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Abstract

We study the problem of switching-constrained online convex optimization (OCO),
where the player has a limited number of opportunities to change her action.
While the discrete analog of this online learning task has been studied extensively,
previous work in the continuous setting has neither established the minimax rate
nor algorithmically achieved it. In this paper, we show that 7-round switching-
constrained OCO with fewer than K switches has a minimax regret of @(%)

In particular, it is at least VoI for one dimension and at least TR for higher

dimensions. The lower bound in higher dimensions is attained by an orthogonal
subspace argument. In one dimension, a novel adversarial strategy yields the
lower bound of O(\/—TK) but a precise minimax analysis including constants is

more involved. To establish the tighter one-dimensional result, we introduce the

fugal game relaxation, whose minimax regret lower bounds that of switching-

constrained OCO. We show that the minimax regret of the fugal game is at least
T

WoT and thereby establish the optimal minimax lower bound in one dimension.

To establish the dimension-independent upper bound, we next show that a mini-
batching algorithm provides an O(\/T—f) upper bound, and therefore conclude that

the minimax regret of switching-constrained OCO is @(%) for any K. This is

in sharp contrast to its discrete counterpart, the switching-constrained prediction-
from-experts problem, which exhibits a phase transition in minimax regret between
the low-switching and high-switching regimes.

1 Introduction

Online learning provides a versatile framework for studying a wide range of dynamic optimization
problems, with manifold applications in portfolio selection [18]], packet routing [7], hyperparameter
optimization [19], and spam filtering [23]. The fundamental problem is typically formulated as a
repeated game between a player and an adversary. In the ¢! round, the player first chooses an action
x, from the set of all possible actions D; the adversary then responds by revealing the penalty for
that action, a function f; : D — R. The player’s goal is to minimize the total penalties she receives,
while the adversary’s goal is to maximize the penalties she assigns to the player’s action. Explicitly,
the standard benchmark for success is regret, the difference between the player’s accumulated penalty

and that of the best fixed action in hindsight: R = Zq:T=1 fi(z;) —infyep ZiTzl fi(z).

Several variants of this general learning setting have been studied. When D is a discrete set of actions,
the game is called either “prediction from experts" (PFE), if the player is allowed knowledge of the
complete function f;(-) on each round, or “multi-armed bandit" (MAB), if only f;(x;) is revealed
on each round. Crucially, the adversary is not strongly adaptive and picks f; based solely on prior
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knowledge of the player’s randomized strategy and 1, ..., x;—1, and not x;; otherwise, she could
always force linear regret in 7' [12} [24]]. In this paper, we instead consider the continuous analog
of prediction from experts, termed online convex optimization. Here, D is a continuum of possible
actions, but the entirety of f;(+) is revealed after it has been played. Surprisingly, the continuity of D
means that a player can guarantee sublinear regret against a strongly adaptive adversary, i.e., one who
may choose f; even after observing x;.

In many real-world applications, however, we desire an online algorithm to have greater continuity in
its actions over the course of many rounds. In caching, for example, erratic online decisions may
induce cache misses, and thus costly memory access procedures [[10]. More explicitly, the number of
times that the player can switch her action between rounds may be strictly constrained. For example,
suppose that the player makes predictions based on expert advice. If she would like to hire a new
expert, she has to terminate the current contract, pay an early termination fee, and hire and pay a new
expert. If hiring a new expert costs $1000 in total and her budget is $10000 dollars, the number of
her switches must be less than 10. This setting is called switching-constrained or switching-budgeted
online learning [3]]. In these settings, it is necessary to assume an oblivious adversary: an adaptive
adversary can force an algorithm with fewer than K switches to incur linear regret by assigning 0 to
a switched action between rounds, and 1 to a repeated action [3].

Previous work has established the minimax regret of the switching-constrained multi-armed bandit
and prediction from experts problems, but the minimax rate of switching-constrained online convex
optimization was neither known nor algorithmically achieved. In this paper, we establish the minimax
regret of switching-constrained online convex optimization (OCO) against the strongest adaptive
adversary, and in doing so, present a simple mini-batching algorithm that achieves this optimal rate.

