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Abstract

Many communication-efficient variants of SGD use gradient quantization schemes.
These schemes are often heuristic and fixed over the course of training. We
empirically observe that the statistics of gradients of deep models change during
the training. Motivated by this observation, we introduce two adaptive quantization
schemes, ALQ and AMQ. In both schemes, processors update their compression
schemes in parallel by efficiently computing sufficient statistics of a parametric
distribution. We improve the validation accuracy by almost 2% on CIFAR-10 and
1% on ImageNet in challenging low-cost communication setups. Our adaptive
methods are also significantly more robust to the choice of hyperparameters.

1 Introduction
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Figure 1: Changes in the average variance of
normalized gradient coordinates in a ResNet-
32 model trained on CIFAR-10. Colors dis-
tinguish different runs with different seeds.
Learning rate is decayed by a factor of 10
twice at 40K and 60K iterations. The vari-
ance changes rapidly during the first epoch.
The next noticeable change happens after the
first learning rate drop and another one ap-
pears after the second drop.

Stochastic gradient descent (SGD) and its variants are cur-
rently the method of choice for training deep models. Yet,
large datasets cannot always be trained on a single com-
putational node due to memory and scalability limitations.
Data-parallel SGD is a remarkably scalable variant, in par-
ticular on multi-GPU systems [1–10]. However, despite its
many advantages, distribution introduces new challenges
for optimization algorithms. In particular, data-parallel
SGD has large communication cost due to the need to
transmit potentially huge gradient vectors. Ideally, we
want distributed optimization methods that match the per-
formance of SGD on a single hypothetical super machine,
while paying a negligible communication cost.

A common approach to reducing the communication cost
in data-parallel SGD is gradient compression and quan-
tization [4, 11–16]. In full-precision data-parallel SGD,
each processor broadcasts its locally computed stochastic
gradient vector at every iteration, whereas in quantized
data-parallel SGD, each processor compresses its stochas-
tic gradient before broadcasting. Current quantization
methods are either designed heuristically or fixed prior to training. Convergence rates in a stochastic
optimization problem are controlled by the trace of the gradient covariance matrix, which is referred

⇤Equal contributions.
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as the gradient variance in this paper [17]. As Fig. 1 shows, no fixed method can be optimal through-
out the entire training because the distribution of gradients changes. A quantization method that is
optimal at the first iteration will not be optimal after only a single epoch.

In this paper, we propose two adaptive methods for quantizing the gradients in data-parallel SGD.
We study methods that are defined by a norm and a set of quantization levels. In Adaptive Level
Quantization (ALQ), we minimize the excess variance of quantization given an estimate of the
distribution of the gradients. In Adaptive Multiplier Quantization (AMQ), we minimize the same
objective as ALQ by modelling quantization levels as exponentially spaced levels. AMQ solves for
the optimal value of a single multiplier parametrizing the exponentially spaced levels.

1.1 Summary of contributions

• We propose two adaptive gradient quantization methods, ALQ and AMQ, in which processors
update their compression methods in parallel.

• We establish an upper bound on the excess variance for any arbitrary sequence of quantization
levels under general normalization that is tight in dimension, an upper bound on the expected
number of communication bits per iteration, and strong convergence guarantees on a number of
problems under standard assumptions. Our bounds hold for any adaptive method, including ALQ
and AMQ.

• We improve the validation accuracy by almost 2% on CIFAR-10 and 1% on ImageNet in challenging
low-cost communication setups. Our adaptive methods are significantly more robust to the choice
of hyperparameters.2

1.2 Related work

Adaptive quantization has been used for speech communication and storage [18]. In machine
learning, several biased and unbiased schemes have been proposed to compress networks and
gradients. Recently, lattice-based quantization has been studied for distributed mean estimation and
variance reduction [19]. In this work, we focus on unbiased and coordinate-wise schemes to compress
gradients.

Alistarh et al. [20] proposed Quantized SGD (QSGD) focusing on the uniform quantization of
stochastic gradients normalized to have unit Euclidean norm. Their experiments illustrate a similar
quantization method, where gradients are normalized to have unit L1 norm, achieves better perfor-
mance. We refer to this method as QSGDinf or Qinf in short. Wen et al. [15] proposed TernGrad,
which can be viewed as a special case of QSGDinf with three quantization levels.

