
Personalized Federated Learning with Theoretical
Guarantees: A Model-Agnostic Meta-Learning

Approach

Alireza Fallah
EECS Department

Massachusetts Institute of Technology
Cambridge, MA 02139
afallah@mit.edu

Aryan Mokhtari
ECE Department

University of Texas at Austin
Austin, TX 78712

mokhtari@austin.utexas.edu

Asuman Ozdaglar
EECS Department

Massachusetts Institute of Technology
Cambridge, MA 02139
asuman@mit.edu

Abstract

In Federated Learning, we aim to train models across multiple computing units
(users), while users can only communicate with a common central server, without
exchanging their data samples. This mechanism exploits the computational power
of all users and allows users to obtain a richer model as their models are trained over
a larger set of data points. However, this scheme only develops a common output
for all the users, and, therefore, it does not adapt the model to each user. This is
an important missing feature, especially given the heterogeneity of the underlying
data distribution for various users. In this paper, we study a personalized variant
of the federated learning in which our goal is to find an initial shared model that
current or new users can easily adapt to their local dataset by performing one or a
few steps of gradient descent with respect to their own data. This approach keeps
all the benefits of the federated learning architecture, and, by structure, leads to
a more personalized model for each user. We show this problem can be studied
within the Model-Agnostic Meta-Learning (MAML) framework. Inspired by this
connection, we study a personalized variant of the well-known Federated Averaging
algorithm and evaluate its performance in terms of gradient norm for non-convex
loss functions. Further, we characterize how this performance is affected by the
closeness of underlying distributions of user data, measured in terms of distribution
distances such as Total Variation and 1-Wasserstein metric.

1 Introduction

In Federated Learning (FL), we consider a set of n users that are all connected to a central node
(server), where each user has access only to its local data [1]. In this setting, the users aim to come up
with a model that is trained over all the data points in the network without exchanging their local
data with other users or the central node due to privacy issues or communication limitations. More

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

formally, if we define fi : Rd → R as the loss corresponding to user i, the goal is to solve

min
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w). (1)

In particular, consider a supervised learning setting, where fi represents expected loss over the data
distribution of user i, i.e.,

fi(w) := E(x,y)∼pi [li(w;x, y)] , (2)

where li(w;x, y) measures the error of model w in predicting the true label y ∈ Yi given the input
x ∈ Xi, and pi is the distribution over Xi × Yi. The focus of this paper is on a data heterogeneous
setting where the probability distribution pi of users are not identical. To illustrate this formulation,
consider the example of training a Natural Language Processing (NLP) model over the devices of a
set of users. In this problem, pi represents the empirical distribution of words and expressions used
by user i. Hence, fi(w) can be expressed as fi(w) =

∑
(x,y)∈Si pi(x, y)li(w;x, y), where Si is the

data set corresponding to user i and pi(x, y) is the probability that user i assigns to a specific word
which is proportional to the frequency of using this word by user i.

Indeed, each user can solve its local problem defined in (2) without any exchange of information
with other users; however, the resulted model may not generalize well to new samples as it has been
trained over a small number of samples. If users cooperate and exploit the data available at all users,
then their local models could obtain stronger generalization guarantees. A conventional approach
for achieving this goal is minimizing the aggregate of local functions defined in (1). However, this
scheme only develops a common output for all the users, and therefore, it does not adapt the model
to each user. In particular, in the heterogeneous settings where the underlying data distribution of
users are not identical, the resulted global model obtained by minimizing the average loss could
perform arbitrarily poorly once applied to the local dataset of each user. In other words, the solution
of problem (1) is not personalized for each user. To highlight this point, recall the NLP example,
where although the distribution over the words and expressions varies from one person to another, the
solution to problem (1) provides a shared answer for all users, and, therefore, it is not fully capable of
achieving a user-specific model.

In this paper, we overcome this issue by considering a modified formulation of the federated learning
problem which incorporates personalization (Section 2). Building on the Model-Agnostic Meta-
Learning (MAML) problem formulation introduced in [2], the goal of this new formulation is to find
an initial point shared between all users which performs well after each user updates it with respect
to its own loss function, potentially by performing a few steps of a gradient-based method. This way,
while the initial model is derived in a distributed manner over all users, the final model implemented
by each user differs from other ones based on her or his own data. We study a Personalized variant of
the FedAvg algorithm, called Per-FedAvg, designed for solving the proposed personalized FL problem
(Section 3). In particular, we elaborate on its connections with the original FedAvg algorithm [3],
and also, discuss a number of considerations that one needs to take into account for implementing
Per-FedAvg. We also establish the convergence properties of the proposed Per-FedAvg algorithm
for minimizing non-convex loss functions (Section 4). In particular, we characterize the role of data
heterogeneity and closeness of data distribution of different users, measured by distribution distances,
such as Total Variation (TV) or 1-Wasserstein, on the convergence of Per-FedAvg.

Related Work. Recently we have witnessed significant progress in developing novel methods that
address different challenges in FL; see [4, 5]. In particular, there have been several works on various
aspects of FL, including preserving the privacy of users [6–9] and lowering communication cost [10–
13]. Several work develop algorithms for the homogeneous setting, where the data points of all users
are sampled from the same probability distribution [14–17]. More related to our paper, there are
several works that study statistical heterogeneity of users’ data points in FL [18–23], but they do not
attempt to find a personalized solution for each user.

