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We provide proofs for the theorems introduced previously in this appendix. We push the proofs of
some of the lemmas and claims invoked in this section to Appendix B. For the remainder of the paper,
we use log(·) to denote the natural logarithm.

A.1 No-interaction setting under deterministic expert policy

In this section, we discuss the no-interaction setting where the learner is provided access to a dataset
D of N trajectories generated by rolling out the expert’s policy π∗, and is otherwise not allowed to
interact with the MDP. Our goal is to provide guarantees on the expected suboptimality incurred
by a policy that carries out behavior cloning when the expert’s policy is deterministic. As stated
previously, we realize this guarantee by first bounding the population 0-1 risk of behavior cloning
(Theorem 3.1) and then invoking the black box reduction guarantee from [RB10].

A.1.1 Analysis of expected suboptimality of behavior cloning

We first discuss the proof of Theorems 3.1 and 3.2 (a), which bound the expected suboptimality of a
policy carrying out behavior cloning, assuming the expert’s policy is deterministic.

Recall that the population 0-1 loss is defined as,

Ipop(π̂, π∗) =
1

H

∑H

t=1
Est∼ftπ∗

[
Ea∼π̂t(·|st)

[
1(a 6= π∗t (s))

]]
(13)

where f tπ∗ is the state distribution induced at time t rolling out the expert’s policy π∗. We consider
a learner π̂ that carries out behavior cloning given the expert dataset D in advance. In particular,
the learner’s policy π̂ is a member of Πmimic(D) since it exactly mimics the expert on the states
that were visited at each time in some trajectory in the expert dataset. Thus the contribution to the
population 0-1 risk comes from the remaining states s ∈ St(D),

Ipop(π̂, π∗) ≤ 1

H

∑H

t=1
Est∼ftπ∗

[
1(st 6∈ St(D))

]
(14)

=
1

H

∑H

t=1

∑
s∈S

Prπ∗ [st = s]1(s 6∈ St(D)). (15)
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Taking expectation on both sides gives,

E [Ipop(π̂, π∗)] ≤ 1

H

∑H

t=1

∑
s∈S

Prπ∗ [st = s]Pr(s 6∈ St(D)). (16)

In Lemma A.1 we show that this expression is bounded by . |S|H/N , which completes the proof of
the population 0-1 risk bound of behavior cloning in Theorem 3.1.

Lemma A.1. E
[∑H

t=1

∑
s∈S Prπ∗ [st = s] Pr[s 6∈ St(D)]

]
≤ 4

9
|S|H
|D| .

As stated previously, we subsequently invoke the supervised learning reduction in [RB10, Theorem
2.1] to provide the guarantee on the expected suboptimality of behavior cloning in Theorem 3.2 (a).

The previous discussion is also amenable for establishing a high probability bound on the expected
suboptimality of behavior cloning. Indeed, consider the upper bound on the population 0-1 risk of
behavior cloning in eq. (15), which is a function of the expert dataset D. It captures the probability
mass under the expert’s state distribution contributed by states unobserved in the expert dataset.

A.1.2 High probability bounds for behavior cloning

It turns out that the contribution to the upper bound on population 0-1 risk of behavior cloning in
eq. (15) is captured by the notion of “missing mass” of the time-averaged state distribution under the
expert’s policy. The high probability result Theorem 3.2 (b) for behavior cloning follows shortly by
invoking existing concentration bounds for missing mass.

Definition A.1 (Missing mass). Consider some distribution ν on X , and let XN i.i.d.∼ ν be a dataset
of N samples drawn i.i.d. from ν. Let nx(XN ) =

∑N
i=1 1(Xi = x) be the number of times the

symbol x was observed in XN . Then, the missing mass m0(ν,XN ) =
∑
x∈X ν(x)1(nx = 0) is the

probability mass contributed by symbols never observed in XN .

It turns out that the missing mass of discrete distributions admit tight concentration about its mean.

Theorem A.2. Consider an arbitrary distribution ν on X , and let XN i.i.d.∼ ν be a dataset of N
samples drawn i.i.d. from ν. Consider any δ ∈ (0, 1/10]. Then,

Pr

(
m0(ν,XN )− E[m0(ν,XN )] ≥

3
√
|X | log(1/δ)

N

)
≤ δ. (17)

Consider the upper bound to the population 0-1 loss in eq. (16). Observe that for each fixed
τ ∈ [H],

∑
s∈S Prπ∗ [sτ = s]1(s 6∈ Sτ (D)) is the missing mass of fτπ∗ , given N samples from the

distribution. Recall that fτπ∗ is the distribution over states at time τ rolling out π∗. Thus we can
invoke the concentration bound from Theorem A.2 to prove that the upper bound on 0-1 loss in
eq. (16) concentrates. We formally state this result in Lemma A.3.