We assume that D, the action set of the player, is a compact, convex subset of R™. Let F be a family
of differentiable convex functions from D to R from which the adversary selects each round’s loss
function, f;. In the full-information setting (OCO), we assume that the player observes the loss
function f; after the adversary decides on it. The key ingredient, differentiating our setting from
typical OCO, is a limit on the player’s number of switches. Formally, given a sequence of points

Z1,...,xp, lete(zy, ... o) = Zg:ll 1[z;41 # x;] denote the number of switches. The player’s
action sequence must satisfy ¢(x1, ..., z7) < K for some natural number K E]
Given the player’s action sequence z1, ...,z and the adversary’s loss sequence f1,..., fr, the

usual regret is defined by the total accumulated loss incurred by the player, minus the total loss of the
best possible single action in hindsight. We add an additional term and an outermost supremum that
drives the regret of any player’s sequence that violates the switch limit to infinity:

T T
R({z:}, {fi}) = sup (Z fi(zi) — ig%Zfi(w) + AMe(zy, ... 27) 2 K]) ;
>0 \i=1 i=1

where 1]-] is the statement function whose value is 1 if the proposition inside the brackets holds and
is 0 otherwise. In the following sections, we denote the switching-constrained minimax regret by

R(T,K) =infsup...inf sup R({z; }, {f:}),
1 T fr
where it will be clear from context from which sets z; and f; may be drawn.

2 Related Work

The framework of online convex optimization (OCO) and online gradient descent were introduced
by Zinkevich [25]. Abernethy et al. [1]] showed that the minimax regret of OCO against a strong
adversary is ©(v/T'). Abernethy et al. [2] provided a geometric interpretation, demonstrating that the
optimal regret can be viewed as the Jensen gap of a concave functional, and McMahan and Abernethy
[21] studied the minimax behavior of unconstrained online linear optimization (OLO).

There is a substantial body of literature for switching-constrained and switching-cost online learning
in the discrete settings, MAB and PFE. Switching-cost learning forces the player to pay for each

’In a T-round game, the maximum number of switches is always smaller than 7'. As a result, if K > T, the
game becomes switching-unconstrained. Therefore, we assume throughout this paper that K < 7.



switch rather than enforcing a strict upper bound. Assuming potentially unbounded loss per round,
Cesa-Bianchi et al. [11] first showed that the minimax optimal rates of PFE and MAB with switching
costs are ©(v/T) and O(T?/3), respectively. Dekel et al. [14] proved that the minimax regret of
MAB with a unit switch cost in the standard setup (losses are bounded in [0, 1]) is ©(T%/3). Devroye
et al. [[15] proposed a PFE algorithm whose expected regret and expected number of switches are both
O(v/Tlogn), where n is the size of the action set. Finally, Altschuler and Talwar [3]] showed that
there is a phase transition, with respect to K, in switching-constrained PFE. If the maximum number
of switches K is O(y/T logn) (low-switching regime), the optimal rate is mim{@(T1Og ), THIFK
is Q(y/Tlog n) (high-switching regime), the optimal rate is ©(y/T logn). Once at least /T logn
switches are permitted, the minimax regret surprisingly is not improved at all by allowing even
more switches. In contrast to PFE, switching-constrained MAB exhibits no phase transition and the

minimax rate is min{@(%ﬁ), T}.

Within the switching-constrained literature for continuous OCO, most directly comparable to our
setting is Jaghargh et al. [17], which proposed a Poisson process-based OCO algorithm. The

algorithm’s expected regret is O( E; 1/<2] ),

Q(V/T). The expected regret, as a function of the expected number of switches, is suboptimal relative
to the switching-constrained minimax rate we prove and achieve in this work.

where E[K] may be set to any value provided that E[K] =

In the related learning with memory paradigm, the loss function for each round depends on the M
most recent actions. Switching-cost OCO can be viewed as a special case of learning with memory,
in which M = 1 and the loss functions are g(x¢,x:—1) = f(xt) + cl[xs # x¢—1]. Merhav et al.
[22] introduced the concept of learning with memory, and used a blocking technique to achieve
O(T?/3) policy regret (a modification of standard regret for adaptive adversaries) and O(T"/3)
switches against an adaptive adversary. Arora et al. [6] formally clarified and expanded the notion of
policy regret for learning with memory, and presented a generalized mini-batching technique (applied
here to achieve the matching upper bound) for online bandit learning against an adaptive adversary,
converting arbitrary low regret algorithms to low policy regret algorithms. In Appendix [A] we also
briefly discuss metrical task systems and online optimization with normed switching costs, but the
main focus of this paper is the switching-constrained setting.