The centralized version of model-agnostic meta-learning (MAML) problem was first proposed in [2]
and followed by a number of papers studying its empirical characteristics [24–29] as well as its
convergence properties [30, 31]. In this work, we focus on the convergence of MAML methods for
the FL setting that is more challenging as nodes perform multiple local updates before sending their
updates to the server, which is not considered in previous theoretical works on meta-learning.

Recently, the idea of personalization in FL and its connections with MAML has gained a lot of
attention. In particular, [32] considers a formulation and algorithm similar to our paper, and elaborates

2

on the empirical success of this framework. Also, recently, there has been a number of other papers
that have studied different combinations of MAML-type methods with FL architecture from an
empirical point of view [33, 34]. However, our main focus is on developing a theoretical understating
regarding this formulation, where we characterize the convergence of the Per-FedAvg, and the role
of this algorithm’s parameters on its performance. Besides, in our numerical experiment section,
we show how the method studied in [32] may not perform well in some cases, and propose another
algorithm which addresses this issue. In addition, an independent and concurrent work [35] studies a
similar formulation theoretically for the case of strongly convex functions. The results in [35] are
completely different from ours, as they study the case that the functions are strongly convex and exact
gradients are available, while we study nonconvex functions, and also address gradient stochasticity.

Using meta-learning and multi-task learning to achieve personalization is not limited to MAML
framework. In particular, [36] proposes ARUBA, a meta-learning algorithm inspired by online convex
optimization, and shows that applying it to FedAvg improves its performance. A similar idea is
later used in [37] to design differentially private algorithms with application in FL. Also in [38],
the authors use multi-task learning framework and propose a new method, MOCHA, to address the
statistical and systems challenges, including data heterogeneity and communication efficiency. Their
proposed multi-task learning scheme also leads to a set of solutions that are more user-specific. A
detailed survey on the connections of FL and multi-task and meta-learning can be found in [4, 5].
Also, in [39], the authors consider a framework for training a mixture of a single global model and
local models, leading to a personalized solution for each user. A similar idea has been studied in [40],
where the authors propose an adaptive federated learning algorithm that learns a mixture of local and
global models as the personalized model.

2 Personalized Federated Learning via Model-Agnostic Meta-Learning

As we stated in Section 1, our goal in this section is to show how the fundamental idea behind the
Model-Agnostic Meta-Learning (MAML) framework in [2] can be exploited to design a personalized
variant of the FL problem. To do so, let us first briefly recap the MAML formulation. Given a set
of tasks drawn from an underlying distribution, in MAML, in contrast to the traditional supervised
learning setting, the goal is not finding a model which performs well on all the tasks in expectation.
Instead, in MAML, we assume we have a limited computational budget to update our model after a
new task arrives, and in this new setting, we look for an initialization which performs well after it is
updated with respect to this new task, possibly by one or a few steps of gradient descent. In particular,
if we assume each user takes the initial point and updates it using one step of gradient descent with
respect to its own loss function, then problem (1) changes to

min
w∈Rd

F (w) :=
1

n

n∑
i=1

fi(w − α∇fi(w)), (3)

where α ≥ 0 is the stepsize. The strength of this formulation is that, not only it allows us to maintain
the advantages of FL, but also it captures the difference between users as either existing or new users
can take the solution of this new problem as an initial point and slightly update it with respect to
their own data. Going back to the NLP example, this means that the users could take this resulting
initialization and update it by going over their own data Si and performing just one or few steps of
gradient descent to obtain a model that works well for their own dataset.

As mentioned earlier, for the considered heterogeneous model of data distribution, solving problem (1)
is not the ideal choice as it returns a single model that even after a few steps of local gradient may not
quickly adjust to each users local data. On the other hand, by solving (3) we find an initial model
(Meta-model) which is trained in a way that after one step of local gradient leads to a good model for
each individual user. This formulation can also be extended to the case that users run a few steps of
gradient update, but to simplify our notation we focus on the single gradient update case. We would
like to mention that the problem formulation in (3) for FL was has been proposed independently in
another work [32] and studied numerically. In this work, we focus on the theoretical aspect of this
problem and seek a provably convergent method for the case that the functions fi are nonconvex.

3

3 Personalized FedAvg

In this section, we present the Personalized FedAvg (Per-FedAvg) method to solve (3). This algorithm
is inspired by FedAvg, but it is designed to find the optimal solution of (3) instead of (1). In FedAvg,
at each round, the server chooses a fraction of users with size rn (r ∈ (0, 1]) and sends its current
model to these users. Each selected user i updates the received model based on its own loss function
fi and by running τ ≥ 1 steps of stochastic gradient descent. Then, the active users return their
updated models to the server. Finally, the server updates the global model by computing the average
of the models received from these selected users, and then the next round follows. Per-FedAvg follows
the same principles. First, note that function F in (3) can be written as the average of meta-functions
F1, . . . , Fn where the meta-function Fi associated with user i is defined as

Fi(w) := fi(w − α∇fi(w)). (4)

To follow a similar scheme as FedAvg for solving problem (3), the first step is to compute the gradient
of local functions, which in this case, the gradient∇Fi, that is given by

∇Fi(w) =
(
I − α∇2fi(w)

)
∇fi(w − α∇fi(w)). (5)

Computing the gradient ∇fi(w) at every round is often computationally costly. Hence, we take a
batch of data Di with respect to distribution pi to obtain an unbiased estimate ∇̃fi(w,Di) given by

∇̃fi(w,Di) :=
1

|Di|
∑

(x,y)∈Di

∇li(w;x, y). (6)

Similarly, the Hessian∇2fi(w) in (5) can be replaced by its unbiased estimate ∇̃2fi(w,Di).