Lemma A.3. For any δ such that δ ∈ (0,min{1, H/10}], with probability ≥ 1 − δ over the
randomness of the expert dataset D,

1

H

∑H

τ=1

∑
s∈S

Prπ∗ [sτ = s]1(s 6∈ Sτ (D)) ≤ 4|S|
9N

+
3
√
|S| log(H/δ)

N
. (18)

Plugging this result into eq. (16) provides an upper bound on the population 0-1 risk of behavior
cloning. Subsequently invoking [RB10, Theorem 2.1], we arrive at the high probability bound on
J(π∗)− J(π̂) for behavior cloning in Theorem 3.2 (b).

A.2 No-interaction setting when the expert policy is stochastic

In this section we continue to discuss the no-interaction setting, but drop the assumption that the
expert plays a deterministic policy. We assume the expert plays a general stochastic policy. Following
the reduction approach in [RB10], we first show a supervised learning reduction from imitation
learning to matching the expert’s policy in total variation (TV) distance. The ensuing discussion
however shows that the reduction analysis is loose when the expert policy is stochastic.
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A.2.1 Reduction of IL to supervised learning under TV distance

[RB10, Theorem 2.1] show that if the expert’s policy is deterministic, and the probability of guessing
the expert’s action at each state is ε, then J(π∗)− J(π̂) ≤ min{H, εH2}. In this section we prove a
generalization of this result which applies even if the expert plays a stochastic policy. To this end, we
first introduce the population TV risk,

Tpop(π̂, π∗) =
1

H

∑H

t=1
Est∼ftπ∗

[
TV
(
π̂t(·|st), π∗t (·|st)

)]
. (19)

We show that if the learner minimizes the population TV risk to be≤ ε then the expected suboptimality
of the learner is . min{H,H2ε}. The population TV risk of a learner is a generalization of the
population 0-1 risk to the case where the expert’s policy is stochastic. We formally state the reduction
below.
Lemma A.4. Consider any policy π̂ such that Tpop(π̂, π∗) ≤ ε. Then, J(π∗) − J(π̂) ≤
min{H,H2ε}.
Remark A.1. When the expert is deterministic, the definition of Tpop matches that of Ipop

(Lemma 3.1) recovering the guarantee in [RB10, Theorem 2.1]. Thus, Lemma A.4 strictly gen-
eralizes the supervised learning reduction for behavior cloning.

While the reduction approach seems promising at first, there is a catch - the population TV risk in
fact converges very slowly to 0. Since it corresponds to matching the expert’s and learner’s action
distributions, the convergence rate is &

√
|A|/N even if |S| = 1. In the same setting, the population

0-1 risk which is the counterpart in the deterministic expert setting converges at a much faster 1/N
rate (Theorem 3.1).

At first, the optimality of the reduction approach when the expert is deterministic seems to suggest
that imitation learning may be a significantly harder problem when the expert is stochastic. However,
we show that this is in fact not the case and circumvent the reduction framework to prove this result.
We show in Theorem 3.3 that an expected suboptimality up to logarithmic factors achieving the
same 1/N rate of convergence can be realized. We show that a natural policy MIMIC-EMP achieves
this rate - one which plays the empirical estimate of the expert’s policy wherever available, and the
uniform distribution over actions otherwise. Moreover the guarantee on the expected suboptimality
of this policy is optimal in the dependence on H and achieves the compounding error lower bound in
Theorem 5.1 (a).

A.2.2 Analyzing expected suboptimality of MIMIC-EMP

In this section we discuss the proof of Theorem 3.3 which bounds the expected suboptimality incurred
by MIMIC-EMP. Recall that the objective is to upper bound J(π∗)−E[J(π̂)] when the learner carries
out MIMIC-EMP. The outline of the proof is to construct two policies πfirst and πorc−first that are
functions of the dataset D.

