
On Warm-Starting Neural Network Training

Jordan T. Ash
Microsoft Research NYC

ash.jordan@microsoft.com

Ryan P. Adams
Princeton University
rpa@princeton.edu

Abstract
In many real-world deployments of machine learning systems, data arrive piece-
meal. These learning scenarios may be passive, where data arrive incrementally
due to structural properties of the problem (e.g., daily financial data) or active,
where samples are selected according to a measure of their quality (e.g., experi-
mental design). In both of these cases, we are building a sequence of models that
incorporate an increasing amount of data. We would like each of these models in
the sequence to be performant and take advantage of all the data that are available
to that point. Conventional intuition suggests that when solving a sequence of
related optimization problems of this form, it should be possible to initialize using
the solution of the previous iterate—to “warm start” the optimization rather than
initialize from scratch—and see reductions in wall-clock time. However, in practice
this warm-starting seems to yield poorer generalization performance than models
that have fresh random initializations, even though the final training losses are
similar. While it appears that some hyperparameter settings allow a practitioner to
close this generalization gap, they seem to only do so in regimes that damage the
wall-clock gains of the warm start. Nevertheless, it is highly desirable to be able to
warm-start neural network training, as it would dramatically reduce the resource
usage associated with the construction of performant deep learning systems. In
this work, we take a closer look at this empirical phenomenon and try to under-
stand when and how it occurs. We also provide a surprisingly simple trick that
overcomes this pathology in several important situations, and present experiments
that elucidate some of its properties.

1 Introduction
Although machine learning research generally assumes a fixed set of training data, real life is more
complicated. One common scenario is where a production ML system must be constantly updated
with new data. This situation occurs in finance, online advertising, recommendation systems, fraud
detection, and many other domains where machine learning systems are used for prediction and
decision making in the real world [1–3]. When new data arrive, the model needs to be updated so
that it can be as accurate as possible and account for any domain shift that is occurring.

As a concrete example, consider a large-scale social media website, to which users are constantly
uploading images and text. The company requires up-to-the-minute predictive models in order to
recommend content, filter out inappropriate media, and select advertisements. There might be millions
of new data arriving every day, which need to be rapidly incorporated into production ML pipelines.

It is natural in this scenario to imagine maintaining a single model that is updated with the
latest data at regular cadence. Every day, for example, new training might be performed on
the model with the updated, larger dataset. Ideally, this new training procedure is initialized
from the parameters of yesterday’s model, i.e., it is “warm-started” from those parameters
rather than given a fresh initialization. Such an initialization makes intuitive sense: the data
used yesterday are mostly the same as the data today, and it seems wasteful to throw away all
previous computation. For convex optimization problems, warm starting is widely used and
highly successful (e.g., [1]), and the theoretical properties of online learning are well understood.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Figure 1: A comparison between ResNets trained using
a warm start and a random initialization on CIFAR-10.
Blue lines are models trained on 50% of CIFAR-10 for
350 epochs then trained on 100% of the data for a further
350 epochs. Orange lines are models trained on 100% of
the data from the start. The two procedures produce sim-
ilar training performance but differing test performance.

However, warm-starting seems to hurt gen-
eralization in deep neural networks. This
is particularly troubling because warm-
starting does not damage training accuracy.

Figure 1 illustrates this phenomenon.
Three 18-layer ResNets have been trained
on the CIFAR-10 natural image classifi-
cation task to create these figures. One
was trained on 100% of the data, one was
trained on 50% of the data, and a third
warm-started model was trained on 100%
of the data but initialized from the parame-
ters found from the 50% trained model. All
three achieve the upper bound on training
accuracy. However, the warm-started net-
work performs worse on test samples than
the network trained on the same data but with a new random initialization. Problematically, this
phenomenon incentivizes performance-focused researchers and engineers to constantly retrain models
from scratch, at potentially enormous financial and environmental cost [4]. This is an example of
“Red AI” [5], disregarding resource consumption in pursuit of raw predictive performance.

