, y-position, x-velocity, and
y-velocity of the corresponding object (2 paddles and one ball).

The opponent in the environment uses a small pretrained policy that was included in the original
environment [40] (the effectiveness of this policy was unaffected by the removal of the timeout
feature). To collect the batch dataset, we use the same policy as an “expert” policy, but replace 50%
of its actions by random actions.

Training the CoDA model Without access to a ground truth mask, we needed to train a masking
function C to identify local disentanglement. We also forewent the ground truth reward, instead
training our own reward classifier. In each case we used the batch dataset given, and so we trained
different models for each random seed. For our masking model, we stacked two single-head
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transformer blocks (without positional encodings) and used the product of their attention masks as
the mask. Each block consists of query Q, key K, and value V networks that each have 3-layers
of 256 neurons each, with the attention computed as usual [85, 47]. The transformer is trained to
minimize the L2 error of the next state prediction given the current state and action as inputs. The
input is disentangled, and so has shape (batch_size, num_components, num_features). In
each row (component representation) of each sample, features corresponding to other components are
set to zero. The transformer is trained for 2000 steps with a batch size of 256, Adam optimizer [38]
with learning rate of 3e-4 and weight decay of 1e-5. For our reward function we use a fully-connected
neural network with 1 hidden layer of 128 units. The reward network accepts an (s, a, s′) tuple as
input (not disentangled) and outputs a softmax over the possible reward values of [−1, 0, 1]. It is
trained for 2000 steps with a batch size of 512, Adam optimizer [38] with learning reate of 1e-3 and
weight decay of 1e-4. All hyperparameters were rather arbitrary (we used the default setting, or in
case it did not work, the first setting that gave reasonable results, as was determined by inspection).
To ensure that our model and reward functions are trained appropriately (i.e., do not diverge) for each
seed, we confirm that the average loss of the CoDA model is below 0.005 at the training and that the
average loss of the reward model is below 0.1, which values were found by inspection of a prototype
run. These conditions were met by all seeds.

When used to produce masks, we chose a threshold of τ = 0.02 by inspection, which seemed to
produce reasonable results. A more principled approach would do cross-validation on the available
data, as we did for Spriteworld (Appendix C).

Tested configurations Table 1 reports a subset of our tested configurations. We report our results
in full below. We considered the following configurations:

1. Real data only.
2. CoDA + real data: after training the CoDA model, we expand the base dataset by either 2,

3, 4 or 6 times.
3. Dyna (using CoDA model): after training the CoDA model, we use it as a forward dynamics

model instead of for CoDA; we use 1-step rollouts with random actions from random states
in the given dataset to expand the dataset by 2x. We also tried with 5-step rollouts, but found
that this further hurt performance (not shown). Note that Dyna results use only 5 seeds.

4. Dyna (using MBPO model): as the CoDA model exhibits significant model bias when used
as a forward dynamics model, we replicate the state-of-the-art model-based architecture
used by MBPO [34] and use it as a forward dynamics model for Dyna; we experimented
with 1-step and 5-step rollouts with random actions from random states in the given dataset
to expand the dataset by 2x. This time we found that the 5-step rollouts do better, which we
attribute to the lower model bias together with the ability to create a more diverse dataset
(1-step not shown). The MBPO model is described below. We use the same reward model
as CoDA to relabel rewards for the MBPO model, which only predicts next state.

5. MBPO + CoDA: as MBPO improved performance over the baseline (real data only) at
lower dataset sizes, we considered using MBPO together with CoDA. We use the base
dataset to train the MBPO, CoDA, and reward models, as described above. We then use the
MBPO model to expand the base dataset by 2x, as described above. We then use the CoDA
model to expand the expanded dataset by 3x the original dataset size. Thus the final dataset
is 5x as large as the original dataset (1 real : 1 MBPO : 3 CoDA).

All configurations alter only the training dataset, and the same agent architecture/hyperparameters
(reported above) are used in each case.