The policy πfirst is easy to describe: order the expert dataset arbitrarily, and at a state, play the
action in the first trajectory in D that visits it, if it exists. If no such trajectories exist, the policy
plays Unif(A). In particular, we show that the value of πfirst and MIMIC-EMP are the same, taking
expectation over the expert dataset D (Lemma A.5).

On the other hand, we consider an oracle policy πorc−first which is very similar. Indeed, πorc−first

first orders the expert dataset in the same manner as πfirst. At any state, it too plays the action in the
first trajectory in D that visits it, if it exists. However, if such a trajectory does not exist, πorc−first

simply samples an action from the expert’s action distribution and plays it at this state. This explains
the namesake of the policy, since it requires oracle access to the expert’s policy. By virtue of choosing
actions this way, we show that the value of πorc−first in expectation equals J(π∗) (Lemma A.7).

At an intuitive level the elements of the proof seem to be surfacing: πorc−first matches π∗ in value,
but is not available to the learner. However, it shares a lot of similarity to πfirst, which in expectation
matches π̂ in value, the policy we wish to analyze. Informally,

π̂ ⇐⇒ πfirst ≈ πorc−first ⇐⇒ π∗ (20)

Thus to establish the bound, we carry out an analysis of J(πorc−first)− J(πfirst). Indeed we show
that since the two policies are largely the same, an error is incurred only on the trajectories where at
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some point a state is visited where the policies do not match. The final element of the proof is to show
that this event in fact occurs with low probability given an expert dataset of sufficiently large size.

Before delving into the formal definitions of πfirst and πorc−first and other elements of the proof, we
introduce a modicum of relevant notation.

Notation: We assume that the trajectories in the expert dataset D are ordered arbitrarily as
{tr1, · · · , trN}. In addition, we denote each trajectory trn explicitly as {(sn1 , an1 ), · · · , (snH , anH)}.
For each state s ∈ S we define,

Nt,s = {n ∈ [N ] : snt = s} , (21)

as the (totally) ordered set of indices of trajectories in D which visit the state s at time t.

The policy π̂ returned by MIMIC-EMP samples an action from the empirical estimate of the expert’s
policy at each state wherever available. On the remaining states, the learner plays the distribution
Unif(A).

Given the ordered dataset D, we define the policy πfirst(D) as,

πfirst
t (·|s) =

{
δant if |Nt,s| ≥ 1, where n = min(Nt,s),

Unif(A) otherwise.
(22)

In other words, πfirst(D) plays the action in the first trajectory that visits the state s at time t.

In order to analyze the expected suboptimality of π̂(D), we first show that π̂(D) and πfirst(D) have
the same value in expectation, and instead study the policy πfirst(D).

Lemma A.5. E[J(π̂(D))] = E[J(πfirst(D))].

With this result, we can write the expected suboptimality of the learner π̂ as,

J(π∗)− E[J(π̂(D))] = J(π∗)− E[J(πfirst(D))]. (23)

We next move on to the discussion of πorc−first which is an oracle version of πfirst. Informally, at
any state πorc−first plays the action from the first trajectory that visits it in D, if available. However
on the remaining states instead of playing Unif(A), πorc−first samples an action from the expert’s
action distribution and plays it at this state. Thus, πorc−first is coupled with the expert dataset D.

Prior to discussing πorc−first in greater depth, we first introduce some preliminaries. In particular, we
adopt an alternate view of the process generating the expert dataset D which will play a central role
in formally defining πorc−first. We mention that this approach is inspired by the alternate view of
Markov processes in [Bil61].

To this end, we first define an “expert table” which is a fixed infinite collection of actions at each
state and time which the expert draws upon while generating the trajectories in D.

Definition A.2 (Expert table). The expert table, T∗ is a collection of random variables T∗t,s(i)
indexed by t ∈ [H], s ∈ S and i = 1, 2, · · · . Fixing s ∈ S and t ∈ [H], for i = 1, 2, · · · , each
Tπ
t,s(i) is drawn independently ∼ π∗t (·|s).

In a sense, the expert table fixes the randomness in the expert’s non-determinstic policy. As promised,
we next present the alternate view of generating the expert dataset D, where the expert sequentially
samples actions from the expert table at visited states.