3 Contributions

In this paper, we show that if both the player and the adversary select from the Lo ball (i.e., <1
and fi(x¢) = wy - x4 with ||wt||2 < 1), then the minimax regret R (K, T') of switching-constrained
online linear optimization is @( ) The precise bounds are contained below.

Theorem 1 (Minimax regret of OLO). The minimax regret of switching-constrained online linear
optimization satisfies the following bounds:

() o= <R(KT) < [E] (/25D <2\ﬁ forn =1;

(b) = T — <R(K,T)<[% ]\F< 2= foralln > 1.

In Section 4.1 we prove the lower bound for dimension n greater than 1, and in Section we
prove a one-dimensional lower bound that is slightly weaker than that of part (a), with prefactor 5. To

obtain the one-dimensional lower bound with tight constant % in Section@we analyze a carefully

chosen OCO relaxation termed the “fugal game". For ease of presentation, we provide an overview of
the key intuitions of the fugal game and defer the complete analysis to the Supplementary Materials.

Whereas it was sufficient to assume the adversary chose linear functions in all of the lower bounds,
the upper bounds above are in fact derived from a far more general class of convex functions, as
shown in the following proposition.

Proposition 2. If D is a convex and compact set from which the player draws x;, and F is the family
of differentiable convex functions on D, with uniformly bounded gradient, from which the adversary
chooses f;, a mini-batching algorithm yields the upper bound R(T, K) < [L10(VK) = O(\/%)
Building on the previous proposition, the precise constants of the upper bounds in parts (a) and
(b) for the case of linear functions are proven in the Supplementary Material (Proposition 32 and



Proposition [34). Combining the results of Theorem [T] and Proposition [2] immediately yields the
following key minimax rate as a corollary.

Corollary 3. The minimax regret of T-round OCO with fewer than K switches is @(\/—%)
Before proceeding with the proofs of the preceding lower and upper bounds, we first consider a
few implications and subtleties of the O(%) minimax rate. First, note that if the player is not

allowed to make any switch once she decides on her first action (X = 1), the minimax regret
@(%) = O(T) is, naturally, linear. If the player is allowed to make more than 7' — 1 switches,

@(\/—%) = @(%) = O(V/T) recovers the classical ©(v/T) regret of OCO [T]].

Furthermore, this minimax rate is in sharp contrast to switching-constrained PFE, the discrete
counterpart of switching-constrained OCO. As noted in Section 2] Altschuler and Talwar [3] proved a
phase transition in switching-constrained PFE between the high-switching and low-switching regimes.
However, in the continuous full-information (OCO) setting, the minimax regret is the same regardless
of the number of switches. [

We also evaluate more closely the constants in the lower and upper bounds of Theorem [I]in the
Supplementary Material, and mention the key results here.

1

Proposition 4 (The constant in \/% is unimprovable). The constant in the lower bound

R(T,K) > \/% cannot be increased.

We prove this by considering the special case K = 2 (Appendix|C.8). E]

In addition, the result of Theorem|I|exhibits a similar phenomenon to that observed by [21]] in the
dimension-dependent minimax behavior of ordinary OCO. McMahan and Abernethy [21]] noted
that the one-dimensional minimax value is approximately 0.8v/7, while in higher dimensions
(where both the player and the adversary select from the n-dimensional Euclidean ball) it is exactly
V/T. In a switching-constrained OLO game, if the dimension is greater than 1, Theorem shows

that the minimax regret is asymptotically \/T? for all sufficiently large 7T'. The following general

proposition (proven in Appendix [E)) provides a link between the regret of the higher-dimensional and
one-dimensional games:

S

Proposition 5. The minimax regret R(T, K ) is non-decreasing in the dimension n.