Ramezani-Kebrya et al. [21] proposed nonuniform quantization levels (NUQSGD) and demonstrated
superior empirical results compared to QSGDinf. Horváth et al. [22] proposed natural compression
and dithering schemes, where the latter is a special case of logarithmic quantization.

There have been prior attempts at adaptive quantization methods. Zhang et al. [23] proposed ZipML,
which is an optimal quantization method if all points to be quantized are known a priori. To find
the optimal sequence of quantization levels, a dynamic program is solved whose computational and
memory cost is quadratic in the number of points to be quantized, which in the case of gradients
would correspond to their dimension. For this reason, ZipML is impractical for quantizing on the fly,
and is in fact used for (offline) dataset compression. They also proposed an approximation where
a subsampled set of points is used and proposed to scan the data once to find the subset. However,
as we show in this paper, this one-time scan is not enough as the distribution of stochastic gradients
changes during the training.

Zhang et al. [24] proposed LQ-Net, where weights and activations are quantized such that the inner
products can be computed efficiently with bitwise operations. Compared to LQ-Net, our methods do
not need additional memory for encoding vectors. Concurrent with our work, Fu et al. [25] proposed
to quantize activations and gradients by modelling them with Weibull distributions. In comparison,
our proposed methods accommodate general distributions. Further, our approach does not require
any assumptions on the upper bound of the gradients.

2Open source code: http://github.com/tabrizian/learning-to-quantize
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Input: Local data, parameter vector (local copy) wt, learning rate ↵, and set of update steps U
1 for t = 1 to T do
2 if t 2 U then
3 for i = 1 to M do
4 Compute sufficient statistics and update quantization levels `;
5 for i = 1 to M do
6 Compute gi(wt), encode ci,t  ENCODE`

�
gi(wt)

�
, and broadcast ci,t;

7 for j = 1 to M do
8 Receive ci,t from each processor i and decode ĝi(wt) DECODE`

�
ci,t

�
;

9 Aggregate wt+1  P⌦

�
wt � ↵

M

PM
i=1 ĝi(wt)

�
;

Algorithm 1: Adaptive data-parallel SGD. Loops are executed in parallel on each machine. At
certain steps, each processor computes sufficient statistics of a parametric distribution to estimate
distribution of normalized coordinates.

2 Preliminaries: data-parallel SGD

Consider the problem of training a model parametrized by a high-dimensional vector w 2 Rd. Let
⌦ ✓ Rd denote a closed and compact set. Our goal is to minimize f : ⌦ ! R. Assume we have
access to unbiased stochastic gradients of f , which is g, such that E[g(w)] = rf(w) for all w 2 ⌦.

The update rule for full-precision SGD is given by wt+1 = P⌦

�
wt � ↵g(wt)) where wt is the

current parameter vector, ↵ is the learning rate, and P⌦ is the Euclidean projection onto ⌦. We
consider data-parallel SGD, which is a synchronous and distributed framework consisting of M
processors. Each processor receives gradients from all other processors and aggregates them. In
data-parallel SGD with compression, gradients are compressed by each processor before transmission
and decompressed before aggregation [20–23]. A stochastic compression method is unbiased if the
vector after decompression is in expectation the same as the original vector.

3 Adaptive quantization

In this section, we introduce novel adaptive compression methods that adapt during the training
(Algorithm 1). Let v 2 Rd be a vector we seek to quantize and ri = |vi|/kvk be its normalized
coordinates for i = 1, . . . , d.3 Let q`(r) : [0, 1] ! [0, 1] denote a random quantization function
applied to the normalized coordinate r using adaptable quantization levels, ` = [`0, . . . , `s+1]

>,
where 0 = `0 < `1 < · · · < `s < `s+1 = 1. For r 2 [0, 1], let ⌧(r) denote the index of a level such
that `⌧(r)  r < `⌧(r)+1. Let ⇢(r) = (r � `⌧(r))/(`⌧(r)+1 � `⌧(r)) be the relative distance of r to
level ⌧(r) + 1. We define the random variable h(r) such that h(r) = `⌧(r) with probability 1� ⇢(r)
and h(r) = `⌧(r)+1 with probability ⇢(r).

Figure 2: Random quantization of normal-
ized gradient.

We define the quantization of v as Q`(v) ,
[q`(v1), . . . , q`(vd)]> where q`(vi) =

kvk · sign(vi) · h(ri) and h = {h(ri)}i=1,...,d are inde-
pendent random variables. The encoding, ENCODE(v),
of a stochastic gradient is the combined encoding of
kvk using a standard floating point encoding along with
an optimal encoding of h(ri) and binary encoding of
sign(vi) for each coordinate i. The decoding, DECODE,
recovers the norm, h(ri), and the sign. Additional details
of the encoding method are described in Appendix D.