MBPO model Since using the CoDA model for Dyna harms rather than helps, we consider using a
stronger, state-of-the-art model-based approach. In particular, we adopt the model used by Model-
Based Policy Optimization [34]. This model consists of a size 7 ensemble of neural networks, each
with 4 layers of 200 neurons. We use ReLU activations, Adam optimizer [38] with weight decay
of 5e-5, and have each network output a the mean and (log) diagonal covariance of a multi-variate
Gaussian. We train the networks with a maximum likelihood loss. To sample from the model, we
choose an ensemble member uniformly at random and sample from its output distribution, as in [34].

Full results See Table 2 for results.
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|D| Real data Dyna MBPO Ratio of Real:CoDA [:MBPO] data (ours)
(1000s) 1R 1R:1M 1R:1M 1R:1C 1R:2C 1R:3C 1R:5C 1R:3C:1M

25 13.2± 0.7 12.2± 1.4 18.5± 1.5 43.8± 2.7 41.6± 3.7 40.9± 2.5 38.4± 4.9 46.8± 3.2
50 22.8± 3.2 17.4± 3.0 36.6± 4.0 66.6± 3.7 58.4± 4.7 64.4± 3.1 62.5± 3.5 70.4± 3.7
75 43.2± 4.7 23.3± 4.7 46.0± 4.5 73.4± 2.8 71.6± 3.8 76.7± 2.6 75.0± 3.3 74.6± 3.3

100 63.0± 3.0 25.9± 7.4 66.4± 5.2 77.8± 2.0 77.4± 1.8 82.7± 1.5 76.6± 3.0 73.7± 2.9
150 77.4± 1.3 34.1± 1.5 72.6± 5.6 82.2± 1.7 84.0± 1.2 85.8± 1.4 84.2± 1.0 79.7± 3.5
250 78.2± 2.7 44.2± 4.0 77.9± 2.3 85.0± 2.8 88.1± 1.0 87.8± 1.7 87.0± 1.0 78.3± 5.0

Table 2: Extended Batch RL results. Mean success (± standard error, estimated using 1000 bootstrap
resamples) on Pong environment. All results average over 10 seeds, except Dyna, which uses 5.

B.3 Goal-conditioned RL

Here we detail the procedure used in the Goal-conditioned RL experiments on the Fetchpush-v1
and Slide2 environments.

Implementation This experiment uses the same codebase as our Batch RL, which provides state-
of-the-art baseline HER agents and will be released with the paper.

Hyperparameters For Fetchpush-v1 we use the default hyperparameters from the codebase (see
[70] for details on how they were selected), which outperform the original HER agents of [1, 71] and
follow-up works. We do not tune the CoDA agent (but see additional CoDA hyperparameters below).
They are as follows:

• Off-policy algorithm: DDPG [51]

• Hindsight relabeling strategy: futureactual_2_2 [68], using exclusively future [1]
relabeling for the first 25,000 steps

• Optimizer: Adam [38] with default hyperparameters

• Batch size: 2000

• Optimization frequency: 1 optimization step every 2 environment steps after the 5000th
environment step

• Target network updates: update every 10 optimization steps with a Polyak averaging
coefficient of 0.05

• Discount factor: 0.98

• Action l2 regularization: 0.01

• Networks: 3x512 layer-normalized [4] hidden layers with ReLU activations

• Target clipping: (-50, 0)

• Action noise: 0.1 Gaussian noise

• Epsilon exploration [71]: 0.2, with an initial 100% exploration period of 10,000 steps

• Observation normalization: yes

• Buffer size: 1M

On Slide2 we tried to tune the baseline hyperparameters somewhat, but note that this is a fairly long
experiment (10M timesteps) and so only a few settings were tested due to constraints. In particular,
we considered the following modifications:

• Expanding the replay buffer to 2M (effective)

• Reducing the batch size to 1000 (effective)* (used for results)

• Using the future_4 strategy (agent fails to learn in 10M steps)

• Reducing optimization step frequency to 1 step every 4 environment steps (about the same
performance)
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We tried similar adjustments to our CoDA agent, but found the default hyperparameters (used for
results) performed well. We found that the CoDA agent outperforms the base HER agent on all tested
settings.