At round k of Per-FedAvg, similar to FedAvg, first the server sends the current global model wk to a
fraction of users Ak chosen uniformly at random with size rn. Each user i ∈ Ak performs τ steps of
stochastic gradient descent locally and with respect to Fi. In particular, these local updates generate a
local sequence {wik+1,t}τt=0 where wik+1,0 = wk and, for τ ≥ t ≥ 1,

wik+1,t = wik+1,t−1 − β∇̃Fi(wik+1,t−1), (7)

where β is the local learning rate (stepsize) and ∇̃Fi(wik+1,t−1) is an estimate of ∇Fi(wik+1,t−1)

in (5). Note that the stochastic gradient ∇̃Fi(wik+1,t−1) for all local iterates is computed using
independent batches Dit, D

′i
t , and D′′i

t as follows

∇̃Fi(wik+1,t−1) :=
(
I−α∇̃2fi(w

i
k+1,t−1,D

′′i
t)
)
∇̃fi
(
wik+1,t−1−α∇̃fi(wik+1,t−1,Dit),D

′i
t

)
.

(8)
Note that ∇̃Fi(wik+1,t−1) is a biased estimator of∇Fi(wik+1,t−1) due to the fact that ∇̃fi(wik+1,t−1−
α∇̃fi(wik+1,t−1,Dit),D

′i
t) is a stochastic gradient that contains another stochastic gradient inside.

Once, the local updates wik+1,τ are evaluated, users send them to the server, and the server updates
its global model by averaging over the received models, i.e., wk+1 = 1

rn

∑
i∈Ak

wik+1,τ .

Note that as in other MAML methods [2, 31], the update in (7) can be implemented in two stages:
First, we compute w̃ik+1,t = wik+1,t−1−α∇̃fi(wik+1,t−1,Dit) and then evaluate wik+1,t by wik+1,t =

wi,t−1k+1 − β(I − α∇̃2fi(w
i
k+1,t−1,D

′′i
t))∇̃fi(w̃ik+1,t,D

′i
t).Indeed, it can be verified the outcome of

the these two steps is equivalent to the update in (7). To simplify the notation, throughout the paper,
we assume that the size of Dit, D

′i
t , and D′′i

t is equal to D, D′, and D′′, respectively, and for any i
and t. The steps of Per-FedAvg are depicted in Algorithm 1.

4 Theoretical Results

In this section, we study the convergence properties of the Personalized FedAvg (Per-FedAvg) method.
We focus on nonconvex settings, and characterize the overall communication rounds between server
and users to find an ε-approximate first-order stationary point, where its formal definition follows.

Definition 4.1. A random vector wε ∈ Rd is called an ε-approximate First-Order Stationary Point
(FOSP) for problem (3) if it satisfies E[‖∇F (wε)‖2] ≤ ε.

4

Algorithm 1: The proposed Personalized FedAvg (Per-FedAvg) Algorithm
Input:Initial iterate w0, fraction of active users r.
for k : 0 to K − 1 do

Server chooses a subset of users Ak uniformly at random and with size rn;
Server sends wk to all users in Ak;
for all i ∈ Ak do

Set wik+1,0 = wk;
for t : 1 to τ do

Compute the stochastic gradient ∇̃fi(wik+1,t−1,Dit) using dataset Dit;
Set w̃ik+1,t = wik+1,t−1 − α∇̃fi(wik+1,t−1,Dit);

Set wik+1,t = wik+1,t−1 − β(I − α∇̃2fi(w
i
k+1,t−1,D

′′i
t))∇̃fi(w̃ik+1,t,D

′i
t);

end for
Agent i sends wik+1,τ back to server;

end for
Server updates its model by averaging over received models: wk+1 = 1

rn

∑
i∈Ak

wik+1,τ ;
end for

Next, we formally state the assumptions required for proving our main results.

Assumption 1. Functions fi are bounded below, i.e., minw∈Rd fi(w) > −∞.

Assumption 2. For every i ∈ {1, . . . , n}, fi is twice continuously differentiable and Li-smooth, and
also, its gradient is bounded by a nonnegative constant Bi, i.e.,

‖∇fi(w)‖ ≤ Bi, ‖∇fi(w)−∇fi(u)‖ ≤ Li‖w − u‖ ∀w, u ∈ Rd. (9)

As we discussed in Section 3, the second-order derivative of all functions appears in the update rule
of Per-FedAvg Algorithm. Hence, in the next Assumption, we impose a regularity condition on the
Hessian of each fi which is also a customary assumption in the analysis of second-order methods.