We define the variance of vector quantization to be the trace of the covariance matrix,

Eh[kQ`(v)� vk22] = kvk2
dX

i=1

�2
(ri), (1)

where �2
(r) = E[(q`(r)� r)2] is the variance of quantization for a single coordinate that is given by

�2
(r) = (`⌧(r)+1 � r)(r � `⌧(r)). (2)

3In this section, we use k · k to denote a general Lq norm with q � 1 for simplicity.

3



Let v be a random vector corresponding to a stochastic gradient and h capture the randomness of
quantization for this random vector as defined above. We define two minimization problems, expected
variance and expected normalized variance minimization:

min
`2L

Ev,h

⇥
kQ`(v)� vk22

⇤
and min

`2L
Ev,h

⇥
kQ`(v)� vk22/kvk2

⇤
,

where L = {` : `j  `j+1, 8 j, `0 = 0, `s+1 = 1} denotes the set of feasible solutions. We first
focus on the problem of minimizing the expected normalized variance and then extend our methods to
minimize the expected variance in Section 3.4. Let F (r) denote the marginal cumulative distribution
function (CDF) of a normalized coordinate r. Assuming normalized coordinates ri are i.i.d. given
kvk, the expected normalized variance minimization can be written as

min
`2L

 (`), where  (`) ,
sX

j=0

Z `j+1

`j

�2
(r) dF (r). (3)

The following theorem suggests that solving (3) is challenging in general; however, the sub-problem
of optimizing a single level given other levels can be solved efficiently in closed form. Proofs are
provided in Appendix B.
Theorem 1 (Expected normalized variance minimization). Problem (3) is nonconvex in general.
However, the optimal solution to minimize one level given other levels, min`i  (`), is given by
`⇤i = �(`i�1, `i+1), where

�(a, c) = F�1

✓
F (c)�

Z c

a

r � a

c� a
dF (r)

◆
. (4)

3.1 ALQ: Adapting individual levels using coordinate descent

Using the single level update rule in Eq. (4) we iteratively adapt individual levels to minimize the
expected normalized variance in (3). We denote quantization levels at iteration t by `(t) starting from
t = 0. The update rule is

`j(t+ 1) = �(`j�1(t), `j+1(t)) 8j = 1, . . . , s . (5)

Performing the update rule above sequentially over coordinates j is a form of coordinate descent
(CD) that is guaranteed to converge to a local minima. CD is particularly interesting because it does
not involve any projection step to the feasible set L. In practice, we initialize the levels with either
uniform levels [20] or exponentially spaced levels proposed in [21]. We observe that starting from
either initialization CD converges in small number of steps (less than 10).

3.2 Gradient descent

Computing r using Leibniz’s rule [26], the gradient descent (GD) algorithm to solve (3) is based
on the following update rule:

`j(t+ 1) = PL

✓
`j(t)� ⌘(t)

@ (`(t))

@`j

◆

@ (`(t))

@`j
=

Z `j(t)

`j�1(t)
(r � `j�1(t)) dF (r)�

Z `j+1(t)

`j(t)
(`j+1(t)� r) dF (r)

(6)

for t = 0, 1, . . . and j = 1, . . . , s. Note that the projection step in Eq. (6) is itself a convex
optimization problem. We propose a projection-free modification of GD update rule to systematically
ensure ` 2 L. Let �j(t) = min{`j(t) � `j�1(t), `j+1(t) � `j(t)} denote the minimum distance
between two neighbouring levels at iteration t for j = 1, . . . , s. If the change in level j is bounded
by �j(t)/2, it is guaranteed that ` 2 L. We propose to replace Eq. (6) with the following update rule:

`j(t+ 1) = `j(t)� sign

✓
@ (`(t))

@`j

◆
min

⇢
⌘(t)

����
@ (`(t))

@`j

���� ,
�j(t)

2

�
. (7)
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3.3 AMQ: Exponentially spaced levels

We now focus on ` = [�1,�p, . . . ,�ps, ps, . . . , p, 1]>, i.e., exponentially spaced levels with sym-
metry. We can update p efficiently by gradient descent using the first order derivative