For CoDA, we used the following additional hyperparameters:

• CoDA buffer size: 3M

• Make CoDA data every: 250 environment steps

• Number of source pairs from replay buffer used to make CoDA data: 2000

• Number of CoDA samples per source pair: 2

• Maximum ratio of CoDA:Real data to train on: 3:1

Figure 8: The Slide2
environment.

Environment On FetchPush-v1 the standard state features include the
relative position of the object and gripper, which entangles the two. While
this could be dealt with by dynamic relabeling (as used for HER’s reward),
we simply drop the corresponding features from the state.

Slide2 has two pucks that slide on a table and bounce off of a solid railing.
Observations are 40-dimensional (including the 6-dimensional goal), and
actions are 4-dimensional. Initial positions and goal positions are sampled
randomly on the table. During training, the agent gets a sparse reward of
0 (otherwise -1) if both pucks are within 5cm of their ordered target. At
test time we count success as having both picks within 7.5cm of the target
on the last step of the episode. Episodes last 75 steps and there is no done
signal (this is intended as a continuous task).

CoDA Heuristic For these experiments we use a hand-coded heuristic designed with domain
knowledge. In particular, we assert that the action is always entangled with the gripper, and that
gripper/action and objects (pucks or blocks) are disentangled whenever they are more than 10cm apart.
This encodes independence due to physical separation, which we hypothesize is a very generally
heuristic that humans implicitly rely on all the time. The pucks have a radius of 2.5cm and height of
4cm, and the blocks are 5cm x 5cm x 5cm, so this heuristic is quite generous / suboptimal. Despite
being suboptimal, it demonstrates the ease with which domain knowledge can be injected via the
CoDA mask: we need only a high precision (low false positive rate) heuristic—the recall is not as
important. It is likely that an agent could learn a better mask that also takes into account velocity.

Results plot The plot shows mean ±1 standard deviation of the smoothed data over 5 seeds.

C Inferring Local Factorization

Here we present several approaches to inferring the local factorization of subspaces, a crucial
subroutine of CoDA. We note that in many cases where domain knowledge is available, simple
heuristics may suffice, e.g. in our Goal-conditioned RL experiments discussed in Section 4 where a
simple distance-based indicator function in the state space was used. However, as such heuristics
may not be universally available, the question of whether data-driven approaches can successfully
infer local factorization is of general interest. We note that the performance of CoDA will improve
alongside future improvements in this inference task (motivating future work in this area), and that
inferring the local factorization in general is an easier task than learning the environment dynamics.

We begin by presenting two methods for inferring local factorization, derived from variants of a
next-state prediction task, which we here refer to as SANDy for Sparse Attention Neural Dynamics.
To verify the merits of SANDy in the local factorization inference task, we evaluate two SANDy
variants in controlled settings where the ground truth factorization is known: first in a synthetic
Markov process (MDP without actions), and second in Spriteworld. This label information is used
only to evaluate performance, and not to train the SANDy parameters. The SANDy-Transformer
model was used for the Online RL experiments presented in Section 4.
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C.1 Methods

We propose two Sparse Attention for Neural Dynamics (SANDy) models. In each case we seek to
learn a function (or mask) M(s, a) → {0, 1}(|S|+|A|)×|S| whose output represents the adjacency
matrix of the local causal graph, conditioned on the state and action. We note that M(s, a)i,j = 0
alone is insufficient, in general, to determine the local subspace L ⊂ S × A, since there may be
multiple disconnected subspaces Lk with Mk(s, a)i,j = 0 whose union

⋃
k Lk has M∪k(s, a)i,j = 1.