Assumption 3. For every i ∈ {1, . . . , n}, the Hessian of function fi is ρi-Lipschitz continuous, i.e.,

‖∇2fi(w)−∇2fi(u)‖ ≤ ρi‖w − u‖ ∀w, u ∈ Rd. (10)

To simplify the analysis, in the rest of the paper, we define B := maxiBi, L := maxi Li, and
ρ := maxi ρi which can be, respectively, considered as a bound on the norm of gradient of fi,
smoothness parameter of fi, and Lipschitz continuity parameter of Hessian∇2fi, for i = 1, . . . , n.

Our next assumption provides upper bounds on the variances of gradient and Hessian estimations.

Assumption 4. For any w ∈ Rd, the stochastic gradient ∇li(x, y;w) and Hessian ∇2li(x, y;w),
computed with respect to a single data point (x, y) ∈ Xi × Yi, have bounded variance, i.e.,

E(x,y)∼pi
[
‖∇li(x, y;w)−∇fi(w)‖2

]
≤ σ2

G, (11)

E(x,y)∼pi
[
‖∇2li(x, y;w)−∇2fi(w)‖2

]
≤ σ2

H . (12)

Finally, we state our last assumption which characterizes the similarity between the tasks of users.

Assumption 5. For any w ∈ Rd, the gradient and Hessian of local functions fi(w) and the average
function f(w) =

∑n
i=1 fi(w) satisfy the following conditions

1

n

n∑
i=1

‖∇fi(w)−∇f(w)‖2 ≤ γ2G,
1

n

n∑
i=1

‖∇2fi(w)−∇2f(w)‖2 ≤ γ2H . (13)

Assumption 5 captures the diversity between the gradients and Hessians of users. Note that under
Assumption 2, the conditions in Assumption 5 are automatically satisfied for γG = 2B and γH =
2L. However, we state this assumption separately to highlight the role of similarity of functions
corresponding to different users in convergence analysis of Per-FedAvg. In particular, in the following
subsection, we highlight the connections between this assumption and the similarity of distributions
pi for the case of supervised learning (2) under two different distribution distances.

5

4.1 On the Connections of Task Similarity and Distribution Distances

Recall the definition of fi in (2). Note that Assumption 5 captures the similarity of loss functions
of different users. Hence, a fundamental question here is whether this has any connection with the
closeness of distributions pi. We study this connection by considering two different distances: Total
Variation (TV) distance and 1-Wasserstein distance. Throughout this subsection, we assume all users
have the same loss function l(.; .) over the same set of inputs and labels, i.e., fi(w) := Ez∼pi [l(z;w)]
where z := (x, y) ∈ Z := X×Y . Also, let p = 1

n

∑
i pi denote the average of all users’ distributions.

• Total Variation (TV) Distance: For distributions q1 and q2 over countable set Z , their TV distance
is given by ‖q1−q2‖TV = 1

2

∑
z∈Z |q1(z)−q2(z)|. If we assume a stronger version of Assumption 2

holds where for any z ∈ Z and w ∈ Rd, we have ‖∇wl(z;w)‖ ≤ B and ‖∇2
wl(z;w)‖ ≤ L, then

Assumption 5 holds with (check Appendix B)

γ2G = 4B2 1

n

n∑
i=1

‖pi − p‖2TV , γ2H = 4L2 1

n

n∑
i=1

‖pi − p‖2TV . (14a)

This simple derivation shows that γG and γH exactly capture the difference between the probability
distributions of the users in a heterogeneous setting.

• 1-Wasserstein Distance: The 1-Wasserstein distance between two probability distributions q1 and
q2 over a metric space Z defined as W1(q1, q2) := infq∈Q(q1,q2)

∫
Z×Z d(z1, z2) dq(z1, z2), where

d(., .) is a distance function over metric space Z and Q(q1, q2) denotes the set of all measures on
Z ×Z with marginals q1 and q2 on the first and second coordinate, respectively. Here, we assume all
pi have bounded support (note that this assumption holds in many cases as either Z itself is bounded
or because we normalize the data). Also, we assume that for any w, the gradient ∇wl(z;w) and the
Hessian∇2

wl(z;w) are both Lipschitz with respect to parameter z and distance d(., .), i.e,

‖∇wl(z1;w)−∇wl(z2;w)‖ ≤ LZd(z1, z2), ‖∇2
wl(z1;w)−∇2

wl(z2;w)‖ ≤ ρZd(z1, z2).
(15)

Then, Assumption 5 holds with (check Appendix B)

γ2G = L2
Z

1

n

n∑
i=1

W1(pi, p)
2, γ2H = ρ2Z

1

n

n∑
i=1

W1(pi, p)
2. (16)

This derivation does not require Assumption 2 and holds when (15) are satisfied. Finally, consider a
special case where the data distributions are homogeneous, and each pi is an empirical distribution
drawn from a distribution pu with sample size m. In this case, we have W1(pi, pu) = O(1/

√
m)

[41]. Hence, since W1 is a distance, it is easy to verify that γG, γH = O(1/
√
m)1.

4.2 Convergence Analysis of Per-FedAvg Algorithm

In this subsection, we derive the overall complexity of Per-FedAvg for achieving an ε-first-order
stationary point. To do so, we first prove the following intermediate result which shows that under
Assumptions 2 and 3, the local meta-functions Fi(w) defined in (4) and their average function
F (w) = (1/n)

∑n
i=1 Fi(w) are smooth.