1

2

d (p)

dp
=

Z ps

0
2sp2s�1

dF (r) +
s�1X

j=0

Z pj

pj+1

�
(jpj�1

+ (j + 1)pj)r � (2j + 1)p2j
�
dF (r). (8)

3.4 Expected variance minimization

In this section, we consider the problem of minimizing the expected variance of quantization:
min
`2L

Ev,h

⇥
kQ`(v)� vk22

⇤
. (9)

To solve the expected variance minimization problem, suppose that we observe N stochastic gradients
{v1, . . . ,vN}. Let Fn(r) and pn(r) denote the CDF and PDF of normalized coordinate conditioned
on observing kvnk, respectively. By taking into account randomness in kvk and using the law of
total expectation, an approximation of the expected variance in (9) is given by

E[kQs(v)� vk22] ⇡
1

N

NX

n=1

kvnk2
sX

j=0

Z `j+1

`j

�2
(r) dFn(r). (10)

The optimal levels to minimize Eq. (10) are a solution to the following problem:

`⇤ = argmin
`2L

NX

n=1

kvnk2
sX

j=0

Z `j+1

`j

�2
(r) dFn(r) = argmin

`2L

sX

j=0

Z `j+1

`j

�2
(r) dF (r),

where `⇤ = [`⇤1, . . . , `
⇤
s]

> and F (r) =
PN

n=1 �nFn(r) is the weighted sum of the conditional CDFs
with �n = kvnk2/

PN
n=1 kvnk2. Note that we can accommodate both normal and truncated normal

distributions by substituting associated expressions into pn(r) and Fn(r). Exact update rules and
analysis of computational complexity of ALQ, GD, and AMQ are discussed in Appendix C.

4 Theoretical guarantees

One can alternatively design quantization levels to minimize the worst-case variance. However,
compared to an optimal scheme, this worst-case scheme increases the expected variance by ⌦(d),
which is prohibitive in deep networks. We quantify the gap in Appendix E. Proofs are in appendices.

A stochastic gradient has a second-moment upper bound B when E[kg(w)k22]  B for all w 2 ⌦.
Similarly, it has a variance upper bound �2 when E[kg(w)�rf(w)k22]  �2 for all w 2 ⌦.

We consider a general adaptively quantized SGD (AQSGD) algorithm, described in Algorithm 1,
where compression schemes are updated over the course of training.4 Many convergence results in
stochastic optimization rely on a variance bound. We establish such a variance bound for our adaptive
methods. Further, we verify that these optimization results can be made to rely only on the average
variance. In the following, we provide theoretical guarantees for AQSGD algorithm, obtain variance
and code-length bounds, and convergence guarantees for convex, nonconvex, and momentum-based
variants of AQSGD.

The analysis of nonadaptive methods in [20–23] can be considered as special cases of our theorems
with fixed levels over the course of training. A naive adoption of available convergence guarantees
results in having worst-case variance bounds over the course of training. In this paper, we show that
an average variance bound can be applied on a number of problems. Under general normalization,
we first obtain variance upper bound for arbitrary levels, in particular, for those obtained adaptively.
Theorem 2 (Variance bound). Let v 2 Rd and q � 1. The quantization of v under Lq normalization
satisfies E[Q`(v)] = v. Furthermore, we have

E[kQ`(v)� vk22]  ✏Qkvk22, (11)
4Our results hold for any adaptive method, including ALQ and AMQ.
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where ✏Q =
(`j⇤+1/`j⇤�1)2

4(`j⇤+1/`j⇤ )
+ inf0<p<1 Kp`1

(2�p)d
2�p

min{q,2} with j⇤ = argmax1js `j+1/`j and

Kp =
�

1
2�p

�� 1�p
2�p

�(1�p).

Theorem 2 implies that if g(w) is a stochastic gradient with a second-moment bound ⌘, then Q`(g(w))

is a stochastic gradient with a variance upper bound ✏Q⌘. Note that, as long as the maximum ratio
of two consecutive levels does not change, the variance upper bound decreases with the number of
quantization levels. In addition, our bound matches the known ⌦(

p
d) lower bound in [27].