This can be resolved by our Proposition 1 if we also force the relevant structural equations to be the
same. For now, we assume the mask determines the local subspace, and leave exploration of this
possibility to future work. Empirically, we will see that our assumption is reasonable.

SANDy-Mixture The first model is a mixture-of-MLPs model with an attention mechanism that is
computed from the current state. Each component of the mixture is a neural dynamics model with
sparse local dependencies. For a given component, the key idea is to train a neural dynamics model
to predict the next state h(st, at) ≈ st+1 and approximate the masking function by thresholding the
(transpose of the) network Jacobian of h, [J(s, a)]i,j = δ

δ[s,a]j
[h(s, a)]i. Intuitively, we can think of

J as providing the first-order element-wise dependencies between the predicted next state and the
network input. We then derive the local factorization by thresholding the absolute Jacobian

Mτ (s, a) = 1(|J(s, a)| > τ), (1)

where 1(·) represents the indicator function and τ is a threshold hyperparameter.

To estimate the network Jacobian, we note that for standard activation functions (sigmoid, tanh, relu),
it can be bound from above by the matrix product of its weight matrices. To see this, let hθ be an
L-layer MLP parameterized by θ = (W(1),b(1), · · · ,W(L),b(L)) with activation σ with bounded
derivative σ′(x) ≤ 1, and note that for each layer h(`) = σ(W(`)h(`−1) + b(`)) we have:∣∣∣∣∣ dh

(`)
j

dh
(`−1)
i

∣∣∣∣∣ ≤ ∣∣∣W(`)
ji

∣∣∣.
Then, using the chain rule, triangle inequality, and the identity |ab| = |a||b|, we can compute:∣∣∣∣∣ dh

(`)
j

dh
(`−2)
i

∣∣∣∣∣ ≤
∣∣∣∣∣ d

dh
(`−2)
i

W
(`)
j· h

(`−1)

∣∣∣∣∣ =

∣∣∣∣∣W(`)
j· ·

dh(`−1)

dh
(`−2)
i

∣∣∣∣∣
≤
∑
k

∣∣∣∣∣W(`)
jk

dh
(`−1)
k

dh
(`−2)
i

∣∣∣∣∣ ≤ ∣∣∣W(`)
j·

∣∣∣ · ∣∣∣W(`−1)
·i

∣∣∣.
Expanding this out to multiple layers, we see that

∣∣Jθ(s, a)
∣∣ ≤ ∏`∈[L] |W(`)|, as desired. We use

this upper bound to approximate the network Jacobian of an MLP by setting Ĵ =
∏
`∈[L] |W(`)|. A

similar idea is used by [25, 44], among others, to control element-wise input-output dependencies.

We use this static approximation Ĵ to facilitate learning a sparse dynamic mask by specifying a mixture
model h(s, a) =

∑
i α

(i)
φ (s, a)h

(i)
θ (s, a) over the environment dynamics (with

∑
i α

(i)
φ (s, a) =

1 ∀ (s, a)), where each component h(i)θ is an MLP as specified above with a sparsity prior on its
Jacobian bound Ĵ(i) to encourage sparse (i.e. well-factorized) local solutions. The dynamic mask is
computed by first approximating the Jacobian, Ĵ(s, a) =

∑
i α

(i)
φ (s, a)Ĵ(i), then thresholding by τ

as in Equation 1.

Note that we assume the mixture components α are a function of the current state and action alone;
in other words the factorization (captured by the network Jacobian of each component) can be locally
inferred. The next-state prediction is given by ŝt+1 = (h

(1)
θ (st,at), · · · , h(N)

θ (st,at))
Tαφ(st,at).