As a consequence, by part (a) of Theorem [I]and Proposition[5] the one-dimensional minimax regret is

asymptotically between \/% ~0.7 % and \/% for all sufficiently large 7. In particular, if K > 1,
we establish further in Appendix [E| (Proposition [34) that it is at most 0.87% for all sufficiently large

T. This 0.87\/% upper bound is strictly less than the higher-dimensional rate \/T—? Thus the constant
in the one-dimensional case is distinct from that of all higher dimensions.

4 Lower Bound

We separately consider the high-dimensional (Section[4.T)) and one-dimensional (Section [4.2)) lower
bounds, presenting distinct adversarial strategies for each.

4.1 Dimensionn > 1

In this section, we present the primary lower bound result for higher dimensions; a dimension-
dependent result, in which player and adversary select from the L, rather than Lo ball, can be found

*Note that the differing adversary strength is the direct cause of the disparity in phase transitions, but in an
online learning problem, one usually assumes the strongest adversary that yields a sublinear minimax regret.
The continuity of the (convex) action space circumvents the 2(7") regret lower bound [3]], allowing sublinear
minimax regret against an adaptive adversary, and as such it is the discrete vs. continuous action space that
determines the most appropriate adversary.

*To clarify, the proven rate R (T, K) = 6)(\/7"7) holds for any K = o(T"). For the special case of constant K,

the exact value of cin R(T, K) = c\/% varies by K. We concretely compute several examples in Appendix

and then in Appendixshow that for any universal lower bound R(T, K) > c\/—Tf, c> %

4



in Appendix [D| We call the first round and every round in which the player chooses a new point a
moving round, and all other rounds stationary rounds.

The adversary’s strategy attaining this lower bound is to follow a switching pattern identical to the
player’s, and to select a point via the orthogonal trick originally introduced in [[1]]. It was non-trivial
to adapt the orthogonal trick to the switching-constrained setting. First, to prove our result, we had
to impose a certain switching pattern upon the adversary which was not obvious a priori, since the
adversary is free to play any functions they wish from round to round. Without constraining the
adversary to follow the player’s switching pattern, the orthogonal trick cannot be applied. In addition,
we found that this adversary’s strategy can be adapted for n = 2 — thereby avoiding the need for
special treatment as in n = 1 — via a geometric fact about the intersection of two closed half-spaces.
[L] only covered n > 2.

By the straightforward calculation — inf|,,<1 S_, w; - & = SUD||4/|,<1 ST wi-x =

HZz'T=1 wZH , the regret R(T, K) has two terms, ZiT=1 w; - x; and HZ‘Tzl le The adversary

wishes to make both terms non-decreasing over time. At the ¢-th round, if it is a moving round of
the player, the adversary can choose a point z; whose inner products with w; and ) . _, w; are both
non-negative. If it is a stationary round, the adversary selects her previous point.

7<i

Proposition 6 (Lower bound for higher dimensions). The minimax regret R(T, K) is at least %
foralln > 1.

Proof. Let1l = m; < mg < --- < mg denote all moving rounds, with mg4; = T + 1 and
M; = m;41 — m; denoting the length between two consecutive moving rounds. Also, for any
integer 1 < ¢t < T, let 7(t) be the unique integer such that m, ) < t < Mmy()41, and define
Wy =1[t > 1] Z _, wj. Let us consider this adversary’s strategy. At the ¢-th round, if ¢ is a moving
round, the adversary chooses w; such that ||w|| = 1, w; - x4 > 0, and wy - Wiy > 0.