Theorem 3 (Code-length bound). Let v 2 Rd and q � 1. The expectation E[|ENCODE(v)|] of the
number of communication bits needed to transmit Q`(v) under Lq normalization is bounded by

E[|ENCODE(v)|]  b+ n`1,d + d(H(L) + 1)  b+ n`1,d + d(log2(s+ 2) + 1), (12)

where b is a constant, n`1,d = min{`1�q
+

d1�1/q

`1
, d}, H(L) is the entropy of L in bits, and L is a

random variable with the probability mass function given by

Pr(`j) =

Z `j

`j�1

r � `j�1

`j � `j�1
dF (r) +

Z `j+1

`j

`j+1 � r

`j+1 � `j
dF (r)

for j = 1, . . . , s. In addition, we have

Pr(`0 = 0) =

Z `1

0

1� r

`1
dF (r) and Pr(`s+1 = 1) =

Z 1

`s

r � `s
1� `s

dF (r).

Theorem 3 provides a bound on the expected number of communication bits to encode the quantized
stochastic gradients. As expected, the upper bound in (12) increases monotonically with d and s.

We can combine variance and code-length upper bounds and obtain convergence guarantees for
AQSGD when applied to various learning problems where we have convergence guarantees for
full-precision SGD under standard assumptions.

Let {`1, . . . , `K} denote the set of quantization levels that AQSGD experiences on the optimization
trajectory. Suppose that `k is used for Tk iterations with

PK
k=1 Tk = T . For each particular `k,

we can obtain corresponding variance bound ✏Q,k by substituting `k into (11). Then the average
variance upper bound is given by ✏Q =

PK
k=1 Tk✏Q,k/T . For each particular `k, we can obtain

corresponding expected code-length bound NQ,k by substituting random variable Lk into (12). The
average expected code-length bound is given by NQ =

PK
k=1 TkNQ,k/T .

On convex problems, convergence guarantees can be established along the lines of [17, Theorems 6.1].
Theorem 4 (AQSGD for nonsmooth convex optimization). Let f : ⌦! R denote a convex function
and let R2 , supw2⌦ kw � w0k22. Let B̂ = (1 + ✏Q)B and f⇤

= infw2⌦ f(w). Suppose that
AQSGD is executed for T iterations with a learning rate ↵ = RM/(B̂

p
T ) on M processors, each

with access to independent stochastic gradients of f with a second-moment bound B, such that
quantization levels are updated K times where `k with variance bound ✏Q,k and code-length bound
NQ,k is used for Tk iterations. Then AQSGD satisfies E

h
f
⇣

1
T

PT
t=0 wt

⌘i
� f⇤  RB̂/(M

p
T ).

In addition, AQSGD requires at most NQ communication bits per iteration in expectation.

In Appendix H and Appendix I, we obtain convergence guarantees on nonconvex problems and
for momentum-based variants of AQSGD under standard assumptions, respectively. Theoretical
guarantees for levels with symmetry are established in Appendix J.

5 Experimental evaluation

In this section, we showcase the effectiveness of our adaptive quantization methods in speeding up
training deep models. We compare our methods to the following baselines: single-GPU SGD (SGD),
full-precision multi-GPU SGD (SuperSGD), uniform levels under L1 normalization (QSGDinf) [20],
ternary levels under L1 normalization (TRN) [15], and exponential levels under L2 normalization
with exponential factor p = 0.5 (NUQSGD) [21, 22]. We present results for the following variations of
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Table 1: Validation accuracy on CIFAR-10 and ImageNet using 3 bits (except for SuperSGD and TRN) with 4

GPUs.

Quantization Method ResNet-110 on
CIFAR-10

ResNet-32 on
CIFAR-10

ResNet-18 on
ImageNet

Bucket Size 16384 8192 8192

SuperSGD 93.86% ± 0.08 92.26% ± 0.04 68.93% ± 0.05
NUQSGD [21, 22] 84.60% ± 0.04 83.73% ± 0.08 33.36% ± 0.07

QSGDinf [20] 91.52% ± 0.07 89.95% ± 0.02 66.35% ± 0.04
TRN [15] 90.72% ± 0.06 89.65% ± 0.05 62.76% ± 0.06

ALQ 93.24% ± 0.06 91.30% ± 0.07 67.72% ± 0.07
ALQ-N 93.14% ± 0.05 91.96% ± 0.04 65.64% ± 0.07
AMQ 92.82% ± 0.04 91.10% ± 0.05 64.82% ± 0.05

AMQ-N 92.88% ± 0.02 91.03% ± 0.08 66.75% ± 0.05
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Figure 3: Validation loss on CIFAR-10 and ImageNet. All methods use 3 bits except for SuperSGD and
TRN. Bucket size for ResNet-110 trained on CIFAR-10 is 16384, for ResNet-32 is 8192, and for ResNet-18 on
ImageNet is 8192.

our proposed methods: ALQ and AMQ (with norm adjustments in Section 3.4), and their normalized
variations ALQ-N and AMQ-N (Sections 3.1 and 3.3). We present full training results on ImageNet
in Appendix K along with additional experimental details.