Lemma 4.2. Recall the definition of Fi(w) in (4) with α ∈ [0, 1/L]. If Assumptions 2 and 3 hold,
then Fi is smooth with parameter LF := 4L + αρB. As a consequence, the average function
F (w) = (1/n)

∑n
i=1 Fi(w) is also smooth with parameter LF .

Assumption 4 provides upper bounds on the variances of gradient and Hessian estimation for functions
fi. To analyze the convergence of Per-FedAvg, however, we require upper bounds on the bias and
variance of gradient estimation of Fi. We derive these bounds in the following lemma.

Lemma 4.3. Recall the definition of the gradient estimate ∇̃Fi(w) in (8) which is computed using D,
D′, and D′′ that are independent batches with size D, D′, and D′′, respectively. If Assumptions 2-4

1While our focus here is to elaborate on the dependence of Wasserstein distance on the number of samples,
it is worth noting that one drawback of this bound is that the convergence speed of Wasserstein distance in
dimension is exponentially slow.

6

hold, then for any α ∈ [0, 1/L] and w ∈ Rd we have∥∥∥E [∇̃Fi(w)−∇Fi(w)
]∥∥∥ ≤ 2αLσG√

D
,

E
[∥∥∥∇̃Fi(w)−∇Fi(w)

∥∥∥2] ≤ σ2
F := 12

[
B2 + σ2

G

[
1

D′
+

(αL)2

D

]][
1 + σ2

H

α2

4D′′

]
− 12B2.

To measure the tightness of this result, we consider two special cases. First, if the exact gradients
and Hessians are available, i.e., σG = σH = 0, then σF = 0 as well which is expected as we can
compute exact∇Fi. Second, for the classic federated learning problem, i.e., α = 0 and Fi = fi, we
have σF = O(1)σ2

G/D
′ which is tight up to constants.

Next, we use the similarity conditions for the functions fi in Assumption 5 to study the similarity
between gradients of the functions Fi.

Lemma 4.4. Recall the definition of Fi(w) in (4) and assume that α ∈ [0, 1/L]. Suppose that the
conditions in Assumptions 2, 3, and 5 are satisfied. Then, for any w ∈ Rd, we have

1

n

n∑
i=1

‖∇Fi(w)−∇F (w)‖2 ≤ γ2F := 3B2α2γ2H + 192γ2G.

To check the tightness of this result, we focus on two special cases as we did for Lemma 4.3 . First, if
∇fi are all equal, i.e., γG = γH = 0, then γF = 0. This is indeed expected as all ∇Fi are equal to
each other in this case. Second, for the classic federated learning problem, i.e., α = 0 and Fi = fi,
we have γF = O(1)γG that is optimal up to a constant factor given the conditions in Assumption 5.

Theorem 4.5. Consider the objective function F defined in (3) for the case that α ∈ (0, 1/L].
Suppose that the conditions in Assumptions 1-4 are satisfied, and recall the definitions of LF , σF ,
and ηF from Lemmas 4.2-4.4. Consider running Algorithm 1 for K rounds with τ local updates in
each round and with β ≤ 1/(10τLF). Then, the following first-order stationary condition holds

1

τK

K−1∑
k=0

τ−1∑
t=0

E
[
‖∇F (w̄k+1,t)‖2

]
≤ 4(F (w0)− F ∗)

βτK

+O(1)

(
βLF (1 + βLF τ(τ−1))σ2

F + βLF γ
2
F

(
1− r

r(n− 1)
+ βLF τ(τ−1)

)
+
α2L2σ2

G

D

)
,

where w̄k+1,t is the average of iterates of users in Ak at time t, i.e., w̄k+1,t = 1
rn

∑
i∈Ak

wik+1,t,
and in particular, w̄k+1,0 = wk and w̄k+1,τ = wk+1.

Note that σF is not a constant, and as expressed in Lemma 4.3, we can make it arbitrary small by
choosing batch sizes D, D′, or D′′ large enough. To see how tight our result is, we again focus on
special cases. Let α = 0, τ = 1, and r = 1. In this case, Per-FedAvg reduces to stochastic gradient
descent, where the only source of stochasticity is the batches of gradient. In this case, the second
term in the right hand side reduces to O

(
βLFσ

2
F

)
where, here, σ2

F itself is equal to σ2
G/D. This is

the classic result for stochastic gradient descent for nonconvex functions, and we recover the lower
bounds [42]. Also, it is worth noting that the term α2L2σ2

G/D appears in the upper bound due to the
fact that ∇̃Fi(w) is a biased estimator of ∇Fi(w). This bias term will be eliminated if we assume
that we have access to the exact gradients at training time (see the discussion after Lemma 4.3), which
is, for instance, the case in [35], where the authors focus on the deterministic case.

Next, we characterize the choices of τ , K, and β in terms of the required accuracy ε to obtain the
best possible complexity bound for the result in Theorem 4.5.

Corollary 4.6. Suppose the conditions in Theorem 4.5 are satisfied. If we set the number of local
updates as τ = O(ε−1/2), number of communication rounds with the server as K = O(ε−3/2), and
stepsize of Per-FedAvg as β = ε, then we find an O(ε+

α2σ2
G

D)-first-order stationary point of F .