To train the model, we optimize the objective:

minimize
θ,φ

1

|D|

( ∑
(st,atst+1)∈D

||st+1 − h(st,at)||22
)
+ λ1S(θ) + λ2R(φ) + λ3||(θ, φ)||2 (2)
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where S(θ) = 1
K

∑
i |Ĵ

(i)
θ |1 puts an `1 prior on each mixture component to induce sparsity, and R(φ)

encourages high entropy in the attention probabilities

R(φ) =
1

|D|
∑
s∈D

√√√√ 1

N

∑
j∈[N ]

[Aφ(s,a)]j .

We note that more sophisticated methods of computing Jacobians of neural networks–including
architectural changes and optimization strategies [3]—have been proposed, and could in principle be
used here as well.

SANDy-Transformer As an alternative model, we use a transformer-like architecture that applies
self-attention between a set of (potentially multi-dimensional) inputs [85, 47]. Our architecture is
composed of a stacked self-attention blocks. Each block accepts a set of inputs X = {xi ∈ Rn}
and composes three functions of each input: query Q : Rn → Rd, key K : Rn → Rd, and value
V : Rn → Rm. The block returns a set of outputs {yi ∈ Rm} of size |X|, each of which is computed
as: yi = ATi V (X), where Ai = softmax

(∑
j(Q(xi)jK(xj)i)

)
(note that V (X) is a matrix of size

|X| ×m). We approximate the block mask (approximate Jacobian) as A = [A1, A2, . . . , A|X|] ∈
R|X|×|X|, and the full network mask as the product of the block masks (as in the SANDy-Mixture).
We used two-layer MLPs for each function K,Q, V in Spriteworld and three-layer MLPs in Pong.

To apply this architecture to our problem, we first embed each state and action component (single
feature, or group of features) into Rn to produce a set of inputs X and pass this through each
stacked self-attention block to obtain a set of outputs Y . We then discard any output components
that correspond to the action features to obtain the next state prediction and mask. The network h is
trained to minimize mean squared error:

minimize
θ

1

|D|
∑

(st,atst+1)∈D

||st+1 − h(st,at)||22. (3)

Unlike the SANDy-Mixture, no sparsity regularizers are applied, as we found the sparsity induced by
the softmax attention mechanism to be sufficient.

C.2 Evaluation environments

Synthetic Markov Processes We investigate the capacity of the SANDy-Mixture to learn simple
factorized transition dynamics under a globally factored Markov Process (STATIONARYMP). Unlike
the general MDP setting, no agent/policy is considered. However the ability to train an unconstrained
dynamics model to approximate factorized environment dynamics is an important subtask within
our overall approach. Assuming a spherical Gaussian prior over the initial states s0 ∈ R9, the
STATIONARYMP is entirely specified by transition distribution p(st+1|st). We assume that the state
transitions factorize (globally) into three parts. Denoting by stn···m the n-th through m-th dimensions
of the time t state st, we have:

p(st+1
1···9|st1···9) = p(st+1

1···4|st1···4)p(st+1
5···7|st5···7)p(st+1

8,9 |st8,9).

In other words, we have a block-diagonal transition matrix comprising three blocks with sizes 4,
3, and 2, respectively. In our case, all transition factors are deterministic non-linear mappings, e.g.
p(st+1

1···4|st1···4) = δ(g1···4(st1···4)), with g1···4 : R4 → R4 is a randomly-initialized single-hidden-layer
neural network with 32 hidden units and GELU nonlinearity [30]. In this case, we can alternatively
express the deterministic dynamics via the transition function

st+1 = (st+1
1···4, s

t+1
5···7, s

t+1
8,9 )

= (g1···4(st1···4), g5···7(st5···7), g8,9(st8,9)). (STATIONARYMP)

We now turn to a more sophisticated MP with locally factored dynamics (ε-NONSTATIONARYMP),
and investigate whether the SANDy-Mixture can learn to recognize local disentanglement.