We compare methods in terms of the number of training iterations that is independent of a particular
distributed setup. In Table 1, we present results for training ResNet-32 and ResNet-110 [28] on
CIFAR-10 [29], and ResNet-18 on ImageNet [30]. We simulate training with 4-GPUs on a single
GPU by quantizing and dequantizing the gradient from 4 mini-batches in each training iteration.
These simulations allow us to compare the performance of quantization methods to the hypothetical
full-precision SuperSGD.

All quantization methods studied in this section share two hyper-parameters: the number of bits (log2
of number of quantization levels) and a bucket size. A common trick used in normalized quantization
is to encode and decode a high-dimensional vector in buckets such that each coordinate is normalized
by the norm of its corresponding bucket instead of the norm of the entire vector [20]. The bucket
size controls the tradeoff between extra communication cost and loss of precision. With a small
bucket size, there are more bucket norms to be communicated, while with a large bucket size, we lose
numerical precision as a result of dividing each coordinate by a large number. In Section 5.1, we
provide an empirical study of the hyperparameters.

Matching the accuracy of SuperSGD. Using only 3 bits (8 levels), our adaptive methods match the
performance of SuperSGD on CIFAR-10 and close the gap on ImageNet (bold in Table 1). Our most
flexible method, ALQ, achieves the best overall performance on ImageNet and the gap on CIFAR-10
with ALQ-N is less than 0.3%. There is at least 1.4% gap between our best performing method and
previous work in training each model. To the best of our knowledge, matching the validation loss of
SuperSGD has not been achieved in any previous work using only 3 bits. Fig. 3 shows the test loss
and Fig. 4 shows the average gradient variance where the average is taken over gradient coordinates.
Our adaptive methods successfully achieve lower variance during training.

Comparison on the trajectory of SGD. Fig. 5 shows the average variance on the optimization
trajectory of single-GPU without quantization. This graph provides a more fair comparison of the

7



0 1 2 3 4 5 6 7 8
7rDLQLQg IterDtLRQ 1e4

10−9

10−8

10−7

10−6

10−5

Av
er

Dg
e 

9D
rLD

Qc
e

6uSer6GD
AL4
A04
4LQI
6GD
751

(a) ResNet-32 on CIFAR-10
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(b) ResNet-110 on CIFAR-10
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(c) ResNet-18 on ImageNet

Figure 4: Variance on CIFAR-10 and ImageNet. All methods use 3 bits except for SuperSGD and TRN. Bucket
size for ResNet-110 trained on CIFAR-10 is 16384, for ResNet-32 is 8192, and for ResNet-18 on ImageNet is
8192.
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(a) ResNet-32 on CIFAR-10
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(c) ResNet-18 on ImageNet

Figure 5: Variance (no train) on CIFAR-10 and ImageNet. All methods use 3 bits except for SuperSGD and
TRN. Bucket size for ResNet-110 trained on CIFAR-10 is 16384, for ResNet-32 is 8192, and for ResNet-18 on
ImageNet is 8192.

quantization error of different methods decoupled from their impact on the optimization trajectory.
ALQ effectively finds an improved set of levels that reduce the variance in quantization. ALQ matches
the variance of SuperSGD on Resnet-110 (Fig. 5b). In Figs. 5b and 5c, the variance of QSGDinf is
as high as TRN in the first half of training. This shows that extra levels (8 uniform levels) do not
perform better unless designed carefully. As expected, the variance of SuperSGD is always smaller
than the variance of SGD by a constant factor of the number of GPUs.

Negligible computational overhead. Our adaptive methods have similar per-step computation and
communication cost compared to previous methods. On ImageNet, we save at least 60 hours from 95

hours of training and add only an additional cost of at most 10 minutes in total to adapt quantization.
For bucket sizes 8192 and 16384 and 3–8 bits used in our experiments, the per-step cost relative to
SuperSGD (32-bits) is 21–25% for ResNet-18 on ImageNet and 32–36% for ResNet-50. That is the
same as the cost of NUQSGD and QSGDinf without additional coding or pruning with the same
number of bits and bucket sizes. The cost of the additional update specific to ALQ is 0.4–0.5% of
the total training time. In Appendix K.3, we provide tables with detailed timing results for varying
bucket sizes and bits.