The result in Corollary 4.6 shows that to achieve an O(ε+
α2σ2

G

D)-first-order stationary point of F
the Per-FedAvg algorithm requires K = O(ε−3/2) rounds of communication between users and the
server. Indeed, by setting D = O(ε−1) or setting the meta-step stepsize as α = O(ε1/2) Per-FedAvg
can find an ε-first-order stationary point of F for any arbitrary ε > 0.

7

Remark 4.7. The result of Theorem 4.5 and Corollary 4.6 provide an upper bound on the average of
E
[
‖∇F (w̄k+1,t)‖2

]
for all k ∈ {0, 1, ...,K − 1} and t ∈ {0, 1, ..., τ − 1}. However, one concern

here is that due to the structure of Algorithm 1, for any k, we only have access to w̄k+1,t for t = 0.
To address this issue, at any iteration k, the center can choose tk ∈ {0, 1..., τ − 1} uniformly at
random, and ask all the users in Ak to send wik+1,tk

back to the server, in addition to wik+1,τ . By
following this scheme we can ensure that the same upper bound also hods for the expected average
models at the server, i.e., 1

K

∑K−1
k=0 E

[
‖∇F (w̄k+1,tk)‖2

]
.

Remark 4.8. It is worth noting that it is possible to achieve the same complexity bound using a
diminishing stepsize. We will further discuss this at the end of Appendix G.

5 Numerical Experiments

In this section, we numerically study the role of personalization when the data distributions are
heterogeneous. In particular, we consider the multi-class classification problem over MNIST [43] and
CIFAR-10 [44] datasets and distribute the training data between n users as follows: (i) Half of the
users, each have a images of each of the first five classes; (ii) The rest, each have a/2 images from
only one of the first five classes and 2a images from only one of the other five classes (see Appendix I
for an illustration). We set the parameter a as a = 196 and a = 68 for MNIST and CIFAR-10
datasets, respectively. This way, we create an example where the distribution of images over all the
users are different. Similarly, we divide the test data over the nodes with the same distribution as the
one for the training data. Note that for this particular example in which the user’s distributions are
significantly different, our goal is not to achieve state-of-the-art accuracy. Rather, we aim to provide
an example to compare the various approaches for obtaining personalization in the heterogenous
setting. Indeed, by using more complex neural networks the results for all the considered algorithms
would improve; however, their relative performance would stay the same.

We focus on three algorithms: The first method that we consider is the FedAvg method, and, to
do a fair comparison, we take the output of the FedAvg method, and update it with one step of
stochastic gradient descent with respect to the test data, and then evaluate its performance. The
second and third algorithms that we consider are two different efficient approximations of Per-FedAvg.
Similarly, we evaluate the performance of these methods for the case that one step of local stochastic
gradient descent is performed during test time. To formally explain these two approximate versions of
Per-FedAvg, note that the implementation of Per-FedAvg requires access to second-order information
which is computationally costly. To address this issue, we consider two different approximations:

(i) First, we replace the gradient estimate with its first-order approximation which ignores the Hessian
term, i.e., ∇̃Fi(wik+1,t−1) in (8) is approximated by ∇̃fi(wik+1,t−1 − α∇̃fi(wik+1,t−1,Dit),D

′i
t).

This is the same idea deployed in First-Order MAML (FO-MAML) in [2], and it has been studied
empirically for the federated learning setting in [32]. We refer to this algorithm as Per-FedAvg (FO).

(ii) Second, we use the idea of the HF-MAML, proposed in [31], in which the Hessian-vector product
in the MAML update is replaced by difference of gradients using the following approximation:
∇2φ(w)u ≈ (∇φ(u+ δv)−∇φ(u− δv))/δ. We refer to this algorithm as Per-FedAvg (HF).

As shown in [31], for small stepsize at test time α both FO-MAML and HF-MAML perform well, but
as α becomes large, HF-MAML outperforms FO-MAML in the centralized setting. A more detailed
discussion on Per-FedAvg (FO) and Per-FedAvg (HF) is provided in Appendix H. Moreover, there
we discuss how our analysis can be extended to these two methods. Note that the model obtained by
any of these three methods is later updated using one step of stochastic gradient descent at the test
time, and hence they have the same budget at the test time.

We use a neural network with two hidden layers with sizes 80 and 60, and we use Exponential Linear
Unit (ELU) activation function. We take n = 50 users in the network, and run all three algorithms
for K = 1000 rounds. At each round, we assume rn agents with r = 0.2 are chosen to run τ local
updates. The batch sizes are D = D′ = 40 and the learning rate is β = 0.001. Part of the code is
adopted from [45]. Note that the reported results for all the considered methods corresponds to the
average test accuracy among all users, after running one step of local stochastic gradient descent.

