
Appendix A1 Dynamical spiking threshold of the differentiator neurons

The dynamic threshold is a neural property where firing not only depends on the membrane potential
but also on its temporal change, which is crucial for neural sensitivity to input fluctuations (Prescott
et al., 2008; Azouz and Gray, 2003; Hong et al., 2008). An experimental study showed that LHNs
have dynamic thresholds (Jeanne and Wilson, 2015), and differentiator neurons are also known to
have the property. Therefore, we used differentiator neurons for modeling LHNs, and integrators with
for PNs in the AL network. To demonstrate their difference in the spiking threshold, we estimated a
minimal rate of membrane potential change, [dV/dt]min, that preceded spikes, but not subthreshold
fluctuations from our simulation data, which corresponds to the minimal inward current required
for spiking (Fig. A1(B)). Then, the threshold voltage, Vθ, at dV/dt ≈ [dV/dt]min, was significantly
more distributed in differentiators (Integrator: STD[Vθ]=2.76±0.08 mV, Differentiator: 3.33±0.11
mV; P=2.58×10−5, F-test; Fig. A1(C)), suggesting that differentiators can generate enough inward
current to generate a spike across a broader range of membrane voltages than integrators, an indication
of a more dynamical spiking threshold. Therefore, we used differentiator neurons, with the low-
threshold K+ channel, for modeling LHNs, and integrators with the high-threshold channel for PNs
in the AL network.

Appendix A2 Data analysis

In the AL network model case, d′, a measure for signal detection, was computed in the same way as
in (Jeanne and Wilson, 2015):

d′ =
µstim − µ0√
(σ2
stim + σ2

0)/2
(1)

where (µstim, σstim) and (µ0, σ0) are the (mean, STD) of spike count at a given layer, computed
with 80 ms-long overlapping temporal windows in the stimulated and non-stimulated condition,
respectively. For each layer, we computed d′ of all the cells and plotted their median in Fig. 2(B,C).

Power spectra for Fig. 2(D) were evaluated by applying the MATLAB function pmtm with a 20-ms
time window on spike trains formed with 1-ms time bins. Mutual information in Fig. 3E were
computed by a Gaussian channel approximation (Borst and Theunissen, 1999): We first reduced
the dimensionality of a population spike trains at each layer, by using principal component analysis
(PCA). Since the first PCA component was always dominating, we projected the population spike
trains to this component to form a one-dimensional “population response” time series. With the
Fourier transformation of the stimulus and population response, S(ω) and R(ω), we estimated a
kernel K(ω) =< R∗(ω)S(ω) > / < R∗(ω)R(ω) >, and computed a reconstructed stimulus and
noise via Sr(ω) = R(ω)K(ω) and N(ω) = S(ω) − Sr(ω). The mutual information per each
frequency bin was then computed by

I(S(ω);R(ω)) = log2(1 + SNR(ω)), SNR(ω) = ‖Sr(ω)‖2/‖N(ω)‖2. (2)

With this, we computed the information transfer (Fig. 3E) by

TX(ω) = I(S(ω)ORN;R(ω)X)/I(S(ω)ORN;R(ω)ORN),

where X is PN or LHN.

In the deep FFN, we computed (σ, α) for spikes from each layer using a custom algorithm that
estimates (σ, α) in the presence of additional spontaneous firing. We first computed the baseline
spontaneous firing rate ν0 at each layer by averaging the firing rate obtained from the same model
with no input. The firing rate curve was computed by histogramming spike times in this layer with a
0.1-ms time bin and by smoothing it with a 3-step moving average. Then, we evaluated a least-square
fit of ν(t) to νfit(t) = ν0 + ν1 exp(−(t− tc)2/2σ2). α was estimated by counting the spikes in the
[tc − 3σ, tc + 3σ] window. From the goodness of fit, R2 = 1− < (ν(t)− νfit(t))2 > /Var[ν(t)],
we evaluated the signal-to-noise ratio, S/N = R/(1−R2)1/2 (Fig. 3(E)).