The warm-start phenomenon has implications for other situations as well. In active learning, for
example, unlabeled samples are abundant but labels are expensive: the goal is to identify maximally-
informative data to have labeled by an oracle and integrated into the training set. It would be time
efficient to simply warm-start optimization each time new samples are appended to the training
set, but such an approach seems to damage generalization in deep neural networks. Although this
phenomenon has not received much direct attention from the research community, it seems to be
common practice in deep active learning to retrain from scratch after every query step [6, 7]; popular
deep active learning repositories on Github randomly reinitialize models after every selection. [8, 9].

The ineffectiveness of warm-starting has been observed anecdotally in the community, but this paper
seeks to examine its properties closely in controlled settings. Note that the findings in this paper are
not inconsistent with extensive work on unsupervised pre-training [10, 11] and transfer learning in the
small-data and “few shot” regimes [12–15]. Rather here we are examining how to accelerate training
in the large-data supervised setting in a way consistent with expectations from convex problems.

This article is structured as follows. Section 2 examines the generalization gap induced by warm-
starting neural networks. Section 3 surveys approaches for improving generalization in deep learning,
and shows that these techniques do not resolve the problem. In Section 4, we describe a simple trick
that overcomes this pathology, and report on experiments that give insights into its behavior in batch
online learning and pre-training scenarios. We defer our discussion of related work to Section 5, and
include a statement on broad impacts in Section 6.

2 Warm Starting Damages Generalization
In this section we provide empirical evidence that warm starting consistently damages generalization
performance in neural networks. We conduct a series of experiments across several different architec-
tures, optimizers, and image datasets. Our goal is to create simple, reproducible settings in which the
warm-starting phenomenon is observed.

2.1 Basic Batch Updating
Here we consider the simplest case of warm-starting, in which a single training dataset is partitioned
into two subsets that are presented sequentially. In each series of experiments, we randomly segment
the training data into two equally-sized portions. The model is trained to convergence on the first
half, then is trained on the union of the two batches, i.e., 100% of the data. This is repeated for three
classifiers: ResNet-18 [16], a multilayer perceptron (MLP) with three layers and tanh activations, and
logistic regression. Models are optimized using either stochastic gradient descent (SGD) or the Adam
variant of SGD [17], and are fitted to the CIFAR-10, CIFAR-100, and SVHN image data. All models
are trained using a mini-batch size of 128 and a learning rate of 0.001, the smallest learning rate used in
the learning schedule for fitting state-of-the-art ResNet models [16]. The effect of these parameters is
investigated in Section 3. Presented results are on a held-out, randomly-chosen third of available data.

2



RESNET RESNET MLP MLP LR LR
CIFAR-10 SGD ADAM SGD ADAM SGD ADAM
RANDOM INIT 56.2 (1.0) 78.0 (0.6) 39.0 (0.2) 39.4 (0.1) 40.5 (0.6) 33.8 (0.6)
WARM START 51.7 (0.9) 74.4 (0.9) 37.4 (0.2) 36.1 (0.3) 39.6 (0.2) 33.3 (0.2)
SVHN
RANDOM INIT 89.4 (0.1) 93.6 (0.2) 76.5 (0.3) 76.7 (0.4) 28.0 (0.2) 22.4 (1.3)
WARM START 87.5 (0.7) 93.5 (0.4) 75.4 (0.1) 69.4 (0.6) 28.0 (0.3) 22.2 (0.9)
CIFAR-100
RANDOM INIT 18.2 (0.3) 41.4 (0.2) 10.3 (0.2) 11.6 (0.2) 16.9 (0.18) 10.2 (0.4)
WARM START 15.5 (0.3) 35.0 (1.2) 9.4 (0.0) 9.9 (0.1) 16.3 (0.28) 9.9 (0.3)

Table 1: Validation percent
accuracies for various opti-
mizers and models for warm-
started and randomly initial-
ized models on indicated
datasets. We consider an
18-layer ResNet, three-layer
multilayer perceptron (MLP),
and logistic regression (LR).

Figure 2: An online learning experiment for CIFAR-10
data using a ResNet. The horizontal axis shows the total
number of samples in the training set available to the
learner. The generalization gap between warm-started
and randomly-initialized models is signi�cant.