The test accuracy results along with the 95% confidence intervals are reported in Table 1. For MNIST
dataset, both Per-FedAvg methods achieve a marginal gain compared to FedAvg. However, the
achieved gain from using Per-FedAvg (HF) compared to FedAvg is more significant for CIFAR-10

8

Table 1: Comparison of test accuracy of different algorithms given different parameters

Dataset Parameters Algorithms
FedAvg + update Per-FedAvg (FO) Per-FedAvg (HF)

MNIST τ = 10, α = 0.01 75.96% ± 0.02% 78.00% ± 0.02% 79.85% ± 0.02%
τ = 4, α = 0.01 60.18 % ± 0.02% 64.55% ± 0.02% 70.94% ± 0.03%

CIFAR-
10

τ = 10, α = 0.001 40.49% ± 0.07% 46.98% ± 0.1% 50.44% ± 0.15%
τ = 4, α = 0.001 38.38% ± 0.07% 34.04% ± 0.08% 43.73% ± 0.11%
τ = 4, α = 0.01 35.97% ± 0.17% 25.32% ± 0.18% 46.32% ± 0.12%
τ = 4, α = 0.01, 58.59% ± 0.11% 37.71% ± 0.23% 71.25% ± 0.05%diff. hetero.

dataset. In particular, we have three main observations here: (i) For α = 0.001 and τ = 10, Per-
FedAvg (FO) and Per-FedAvg (HF) perform almost similarly, and better than FedAvg. In addition,
decreasing τ leads to a decrease in the performance of all three algorithms, which is expected as
the total number of iterations decreases. (ii) Next, we study the role of α. By increasing α from
0.001 to 0.01, for τ = 4, the performance of Per-FedAvg (HF) improves, which could be due to the
fact that model adapts better with user data at test time. However, as discussed above, for larger α,
Per-FedAvg (FO) performance drops significantly. (iii) Third, we examine the effect of changing the
level of data heterogeneity. To do so, we change the data distribution of half of the users that have
a/2 images from one of the first five classes by removing these images from their dataset. As the last
line of Table 1 shows, Per-FedAvg (HF) performs significantly better that FedAvg under these new
distributions, while Per-FedAvg (FO) still suffers from the issue we discussed in (ii). In summary,
the more accurate implementation of Per-FedAvg, i.e., Per-FedAvg (HF), outperforms FedAvg in all
cases and leads to a more personalized solution.

6 Conclusion

We considered the Federated Learning (FL) problem in the heterogeneous case, and studied a
personalized variant of the classic FL formulation in which our goal is to find a proper initialization
model for the users that can be quickly adapted to the local data of each user after the training phase.
We highlighted the connections of this formulation with Model-Agnostic Meta-Learning (MAML),
and showed how the decentralized implementation of MAML, which we called Per-FedAvg, can be
used to solve the proposed personalized FL problem. We also characterized the overall complexity of
Per-FedAvg for achieving first-order optimality in nonconvex settings. Finally, we provided a set of
numerical experiments to illustrate the performance of two different first-order approximations of
Per-FedAvg and their comparison with the FedAvg method, and showed that the solution obtained by
Per-FedAvg leads to a more personalized solution compared to the solution of FedAvg.

Broader Impact

Federated Learning (FL) provides a framework for training machine learning models efficiently and
in a distributed manner. Due to these favorable properties, it has gained significant attention and has
been deployed in a broad range of applications with critical societal benefits. These applications go
from healthcare systems, where machine learning models can be trained while preserving patients’
privacy, to image classification and NLP models, where tech companies can improve their neural
networks without requiring users to share their data with a server or other users. In our work, we
study one of the challenges in FL, which is the personalization aspect. The main question that we try
to answer from a theoretical point of view is whether we can have a user-oriented variant of classic
FL algorithms that can adapt to each user data while enjoying the distributed architecture of FL. We
show the answer is positive, and provide rigorous theoretical guarantees for algorithms that can be
used in all applications mentioned above to achieve more personalized models in FL framework.
Indeed, this result could have a broad impact on improving the quality of users’ models in several
applications that deploy federated learning such as healthcare systems.

9

Acknowledgments and Disclosure of Funding

Research was sponsored by the United States Air Force Research Laboratory and was accomplished
under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the United States Air Force or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government purposes notwithstand-
ing any copyright notation herein. Alireza Fallah acknowledges support from MathWorks Engineering
Fellowship. The research of Aryan Mokhtari is supported by NSF Award CCF-2007668.

References
[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated

learning: Strategies for improving communication efficiency,” arXiv preprint arXiv:1610.05492,
2016.

[2] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep
networks,” in Proceedings of the 34th International Conference on Machine Learning, (Sydney,
Australia), 06–11 Aug 2017.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-Efficient
Learning of Deep Networks from Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, vol. 54 of Proceedings of Machine Learning
Research, (Fort Lauderdale, FL, USA), pp. 1273–1282, PMLR, 20–22 Apr 2017.

[4] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al., “Advances and open problems in federated
learning,” arXiv preprint arXiv:1912.04977, 2019.

[5] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and
future directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, 2020.

[6] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Privacy aware learning,” Journal of the ACM
(JACM), vol. 61, no. 6, p. 38, 2014.

[7] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differentially private recurrent
language models,” arXiv preprint arXiv:1710.06963, 2017.

[8] N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan, “cpsgd: Communication-
efficient and differentially-private distributed sgd,” in Advances in Neural Information Process-
ing Systems, pp. 7564–7575, 2018.

[9] W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li, “Federated heavy hitters discovery
with differential privacy,” in International Conference on Artificial Intelligence and Statistics,
pp. 3837–3847, 2020.

[10] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “Fedpaq: A
communication-efficient federated learning method with periodic averaging and quantization,”
in International Conference on Artificial Intelligence and Statistics, pp. 2021–2031, 2020.