Such a vector w; exists provided that the dimension n > 2. For n > 2, the subspace of R" such
that the latter two conditions are tight is of dimension n — 2 > 1 and we may choose w; from this
subspace. For n = 2, the latter two conditions each define a closed halfspace of R? and thus must

have a non-empty intersection. If ¢ is a stationary round, the adversary chooses w,_, . i.e., the same
vector that she plays at the moving around. Then the regret becomes

T
wag:ctf inf Zwt'ﬂUZ* inf Wp-ax=|Wr|.
z€BY et r€BY

Now let us lower bound ||Wr||. By the choice of w,,,, wy,, is perpendicular to Z;;ll Mjwp,;. By
iterating this relation, we obtain

K
ZMinli Z”MmeHQ ZMZHWWLZH
i=1

It is thus the case that

K K K
IWel = |3 Miwg || > | S0 M2l |2 = | S0 32 7
=1 i=1

i=1

where the last inequality follows from the Cauchy-Schwarz inequality. O

4.2 Dimensionn =1

For the one-dimensional case, we present a strategy for the adversary that guarantees regret at least
5 \ﬁ the correct order of minimax regret. However, note that the prefactor 5 is suboptimal, and in

Section [ we elaborate on a more involved analysis that will yield a tighter constant.

Proposition 7 (Lower bound for one dimension). The minimax regret R(T, K) is at least % for
n=1



Proof. Let W, = Zf o w;. Recall from Sectlon.that the regret consists of two terms, Z T;W;
and |) . w;|. At ahigh level, the adversary either chooses to maximize the first term, or determines
that the contribution of the second term is high enough and prevents the regret from changing
further by selecting the 0 loss function for the remainder of the rounds. Concretely, let w; = 0 if

|Wi| > T/v/K. We refer to this as the “stopping condition". When |W;| < T/VK, let w; = 1 if
z; > —WiV/K /T, and w; = —1 otherwise.

Let ¢; denote the round of the ith switch in x, with ¢y = 0, and let ¢ denote the round where |V
reaches %, or T if it does not exist Let T; = t;+1 — t; then denote the length of the (¢ + 1)st

block, and note that w, remains fixed within each interval, i.e. the adversary copies the player’s
switching pattern. We then have

K— K—-1
R(T,K) =Y mpw; + Wi, | = Z (@, + W VE [ T)wy, Ty = > (We, VK /T)wy, T; + W, |
t<T =0 1=0

By the adversary’s strategy, (z;, + Wi, VK /T)w;, is always non-negative, and so this expression

is at most — ZK "Wy, VK /T)w;, T; + |Wy,.|. Since w, within each interval is fixed, we have
w, Ty = Wy, — W Moreover, it suffices to consider only 7 in the sum such that w; has not yet
been set to 0. Applying these facts, the expression becomes:

K-1
B Z (g) (Wt2ri+1 - Wt2 (wt1 ) )+ ‘WtK|

VE W (VE
_ _<2T>Wt2}(+z<2T>T2+|WtK|

Note that Zfigl T; = tg, so by Cauchy-Schwarz we can lower bound this expression by
- (2—@) W2 + (2T \ﬁ) t3-+|Ws4, |. If the stopping condition is never met, then ¢ x = T and the re-

maining terms are non-negative, since they factorize as W, |(1 — —Wt K) and |W; K| <L by as-

sumption. Otherwise, we have |W;, | € [ \/—+1] and thus (|[Wy,. |— )(\WtK| - 1) <0.
Consequently, the chain of lower bounds contlnues with:

T? VK 2.
R(T,K) > min s | = | W+ + Wiy
(LK) 2 {2T\/E <2T> et oy T IVl

() (- ) )

Finally, this entire expression is lower bounded by 3 f This follows by noting that the second term

equals (QTb?)t%( + [ Wy \(72—‘/5) + (\/% + 1)/2, which is greater than or equal to

() () () (i) (o) 38 e

Noting that the second term assumed the stopping condition was met and therefore 5 > |Wy, .| >

\/%, the resulting quantity is then lower bounded by (QTT/F)(%)Q - T\/TF + (\/%)/2 > (\/%)/2

S Upper Bound

In this section, we prove Proposition [2]and thereby derive an upper bound for switching-constrained
OCO to match the lower bounds of Section[d.2]and Section[d.1] We begin with a simple algorithm

>If the player chooses to use S < K — 1 switches, it suffices to assign {t; }7- by arbitrarily splitting up
blocks in which the player plays a fixed action, as if she had switched. For example, if the player never switches
but K > 1, {¢;} can be any strictly increasing sequence of round indices.



achieving the correct minimax regret, O( ) In Appendix @ we expand on this result with a closer
evaluation of the constant.