We refer to the component functions g1···4 : R4 → R4, g5···7 : R3 → R3, and g8,9 : R2 → R2 used
in the STATIONARYMP as local transitions. We now introduce global interactions via the global
transition functions, G1···4 : R4 → R9, G5···7 : R4 → R9, and G8,9 : R4 → R9, which respectively
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map the local state factors onto the global state space7. This allows us to extend the STATIONARYMP
by adding global state transitions to the local state transitions whenever the norm of the local state
factors exceeds the value of a hyperparameter ε (lower ε indicates more global interaction). Denoting
by 1(·) the indicator function, we have

st+1 =
[
(st+1

1 , st+1
2 , st+1

3 , st+1
4 ), (st+1

5 , st+1
6 , st+1

7 ), (st+1
8 , st+1

9 )
]

=
[
g1···4(st1···4), g5···7(st5···7), g8,9(st8,9)

]
+G1···4(st1···4)1(||st1···4||2 > ε)

+G5···7(st5···7)1(||st5···7||2 > ε)

+G8,9(st8,9)1(||st8,9||2 > ε). (ε-NONSTATIONARYMP)

Spriteworld Since we extended Spriteworld with a ground truth mask renderer, we are able to
directly evaluate our SANDy models in Spriteworld as well. See the main text and Appendix B
for a description of the Spriteworld environment.

C.3 Results

In this Subsection we measure ability of the proposed SANDy algorithm (in its two variants) to cor-
rectly infer local factorization. At each transition we can query the environment for the ground-truth
connectivity pattern of the local causal graph: given |S|+ |A| dimensions of current state and action
and |S| dimensions of next state, this corresponds an adjacency matrix Y ∈ {0, 1}|S|+|A|×|S|.We
note that accessing these evaluation labels—which are not used to train SANDy—requires a con-
trolled synthetic environment like the ones we consider, and we leave design of an evaluation protocol
suitable for real-world environments to future work.

We learn the SANDy network parameters using a training dataset of 40, 000 transitions, with an
additional validation dataset of 10, 000 transitions used for early stopping and hyperparameter
selection. We used the Adam optimizer with learning rate of 0.001 and default hyperparameters.
In the ε-NONSTATIONARYMP, we set ε = 1.5, while in the Spriteworld setting we collect training
trajectories by deploying a random-action agent in the environment, and randomly resetting the
environment with 5% probability at every step to increase diversity of experiences. We then evaluate
the SANDy models by computing local factorizations Mτ (s, a) : |S| × |A| → {0, 1}(|S|+|A|)×|S| as
a function of the threshold τ for each transition in a held-out test dataset of 10, 000 trajectories. We
compute true and false positive rates for various values of τ to produce ROC plots.

Figure 9 shows that while the SANDy-Mixture is sufficient to solve the simpler synthetic MP settings
(with avg AUC of 0.96 and 0.91 for the stationary and non-stationary variants), it scales poorly
to the Spriteworld environment. While the modest inductive bias of sparse local connections and
high-entropy mixture components in SANDy-Mixture makes it widely applicable, we hypothesize
that its sensitivity to hyperparameters makes it difficult to tune in complex settings. Fortunately,
SANDy-Transformer, performs favorably in Spriteworld by incorporating a stronger inductive bias
about the state subspace structure. Thus we use SANDy-Transformer to perform local factorization
inference in the remaining experiments.

Figure 10 provides some qualitative intuition as to how the two variants of SANDy differ in their
attention strategy in the Spriteworld environment.

D Fitting dynamics models to Spriteworld

Since CoDA is a data augmentation strategy, it is reasonable to consider an alternative approach to
augmenting the experience buffer: sampling from a dynamics model as in model-based RL. Here
we present some qualitative results from our efforts in fitting dynamics models to the Spriteworld
environment. We found that while dynamics models achieve a decent error in the next-state prediction
task, they fail to produce a diverse set of trajectories when used as autoregressive samplers. In
particular, the autoregressive sampling did not model collisions well and often produced trajectories

7 Like the local transition functions, global transition functions are implemented as randomly-initialized
single-hidden-layer neural networks.
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(c) Spriteworld