Our results (Table 1) indicate that gener-
alization performance is damaged consis-
tently and signi�cantly for both ResNets
and MLPs. This effect is more dramatic
for CIFAR-10, which is considered rela-
tively challenging to model (requiring, e.g.,
data augmentation), than for SVHN, which
is considered easier. Logistic regression,
which enjoys a convex loss surface, is not
signi�cantly damaged by warm starting for
any datasets. Figure 10 in the Appendix ex-
tends these results and shows that the gap
is inversely proportional to the fraction of
data available in the �rst round of training.

This result is surprising. Even though MLP and ResNet optimization is non-convex, conventional
intuition suggests that the warm-started solution should be close to the full-data solution and therefore
a good initialization. One view on pre-training is that the initialization is a “prior” on weights; we
often view prior distributions as arising from inference on old (or hypothetical) data and so this sort
of pre-training should always be helpful. The generalization gap shown here creates a computational
burden for real-life machine learning systems that must be retrained from scratch to perform well,
rather than initialized from previous models. First-round results for Table 1 are in Appendix Table 2.

2.2 Online Learning
A common real-world setting involves data that are being provided to the machine learning system in
a stream. At every step, the learner is givenk new samples to append to its training data, and it updates
its hypothesis to re�ect the larger dataset. Financial data, social media data, and recommendation
systems are common examples of scenarios where new samples are constantly arriving. This paradigm
is simulated in Figure 2, where we supply CIFAR-10 data, selected randomly without replacement,
in batches of 1,000 to an 18-layer ResNet. We examine two cases: 1) where the model is retrained
from scratch after each batch, starting from a random initialization, and 2) where the model is trained
to convergence starting from the parameters learned in the previous iteration. In both cases, the
models are optimized with Adam, using an initial learning rate of 0.001. Each was run �ve times with
different random seeds and validation sets composed of a random third of available data, reinitializing
Adam's parameters at each step of learning.

Figure 2 shows the trade-off between these two approaches. On the right are the training times: clearly,
starting from the previous model is preferable and has the potential to vastly reduce computational
costs and wall-clock time. However, as can be seen on the left, generalization performance is worse in
the warm-started situation. As more data arrive, the gap in validation accuracy increases substantially.
Means and standard deviations across �ve runs are shown. Although this work focuses on image data,
we �nd consistent results with other dataset and architecture choices (Appendix Figure 13).
3 Conventional Approaches
The design space for initializing and training deep neural network models is very large, and so it
is important to evaluate whether there is some known method that could be used to help warm-started
training �nd good solutions. Put another way, a reasonable response to this problem is “Did you see
whetherX helped?” whereX might be anything from batch normalization [18] to increasing mini-
batch size [19]. This section tries to answer some of these questions and further empirically probe the
warm-start phenomenon. Unless otherwise stated, experiments in this section use a ResNet-18 model
trained using SGD with a learning rate of 0.001 on CIFAR-10 data. All experiments were run �ve
times to report means and standard deviations. No experiments in this paper use data augmentation
or learning rate schedules, and all validation sets are a randomly-chosen third of the training data.

3




	Introduction
	Warm Starting Damages Generalization
	Basic Batch Updating
	Online Learning

	Conventional Approaches
	Is this an effect of batch size or learning rate?
	How quickly is generalization damaged?
	Is regularization helpful?

	Shrink, Perturb, Repeat
	The shrink and perturb trick and regularization
	The shrink and perturb trick and pre-training

	Discussion and Research Surrounding the Warm Start Problem
	Broader Impact
	Funding Disclosure and Competing Interests
	Appendix
	Appendix Tables
	Appendix Figures
	Batch Online Learning Results for a ResNet-18 on CIFAR-10
	Batch Online Learning Results for a ResNet-18 on SVHN
	Batch Online Learning Results for an MLP on CIFAR-10 (no batch normalization)
	Batch Online Learning Results for an MLP on SVHN (no batch normalization)
	Batch Online Learning Results for a ResNet-18 on CIFAR-10 with weight decay
	Batch Online Learning Results for a ResNet-18 on SVHN with weight decay
	Shrink and Perturb for Pre-Training


	Companion Figures

