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A Additional Results

Layer-wise Linear Results: ResNet-50 consists of 17 residual blocks. We evaluate the quality of
representations for each block. Specifically, for the output of each block, we add a global average
pooling layer to map the output to about 9000-D vectors. Then, we freeze the parameters of all
convolutional layer and train the linear layer on ImageNet [3] and Places205 [13]. Fig 1 shows the
results. From Fig 1, we observe that the best results of ImageNet and Places205 linear classifications
come from the 16-th block and 15-th block, respectively. Using the last block as output gives a slight
performance decrease, which shows the last block may preserve more task-specific knowledge which
is not suitable for downstream classification tasks.

Block

Figure 1: Layer-wise linear classification results for ImageNet and Places205. We report the top-1
1-crop accuracy. For ImageNet, the best result comes from the 16-th block. For Places205, the best
result comes from the 15-th block.

Table 1: Weighted-KNN Classifier Results on ImageNet.
Method InsDis [12] LocalAgg [14] MoCo [5, 6] PCL [6] InvP(Ours)

Accuracy 46.5 49.4 47.1 54.5 61.3

Weighted-KNN Classifier Results on ImageNet: Following [12], we exhibit the weighted K-nearst
neighbor classification results on ImageNet, which is another widely accepted criterion for contrastive
learning based method. Specifically, for an image with feature vi, we retrieve its top K nearest
neighbors from the memory bank, and give a coefficient exp(si/τ) for the corresponding neighbor
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according to [12] (si is the similarity between vi and the corresponding neighbor, we set τ as 0.07),
details can be found in [12]. Table 1 shows the K-NN results. Our method outperforms others by
large margins.

Embedding Visualization We visualize the learned representation using t-SNE [10]. We choose the
first 40 classes of ImageNet. For each class, we randomly choose 200 images. Fig 2 shows the results.
We compare our method with Instance Discrimination [12]. It is obvious that our representations
are more separable than the representations learned by Instance Discrimination, which shows that
representations learned by our methods are more discriminative for semantic categories.

(a) InsDis Class 1-20 (b) InvP Class 1-20

(c) InsDis Class 20-40 (d) InvP Class 20-40

Figure 2: T-SNE visualization for the first 40 classes of ImageNet. We compare our method with the
Instance Discrimination [12]. (a) and (c) are T-SNE visualization of representations learned from
Instance Discrimination. (b) and (d) are T-SNE visualization of the representations learned from our
method.

B Implementation Details

B.1 Pretraining

We adopt a ResNet-50 as the backbone. For MLP projection head, we follow [1] to replace the last
fully-connected layer by a two-layer MLP, which consists of a 2048-2048 fully-connected layer with
a ReLU function, and a 2048-128 fully-connected layer. The output of the network is normalized by
its L2-norm. The temperature τ is set to 0.07 for the model with linear projection head and 0.2 for
the model with MLP projection head. The calculated features are saved to a memory bank following
[12]. The settings of memory bank are same as [12] (The m is set to 0.5). The data augmentation
setting follows [12, 1, 2]: a 224 × 224-pixel crop is taken from a randomly resized image, and then
undergoes random color jittering, random grayscale conversion, random gaussian blur [1, 2], and
random horizontal flip. All the data augmentations are implemented by PyTorch [8].
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For training the unsupervised models, we optimize our models with SGD optimizer with a momentum
of 0.9. The batch size is set to 128 for ImageNet. We train our models for 800 epochs with a cosine
learning rate schedule [7], and the initial learning rate is set to 0.03.

B.2 Linear Classification

For linear classification, we freeze all convolutional layers of the learned ResNet-50. For ImageNet,
we add a global average pooling layer for each block. For Places205 and Pascal VOC 2007, we add
an average pooling layer for each block to pool the features to about 9000 dimensions. We add a
linear layer and train it on ImageNet [3], Places205 [13] and Pascal VOC 2007 [4]. For training the
linear model, we use an SGD optimizer with a momentum of 0.9. We train the models for 100 epochs
with a batch size of 256 and set a decay rate of 10 for 60 and 80 epochs. The initial learning rate is
set to 30.0 for ImageNet and 3.0 for Places205 and VOC2007. We set the weight decay as 0.0 for all
datasets.

B.3 Semi-supervised Learning

For ImageNet semi-supervised learning, we use the pre-trained model as initialization and randomly
initialize the linear layer. We fine-tune all layers on subsets of ImageNet. Following [12, 1], we
randomly choose 1% and 10% labels. For convolutional layers, we set a learning rate of 0.0012. For
the last fully-connected layer, we set a learning rate of 0.06. For fine-tuning the model, we use an
SGD optimizer with a momentum of 0.9. We train the models for 30 epochs with a batch size of 128
and set a decay rate of 10 for 15, 20 and 25 epochs. We set the weight decay as 1e-5.

B.4 Transfer Learning

For transfer learning, we use the pre-trained models as initialization and fine-tune the model on other
small scale datasets. We use SGD with momentum of 0.9. We train our models for 200 epochs using
a batch size of 128 and set a decay rate of 10 for 120 and 160 epochs. We set the learning rate to
0.001 for all convolutional layers and 0.005 for the last fully-connected layer. We set the weight
decay as 1e-6.

B.5 Object Detection

For object detection, we use the Faster R-CNN [9] with the backbone of R50-C4. We fine-tune all
layers end-to-end, following the setting in [5]. We fine-tune our model using the Detectron2 [11]
framework with a learning rate of 0.005 (4 GPUs).
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