Figure 9: ROC plots for correct sparsity patter prediction on the three environments. On held-out
test transitions we derive the ground truth local connectivity per step—label information that is not
used to train the attention model—and measure (over 5 runs; 1 std. dev. shaded) true and false
positive rates while sweeping the mask threshold τ over its allowable range. An accurate model
generates an Area Under the Curve (AUC) close to 1. We observe that while SANDy-Mixture is
sufficient for (nearly) solving the simpler synthetic MP environments, it underperforms in Spriteworld.
SANDy-Transfomer, which has a stronger inductive bias, is sufficient to (nearly) solve Spriteworld.

where sprites converged to fixed points in space after a short number of steps. Figure 11 shows trajec-
tories sampled autoregressively from Linear, MLP, and LSTM-based dynamics models, alongside the
ground truth trajectory. Note that all dynamics models were trained to minimize error in next-state
prediction given the current state and action. In other words the LSTM auto-regressively predicts
successive dimensions of the next state rather than modeling multiple time steps of the trajectory.
Nevertheless the environment is truly Markov because instantaneous velocities are observed, so this
information should be sufficient in theory to capture the environment dynamics.

E Sample efficient dynamics modeling with CoDA

If we had access to the ground truth local factorization, even for a few samples (e.g., we could have
humans label them), how much more efficient would it be to train a dynamics model? In Figure 12,
we sample 2000 transitions from a random policy in Spriteworld and use the data to train a forward
dynamics model using MSE loss. The validation loss throughout training is plotted. Our baseline
uses only the initial dataset, and quickly overfits the training set, showing increasing error after the
initial few epochs. The same applies to a “random” CoDA strategy, that does CoDA using an identity
attention mask (M(s, a) = I ∀ (s, a)) to randomly relabel the components. The random strategy
does a bit better than the no CoDA strategy, since the randomness acts as a regularizer. Finally, we
train a model using an additional 35,000 unique counterfactual CoDA transitions, and find that it
significantly improves validation loss and prevents the model from overfitting. Note that we could
have generated many more CoDA samples: from 2000 base transitions, if 80% of them do not involve
collisions and there are 4 connected components in each, we could generate as many as 16004 (6.5
trillion!) counterfactual samples.

F Compute Infrastructure

Experiments were run on a mix of local machines and a compute cluster, with a mix of GTX 1080 Ti,
Titan XP, and Tesla P100 GPUs. This was solely to run jobs in parallel, and all experiments can be
run locally (GPU optional for Spriteworld and Pong, but recommended for Fetch experiments).
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(a) SANDy-Mixture (b) SANDy-Transformer

Figure 10: Qualitative comparison of two attention mechanisms on the same Spriteworld trajectory.
SANDy-Mixture (left) has a weaker inductive bias as it relies on sparsity regularization alone.
Accordingly, it can learn a more compact subspace (e.g. grid patterns within a shape indicate that x
and y coordinates move independently), but is less reliable in attending to collisions between shapes,
and completely fails to attend to the action’s affect on shapes. SANDy-Transformer has a stronger
inductive bias and can more reliably infer the local interaction pattern between the five subspaces
(four shapes and one action).
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(a) Ground Truth

(b) Linear Dynamics

(c) MLP Dynamics

(d) LSTM Dynamics

Figure 11: Auto-regressive model-based rollouts for a variety of dynamics models fit to Spriteworld.
While the dynamics models were able to achieve relatively low error in the next-state prediction task,
they fail to capture collisions and long-term dependencies in the sampled trajectories, and thus were
omitted as baselines in the RL experiments. All trajectories share the same initial state.

Figure 12: Learning curves for training a forward dynamics model using data from a random policy.
Dotted lines indicate training performance, whereas solid lines indicate validation performance.
We see that using the ground truth mask prevents overfitting and allows us to achieve much better
validation performance.
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