Proof. First, we claim that the minimax regret R(T’, K) is a non-decreasing function in T'. To see
this, consider the situation where we have more rounds. The adversary can play 0 in all additional
rounds and this does not decrease the regret. Therefore, we obtain that R(T', K') < R(T1, K'), where
Ty =[%£]1K >T.

To derive an upper bound for R(T3, K'), we mini-batch the T rounds into K equisized epochs, each
having size % = [%1 Let E; denote the set of all rounds that belong to the ¢-th epoch. We have
Ei={R(i-1)+1,0(i-1) +2,..., T1i}. The epoch loss of the i-th epoch is the average of
loss functions in this epoch, i.e., f; £ ﬁ > R, f;. If we run a minimax optimal algorithm for

unconstrained OCO (for example, online gradient descent [25]) on the epoch losses fi, ..., fx and
obtain the player’s action sequence Z1, ..., Tk, our strategy is to play Z; at all rounds in the i-th
epoch. This method was originally discussed in [, [13]]. Using this mini-batching method, we deduce
that the regret is upper bounded by ZLO(VK) = [£10(VK) = O(%) where O(VK) is the
standard upper bound of the regret of a K-round OCO game. O

6 Exact Minimax Bound

In Section [El, we analyzed an adversarial strategy for OLO that gave the desired order of lower
bound, O( . However, a separate (and far more involved) analysis is needed to obtain the tight

constant in \/ﬁ which revealed the surprising parallels (in the differing constants of one and higher

dimensions) between switching constrained and unconstrained OCO that were stated in Section 3] In
this section, we outline the key ideas of our approach to obtaining a fight lower bound. The analysis
to complete the proof of this result is in Appendix

The reader may wonder why a simpler argument cannot prove the tight one-dimensional lower
bound. To shed some light on this difficulty, we note that the truly minimax optimal strategy does
not necessarily involve the player choosing to switch at uniform points throughout the 7" rounds. In
Proposition [36]of the Supplementary Material, we consider the case where ' = 3 and prove that the
first switch happens at round approximately 0.297", rather than 0.337". Although the mini-batching
algorithm of our upper bound makes uniformly spaced switches, this simple fact demonstrates that
the resultant constant cannot be tight, and that such an assumption — simplifying though it may be —
would not be valid for the lower bound.

6.1 Fugal Game

Our minimax analysis for the one-dimensional game (OCO) is through what we call fugal games. In
a fugal game, the adversary is weakened by being constrained to adhere to the player’s switching
pattern, and to only select from —1 and 1. Furthermore, the horizon 7" and the interval between
consecutive switches are allowed to take non-negative real values; one way of interpreting this is that
we allow the player to switch in the “middle” of a round, provided they still respect the switching
budget overall and play for a total of T' complete rounds. Note that, because the adversary is forced
to maintain the same action until the player switches, allowing non-negative real-valued interval
between consecutive switches only strengthens the player. The minimax value of fugal games thus
provides a lower bound for the minimax value of switching-constrained OCO.

As motivation for our terminology, recall that at the exposition of a fugue, one voice begins by
introducing a particular melodic theme. Afterward, a new voice repeats the same melody for the same
duration, but transposed to a new key. This may repeat multiple times as subsequent voices alternate
between the introduction of a new melody (sometimes termed the “question”), and its transposed
repetition (the “answer”). In the original switching-constrained OCO framework, the adversary is
under no obligation to repeat her loss function for the same number of rounds as the player sticks to
the same action. However, if we restrict the adversary to copy the switching pattern of the player,
their interaction becomes reminiscent of a fugal exposition. The player begins by choosing a key (z;)
for her melody, and the adversary necessarily responds at a new pitch (f;); optionally based on f;,
the player chooses the duration M; to maintain pitch x;, and the adversary imitates her by playing f;



for length M, as well. This repeats until all K question-and-answer pairs are done. Thus, we call this
relaxation of OCO the fugal game.

Proposition 8 (Asymptotic tightness of fugal game; informal). The minimax regret of the fugal
game is equal to the normalized minimax regret of switching-constrained online convex optimization
asymptotically, when K is constant and T approaches infinity.