All analysis was performed by custom codes written in MATLAB 2016b (MathWorks, MA) and
Python. All the models are publicly available at https://github.com/FrostHan/HetFFN-. The
datasets generated during and/or analyzed during the current study and analysis codes are available
from the corresponding author upon reasonable request.
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Appendix A3 Reversed heterogeneous FFNs and intermediate βw

In the AL network, we modeled PNs as integrators and LHNs as differentiators according to the
experimental findings (Jeanne and Wilson, 2015). As alternative cases, we simulated the AL network
of homogeneous PNs and LHNs with intermediate βw=-10 mV, and the same network with the
properties of PNs and LHNs reversed (i.e. PNs and LHNs are differentiators and integrators,
respectively). The results of homogeneous AL network with intermediate βw are shown in Fig. A4((A-
C)) Left and D. Compared with the original heterogeneous AL model (Fig. 2), the homogeneous AL
network performs worse in terms of accuracy and information transfer (Fig. A4((B-C) Left), and
shows less stable power amplifcation (Fig. A4((D)). The reversed AL network shows the stable power
amplification and good information transfer (Fig. A4((C)) Right, and (D)). However, d′, accuracy of
the ORN input detection, is suboptimal (Fig. A4 (B) Right; dots are lower than solid lines), since
ORNs fire sparsely with strong differentiator characteristics (Nagel and Wilson, 2011) and, therefore,
integrators can be better suited for their postsynaptic cells.

We further extended these two kind of network models to deep FFNs (Fig. A5). In the homogeneous
FFNs with intermediate βw = -7 mV, -10 mV and -12 mV, a relatively weak and asynchronous spike
signal dissipated in deep layers (Fig. A5 A-C), while a relatively strong and synchronous one tended
to diverge (Fig. A5 E-G). In contrast, the reversed heterogeneous network showed robust and stable
signal transmission (Fig. A5 D, H), similar to our original heterogeneous FFN model. Therefore,
stable signal propagation can be achieved only by proper demodulation of signal distortions between
adjacent layers, regardless of the order of integrator / differentiator. In contrast, if an FFN contains
only homogeneous layers, the signal propagates with accumulated distortion (amplification/dicrease
in α/σ) into deep layers.

Appendix A4 Sensitivity to βw in deep heterogeneous FFNs

βw for integrator (5 mV) and differentiator (−19 mV) neurons in the deep heterogeneous FFNs,
together with other hyper-parameters, were from the AL network model. Will changing βw impair
stability of signal propagation in the heterogeneous network? We show a sweep of βw for integra-
tor (3, 5, 7 mV) and differentiator (−20,−19,−18 mV) neurons in the deep heterogeneous FFN
(Fig. A6).

Notably, varying βw for integrator neurons did not significantly affect the propagation property,
while a different value of βw for differentiators changed the property. This is because the mean
spike threshold increased significantly when βw of differentiator became smaller (Ratté et al., 2013).
Therefore, the range of input (α, σ) that can stably propagate reduced when βw = −20 mV for
differentiators (Fig. A6 A, D, G), and enlarged when βw = −18 mV for differentiators (Fig. A6 C, F,
I). However, we could compensate for the change in the spike threshold of differentiators, which was
introduced by varying βw, by increasing or decreasing the synaptic conductance from integrators to
differentiators. Fig. A6 (J-K) shows that a similar propagation property to the original heterogeneous
FFN model can be achieved by doing so.

As we discussed in Section 4.3, the robust and stable signal propagation is due to the distortion-
compensating input/output transformations by neighboring layers with distinct neuron types. As long
as this mechanism is not profoundly compromised, spike signals should be able to transmit stably
and robustly.
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Figure A1: Intrinsic properties of conductance-based model neurons control dynamicity of
spiking thresholds. (A) Membrane potential response (color) to constant or fluctuating current
injection (black). (B) Example membrane potential V vs. dV/dt in two neurons, based on simulation
data in Fig. 2(A,B). Data from one trial are shown (gray). Dotted lines represent [dV/dt]min, the
minimal dV/dt for spiking, and colored dots are threshold-crossing points. (C) Spread of membrane
potentials at crossing points, Vθ, from the average. Vertical bars span from 10% to 90% quantiles,
and notches are at medians. Data are the same as B, and only 50 samples (dots) are shown for clarity.