Lemma A.6 (Alternate view of generating D). Generate a dataset D of N trajectories as follows:
For the nth trajectory trn, the state sn1 is drawn independently from ρ. The action an1 is assigned as the
first action from T∗1,sn1 (·) that was not chosen in a previous trajectory. Then the MDP independently
samples the state sn2 ∼ P1(·|sn1 , an1 ). In general, at time t the action ant is drawn as the first action in
T∗t,snt (·) that was not chosen at time t in any previous trajectory n′ < n. The subsequent state snt+1

is drawn independently ∼ Pt+1(·|snt , ant ).

The probability of generating a dataset D = {tr1, · · · , trN} by this procedure is =
∏N
n=1 Prπ∗ [trn].

This is the same as if the trajectories were generated by independently rolling out π∗ for N episodes.
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Proof. Starting from the initial state sn1 ∼ ρ, the probability of trn = {(s1, a1), · · · , (sH , aH)} is,

Pr
(

trn = {(s1, a1), · · · , (sH , aH)}
)

= ρ(s1)
(∏

t<H
π∗t (at|st)Pt(st+1|st, at)

)
π∗H(aH |sH).

This relies on the fact that each action in T∗t,s(·) is sampled independently from π∗t (·|s). Carrying out
the same calculation for the n trajectories jointly (which we avoid to keep notation simple) results in
the claim. The important element remains the same: each action in T∗t,snt (·) is sampled independently
from π∗t (·|snt ).

Note that the process in Lemma A.6 generates a dataset having the same distribution as if the
trajectories were generated by independently rolling out π∗ forN episodes. Without loss of generality
we may therefore assume that the expert generates D this way. We adopt this alternate view to enable
the coupling between the expert’s and learner’s policies.

Remark A.2. We emphasize that the infinite table T∗ is not known to the learner and is only used
by the expert to generate the dataset D. However, by virtue of observing the trajectories in D the
learner is revealed some part of T∗. In particular at the state s and time t, the first |Nt,s| actions in
T∗t,s are revealed to the learner.

Recall that πfirst
t (·|s) defined in eq. (22) deterministically plays the action in the first trajectory in D

that visits a state s at time t, if available, and otherwise plays the uniform distribution Unif(A).

Using the alternate view of generating D in Lemma A.6, this policy can be equivalently defined as
one which plays the action at the first position in the table T∗ if observed, and otherwise plays the
uniform distribution.

πfirst
t (·|s) =

{
δT∗t,s(1) if |Nt,s| > 0,

Unif(A), otherwise.
(24)

We now define the oracle policy πorc−first, which plays the first action at each time t ∈ [H] at each
state s ∈ S. That is,

πorc−first
t (·|s) = δT∗t,s(1) (25)

With this definition, we first identify that the expected value of πorc−first equals J(π∗).

Lemma A.7. J(π∗) = E
[
J(πorc−first)

]
.

Plugging this into eq. (23), we see that,

J(π∗)− E[J(π̂(D))] = E
[
J(πorc−first)− J(πfirst)

]
. (26)

Observe that πorc−first and πfirst are in fact identical on all the states that were visited at least once in
the expert dataset (i.e. having |Nt,s| > 0). Therefore, as long as the state s visited at each time t in
an episode has |Nt,s| > 0, both policies collect the same cumulative reward.

Lemma A.8. Fix the expert table T∗ and the expert dataset D. Define Ec as the “good” event that
the trajectory under consideration only visits a state st at each time t ∈ [H] such that |Nt,st | > 0,
i.e. states that have been observed in the expert dataset D at time t. Then,

Eπfirst

[(∑H

t=1
rt(st, at)

)
1 (Ec)

]
= Eπorc−first

[(∑H

t=1
rt(st, at)

)
1 (Ec)

]
(27)

Proof. Both policies are identical on the states such that |Nt,s| > 0. The event Ec guarantees that
only such states are visited in a trajectory. Therefore both expectations are equal.

With these preliminaries, we have most of the ingredients to prove the bound on the expected
suboptimality incurred by MIMIC-EMP. To this end, from eq. (26) we see that,

J(π∗)− J(π̂(D)) = Eπorc−first

[∑H

t=1
rt(st, at)

]
− Eπfirst

[∑H

t=1
rt(st, at)

]
(28)
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Subsequently invoking Lemma A.8, we see that

J(π∗)− J(π̂(D)) = Eπorc−first

[(∑H

t=1
rt(st, at)

)
1 (E)

]
− Eπfirst

[(∑H

t=1
rt(st, at)

)
1 (E)

]
≤ Eπorc−first

[(∑H

t=1
rt(st, at)

)
1 (E)

]
(29)

≤ HPrπorc−first [E ] (30)

where in the last inequality we use the fact that pointwise 0 ≤ rt ≤ 1 for all t ∈ [H]. Taking
expectation gives the inequality,

J(π∗)− E[J(π̂(D))] ≤ HE[Prπorc−first [E ]] (31)

In Lemma A.9 we show that E[Prπorc−first [E ]] is upper bounded by |S|H ln(N)/N , which completes
the proof.