The proof of this proposition can be found in the Supplementary Material (Proposition [29), and
proceeds by devising a strategy for the player in OCO based on the fugal game. Proposition [§]justifies
that the lower bound of the fugal game’s minimax regret is the “right" quantity to study, as it captures
the correct asymptotic behavior.

Proof Overview. We solve the minimax behavior of fugal games by studying a generalization of
their minimax regret function, with an initial bias. This generalization is called a fugal function. We
first derive the recursive relation of the fugal function, and then show that the fugal function is at least
the absolute value of the initial bias. To average out the influence of T, we define the normalized
minimax regret and show that it is indeed independent of 7'. The normalized minimax regret inherits
a recursive relation from the fugal function. However, it is mathematically challenging to solve the
exact values of the normalized minimax regret. In light of this, we consider an alternative quadratic
lower bound whose recursive relation can be solved in closed form, although significant technical
effort is required. This constitutes the most computationally “hardcore” section of this paper. Our
minimax analysis for the one-dimensional game follows immediately from the quadratic lower bound.

To aid in the recursive analysis, we generalize ordinary minimax regret slightly by introducing an
initial bias. Let I = [—1, 1]. Formally, the minimax regret with 7" rounds, a maximum number of k
switches, and an initial bias Z is defined by

T

T
Ri(T,Z) = inf sup ... inf sup sup ( w;T; +
i=1 i=1

z1€lyer TTEl wpel A>0

+ Me(xq, ..., x7) > k}) .

We motivate the initial bias Z as follows. When the adversary tries to maximize regret in any given
round, her choice is determined by the tradeoff between maximizing the first term and maximizing
the second term above. To focus wholly on the first term, the adversary could specifically penalize
the player’s last action by playing w; = sign(x). To focus wholly on the second term, the adversary
could instead amplify the term within the absolute value by playing w; = sign(zz;} w;). At each
round, the adversary chooses a value to optimize this tradeoff given the results of previous rounds.
When setting up recursive relations between Ry and Ry 1, the first term decouples neatly by round,
but the second term does not. Thus, an initial bias term is necessary for deriving a recursive relation,
as a sort of state that is passed between Ry’s. Extending this definition to the fugal game yields the
fugal function

re(T,Z) = inf max inf ... inf max inf sup
@€l wi=+1 My >0 zp€l wp=+1 M>0 \s0

k k
<Z Myw;x; + | Z + Z M;w;
=1

i=1
where M; is the length between two moving rounds, and we have relaxed M; by allowing it to take
any non-negative real values.

k
+AH[ZMi¢T1> :

i=1

We can normalize out the influence of T by setting uy(z) = M, thereby reducing our task to
the analysis of the single-variate function u(z). In this way, the fugal game decouples the minimax
regret from the discrete nature of 7'. Central to the recursive analysis of uy(z) is the “fugal operator”:

Definition 1 (Fugal operator). The fugal operator transforms continous functions, and is defined by

A . (I+w2)f(z") + (' — 2)
(Tf)(Z) - xel[I—lfl.,l] 5&8:‘@{1 |zl’r|l£1 1+ 2w :
w(z'—2)>0

It turns out that uy, satisfies the concise recursive relation w1 = T uy. By closely analyzing this
relation (the full details of which are contained in Appendix [C]of the Supplementary Material), we

eventually lower bound wu (0) to obtain a sharp one-dimensional lower bound, \/%



7 Conclusion

In this work, we considered switching-constrained online convex optimization, a setting which until
now had received comparatively little attention relative to switching-constrained multi-armed bandits
and prediction from experts. In the OCO setting, we established the minimax regret against the
strongest adaptive adversary as 9(%) The upper bound on minimax regret was constructive,

using the mini-batching paradigm to obtain a meta-algorithm for achieving the correct minimax rate.
This effectively solves the question of optimal algorithms for switching-constrained online convex
optimization.

Broader Impacts

In this paper, we fully characterize the minimax regret of switching-constrained online convex
optimization. Since it is a theoretical result in nature, the broader impact discussion is not applicable.
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