5.1 Hyperparameter studies

Fig. 6 shows quantization levels for each method at the end of training ResNet-32 on CIFAR-10. The
quantization levels for our adaptive methods are more concentrated near zero. In Figs. 7a and 7b, we
study the impact of the bucket size and number of bits on the best validation accuracy achieved by
quantization methods.

Adaptive levels are the best quantization methods across all values of bucket size and number
of bits. ALQ and ALQ-N are the best performing methods across all values of bucket size and
number of bits. The good performance of ALQ-N is unexpected as it suggests quantization for
vectors with different norms can be shared. In practice, ALQ-N is easier to implement and faster
to update compared to ALQ. We observe a similar relation between AMQ and AMQ-N methods.
Adaptive multiplier methods show inferior performance to adaptive level methods as the bucket size
significantly grows (above 10

4) or shrinks (below 100) as well as for very few bits (2). Note that
there exists a known generalization gap between SGD and SuperSGD in ResNet-110 that can be
closed by extensive hyperparameter tuning [31]. Our adaptive methods reduce this gap with standard
hyperparameters.
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Figure 6: Quantization levels at
the end of training ResNet-32 on
CIFAR-10.
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Figure 7: Effect of bucket size and number of bits on validation accuracy
when training ResNet-8 on CIFAR-10

Table 2: Validation accuracy of ResNet32 on CIFAR-10 using 3 quantization bits (except for SuperSGD and
TRN) and bucket size 16384.

Method 16 GPUs 32 GPUs

SuperSGD 92.17% ± 0.08 92.19% ± 0.04
NUQSGD 85.82% ± 0.03 86.36% ± 0.01
QSGDinf 89.61% ± 0.03 89.81% ± 0.05

TRN 88.68% ± 0.10 90.22% ± 0.05

ALQ 91.91% ± 0.06 91.89% ± 0.07
ALQ-N 92.07% ± 0.04 91.83% ± 0.03
AMQ 91.58% ± 0.05 91.38% ± 0.06

AMQ-N 91.41% ± 0.08 91.40% ± 0.02

Bucket size significantly impacts non-adaptive methods. For bucket size 100 and 3 bits, NUQSGD
performs nearly as good as adaptive methods but quickly loses accuracy as the bucket size grows
or shrinks. QSGDinf stays competitive for a wider range of bucket sizes but still loses accuracy
faster than other methods. This shows the impact of bucketing as an understudied trick in evaluating
quantization methods.

Adaptive methods successfully scale to large number of GPUs. Table 2 shows the result of
training CIFAR-10 on ResNet-32 using 16 and 32 GPUs. Note that with 32 GPUs, TRN is achieving
almost the accuracy of SuperSGD with only 3 quantization levels, which is expected because TRN is
unbiased and the variance of aggregated gradients decreases linearly with the number of GPUs.

6 Conclusions

To reduce communication costs of data-parallel SGD, we introduce two adaptively quantized methods,
ALQ and AMQ, to learn and adapt gradient quantization method on the fly. In addition to quantization
method, in both methods, processors learn and adapt their coding methods in parallel by efficiently
computing sufficient statistics of a parametric distribution. We establish tight upper bounds on the
excessive variance for any arbitrary sequence of quantization levels under general normalization
and on the expected number of communication bits per iteration. Under standard assumptions,
we establish a number of convergence guarantees for our adaptive methods. We demonstrate the
superiority of ALQ and AMQ over nonadaptive methods empirically on deep models and large
datasets.

Broader impact

This work provides additional understanding of statistical behaviour of deep machine learning models.
We aim to train deep models using popular SGD algorithm as fast as possible without compromising
learning outcome. As the amount of data gathered through web and a plethora of sensors deployed
everywhere (e.g., IoT applications) is drastically increasing, the design of efficient machine learning
algorithms that are capable of processing large-scale data in a reasonable time can improve everyone’s
quality of life. Our compression schemes can be used in Federated Learning settings, where a deep
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model is trained on data distributed among multiple owners without exposing that data. Developing
privacy-preserving learning algorithms is an integral part of responsible and ethical AI. However, the
long-term impacts of our schemes may depend on how machine learning is used in society.
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