[11] X. Dai, X. Yan, K. Zhou, K. K. Ng, J. Cheng, and Y. Fan, “Hyper-sphere quantization:
Communication-efficient sgd for federated learning,” arXiv preprint arXiv:1911.04655, 2019.

[12] D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-sgd: Distributed sgd with quanti-
zation, sparsification and local computations,” in Advances in Neural Information Processing
Systems, pp. 14668–14679, 2019.

[13] Z. Li, D. Kovalev, X. Qian, and P. Richtárik, “Acceleration for compressed gradient descent in
distributed and federated optimization,” arXiv preprint arXiv:2002.11364, 2020.

[14] S. U. Stich, “Local sgd converges fast and communicates little,” arXiv preprint
arXiv:1805.09767, 2018.

10

[15] J. Wang and G. Joshi, “Cooperative sgd: A unified framework for the design and analysis of
communication-efficient sgd algorithms,” arXiv preprint arXiv:1808.07576, 2018.

[16] F. Zhou and G. Cong, “On the convergence properties of a k-step averaging stochastic gradient
descent algorithm for nonconvex optimization,” in Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pp. 3219–3227, 2018.

[17] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large mini-batches, use local SGD,” in
8th International Conference on Learning Representations, ICLR, 2020.

[18] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with non-iid
data,” arXiv preprint arXiv:1806.00582, 2018.

[19] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith, “On the convergence of
federated optimization in heterogeneous networks,” arXiv preprint arXiv:1812.06127, 2018.

[20] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh, “Scaf-
fold: Stochastic controlled averaging for on-device federated learning,” arXiv preprint
arXiv:1910.06378, 2019.

[21] F. Haddadpour and M. Mahdavi, “On the convergence of local descent methods in federated
learning,” arXiv preprint arXiv:1910.14425, 2019.

[22] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid
data,” arXiv preprint arXiv:1907.02189, 2019.

[23] A. K. R. Bayoumi, K. Mishchenko, and P. Richtarik, “Tighter theory for local sgd on identical
and heterogeneous data,” in International Conference on Artificial Intelligence and Statistics,
pp. 4519–4529, 2020.

[24] A. Antoniou, H. Edwards, and A. Storkey, “How to train your MAML,” in International
Conference on Learning Representations, 2019.

[25] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-SGD: Learning to learn quickly for few-shot learning,”
arXiv preprint arXiv:1707.09835, 2017.

[26] E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths, “Recasting gradient-based meta-
learning as hierarchical bayes,” in International Conference on Learning Representations,
2018.

[27] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” arXiv
preprint arXiv:1803.02999, 2018.

[28] L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson, “Fast context adaptation via
meta-learning,” in Proceedings of the 36th International Conference on Machine Learning,
pp. 7693–7702, 2019.

[29] H. S. Behl, A. G. Baydin, and P. H. S. Torr, “Alpha MAML: adaptive model-agnostic meta-
learning,” 2019.

[30] P. Zhou, X. Yuan, H. Xu, S. Yan, and J. Feng, “Efficient meta learning via minibatch proximal
update,” in Advances in Neural Information Processing Systems 32, pp. 1534–1544, Curran
Associates, Inc., 2019.

[31] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence theory of gradient-based model-
agnostic meta-learning algorithms,” in International Conference on Artificial Intelligence and
Statistics, pp. 1082–1092, 2020.

[32] F. Chen, M. Luo, Z. Dong, Z. Li, and X. He, “Federated meta-learning with fast convergence
and efficient communication,” arXiv preprint arXiv:1802.07876, 2018.

[33] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan, “Improving federated learning personalization
via model agnostic meta learning,” arXiv preprint arXiv:1909.12488, 2019.

11

[34] T. Li, M. Sanjabi, and V. Smith, “Fair resource allocation in federated learning,” arXiv preprint
arXiv:1905.10497, 2019.

[35] S. Lin, G. Yang, and J. Zhang, “A collaborative learning framework via federated meta-learning,”
arXiv preprint arXiv:2001.03229, 2020.

[36] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar, “Adaptive gradient-based meta-learning
methods,” in Advances in Neural Information Processing Systems, pp. 5915–5926, 2019.

[37] J. Li, M. Khodak, S. Caldas, and A. Talwalkar, “Differentially private meta-learning,” arXiv
preprint arXiv:1909.05830, 2019.

[38] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task learning,” in
Advances in Neural Information Processing Systems, pp. 4424–4434, 2017.

[39] F. Hanzely and P. Richtárik, “Federated learning of a mixture of global and local models,” arXiv
preprint arXiv:2002.05516, 2020.

[40] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized federated learning,” arXiv
preprint arXiv:2003.13461, 2020.

[41] E. del Barrio, E. Giné, and C. Matrán, “Central limit theorems for the wasserstein distance
between the empirical and the true distributions,” Annals of Probability, pp. 1009–1071, 1999.

[42] Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and B. Woodworth, “Lower bounds
for non-convex stochastic optimization,” arXiv preprint arXiv:1912.02365, 2019.

[43] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun. com/exdb/mnist/,
1998.

[44] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.

[45] J. Langelaar, “Mnist neural network training and testing,” MATLAB Central File Exchange,
2019.

[46] C. Villani, Optimal transport: old and new, vol. 338. Springer Science & Business Media,
2008.

12