Parameter Value
ENa 50 mV
EK -100 mV
EL -70 mV
gNa 20 mS/cm2

gK 20 mS/cm2

gL 2 mS/cm2

φw 0.15
C 2 mF/cm2

βw -1.2 mV
γm 18 mV
γw 10 mV

Esyn, excitatory 0 mV
Esyn, inhibitory -90 mV

Table A1: Parameters of the single-neuron model.
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Figure A2: Propagation of spike signals with diverse width (σ) and number of spikes (α) in
the heterogeneous (A), all-differentiator (B), and all-integrator network (C). Each network has
nine layers of 5,000 neurons (see Table A3 for parameters). Color in the middle column represents
propagation depth, computed by numbers of layers (except the input layer) into which spike signals
propagate. Propagation is considered stopped if the estimated α is lower than 0.05n or larger than 3n
for a layer and its corresponding postsynaptic layer, where n=5,000 is the group size. Side insets are
example raster plots for parameters marked by dotted squares in the middle, showing spikes from
10% of neurons at each layer for clarity.

Parameter Heterogeneous Differentiator PN Integrator LHN
βw, ORN -23 mV -23 mV -23 mV
βw, PN 5 mV -19 mV 5 mV
βw, LHN -19 mV -19 mV 5 mV
σV , ORN 38 µA/cm2 38 µA/cm2 38 µA/cm2

σV , PN 38 + 15η µA/cm2 15 µA/cm2 38 + 15η µA/cm2

σV , LHN 15 µA/cm2 15 µA/cm2 38 + 15η µA/cm2

gsyn, PN 345 µS/cm2 1170 µS/cm2 345 µS/cm2

gsyn, LHN 975 µS/cm2 715 µS/cm2 285 µS/cm2

Table A2: Parameters of the Drosophila AL network model. η is a random number sampled from
a uniform distribution ranging from 0 to 1.
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Figure A3: The same figures as Fig. A2, but using FFN models with feedforward inhibition.
Again, each network has nine layers of 4,000 PN-like or LHN-like excitatory neurons, combined with
1,000 inhibitory neurons that receive excitatory inputs from a previous layer and inhibit excitatory
neurons in the same layer. Inhibitory cells were also based on the Morris-Lecar model with βw = -15
mV while different βw did not cause any significant change in our conclusion. The reversal potential
of inhibitory synapses was Esyn = -90 mV and the conductance was 200 µS/cm2. Also, we added a
synaptic delay of 2 ms for all connections. Other parameters were the same as those for Fig. A2. In
all panels, we plotted spikes from 10% of excitatory neurons at each layer for clarity.

Parameter Heterogeneous Differentiator PN Integrator LHN
βw, Input -23 mV -23 mV -23 mV
βw, Even -19 mV -19 mV 5 mV
βw, Odd 5 mV -19 mV 5 mV
σV , Input 38 µA/cm2 38 µA/cm2 38 µA/cm2

σV , Even 15 µA/cm2 15 µA/cm2 38 + 15η µA/cm2

σV , Odd 38 + 15η µA/cm2 15 µA/cm2 38 + 15η µA/cm2

gsyn, Even 975 µS/cm2 975 µS/cm2 345 µS/cm2

gsyn, Odd 345 µS/cm2 975 µS/cm2 345 µS/cm2

Table A3: Parameters of the deep FFN model. Even and Odd represent the 2n and (2n + 1)-th
layer where n = 1, 2, . . . , 5, respectively. η is a random number sampled from a uniform distribution
ranging from 0 to 1.
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Figure A4: (A-C) Firing rates (A), d′ (B), and information transfer (C) for the homogeneous AL
network with βw=-10 mV (left) and reversed heterogeneous model (right). (D) Power amplification
of the original (black), reversed (green), and βw=-10 mV network model. Blue: Differentiator, Red:
Integrator, Magenta: βw=-10 mV. Shade in C: P<0.01.
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Figure A5: Raster plot of deep homogeneous FFNs with intermediate βw, and the deep reversed-
heterogeneous FFN. The input spike signal is featured with (α=400 spikes, σ=5 ms) for the first row
(relatively weak and asynchronous input signal) and (α=900 spikes, σ=2 ms) for the second row
(relatively strong and synchronous input signal).
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Figure A6: (A-I) Propagation of spike signals with diverse width (σ) and number of spikes (α)
in the heterogeneous networks with changed values of βw for differentiator (the first voltage) and
integrator neurons (the second voltage) while keeping all other parameters unchanged). Plotted in the
same way as Fig. A2. (J) Same as D but with larger conductance (1000 µS/cm2) from integrators to
differentiators, so as to reimburse the higher spike threshold introduced by smaller βw. (K) Same as
F but with smaller conductance (820 µS/cm2) from integrators to differentiators.
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