Lemma A.9. E [Prπorc−first [E ]] ≤ |S|H ln(N)
N .

Although the oracle policy πorc−first and the dataset D are coupled, the key intuition behind showing
that the event E occurs with low probability is that: it is not possible that, in expectation πorc−first

visits some state s with high probability, but the same state s visited in the dataset D with low
probability. This is by virtue of the fact that in expectation πorc−first matches π∗ which is the policy
that generates D.

A.3 Known-transition setting under deterministic expert policy

In this section, we describe the proof of Theorem 4.1 (a) which upper bounds the expected subopti-
mality of MIMIC-MD (Algorithm 2).

Recall that MIMIC-MD, true to its name, mimics the expert on the states observed in half the dataset
D1. By virtue of the learner mimicking the expert on states visited in D1, we show that the learner
incurs error only upon visiting a state unobserved in D1 at some point in an episode.

Lemma A.10. Define ED1
= {∃t ∈ [H] : st 6∈ St(D1)} as the event that the policy under consider-

ation visits some state at time t that no trajectory in D1 has visited at time t.

Fixing the expert datset D, for any policy π̂ ∈ Πmimic(D1),

J(π∗)− J(π̂(D)) = Eπ∗
[
1(ED1)

∑H

t=1
rt(st, at)

]
− Eπ̂(D)

[
1(ED1)

∑H

t=1
rt(st, at)

]
. (32)

Simplifying this result further using the fact that the reward function is bounded in [0, 1] results in
eq. (11), recall which we used as a basis for motivating the design of MIMIC-MD in Section 4. In
particular, any policy π̂ that exactly mimics the expert on states observed in D1 has suboptimality
bounded by,

J(π∗)− J(π̂) ≤
∑
s∈S

∑
a∈A

∑H

t=1

∣∣∣Prπ∗
[
ED1 , st = s, at = a

]
− Prπ̂

[
ED1 , st = s, at = a

]∣∣∣
The minimum distance functional considered in MIMIC-MD simply replaces the population term
Prπ∗ [ED1

, st = s, at = a] by its empirical estimate computed using the dataset D2. We follow the
standard analysis of minimum distance function estimators using the triangle inequality, which in
effect reduces the analysis to a question of convergence of the empirical estimate of Prπ∗ [ED1

, st =
·, at = ·] to the population in `1 distance.

Before stating the formal lemma we recall that

T ED1
t (s, a) ,

{
{(s1, a1), · · · , (sH , aH)}

∣∣∣st = s, at = a, ∃τ∈[H] : sτ 6∈ Sτ (D1)
}
. (33)

is defined as the set of trajectories that (i) visits the state s at time t, (ii) plays the action a at this time,
and (iii) at some time τ ∈ [H] visit a state unobserved in D1.
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Lemma A.11. Consider any policy π̂ε ∈ Πmimic(D) which solves the optimization problem in OPT
to an additive error of ε. Fixing the expert dataset D,

J(π∗)− J(π̂ε(D)) ≤ 2
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣∣∣Prπ∗
[
E≤tD1

, st = s, at = a
]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣+ ε.

We emphasize here that
∑

tr∈D2
1(tr∈T D1

t (s,a))

|D2| is the empirical estimate of Prπ̂

[
E≤tD1

, st = s, at = a
]

computed using the trajectories in the dataset D2.
Remark A.3. Taking ε = 0 in Lemma A.11 captures the case where π̂ε is the policy returned by
MIMIC-MD.

The last remaining ingredient in proving the expected suboptimality guarantee of MIMIC-MD in
Theorem 4.1 (a) is to bound the convergence rate of the expectation of the RHS of Lemma A.11. We
carry out this analysis roughly in two parts:

(i) fixing the dataset D1, for each t ∈ [H] we bound the convergence rate of the empirical
distribution estimate (computed using D2) of Prπ̂[ED1 , st = s, at = a] to the population in
`1 distance, and

(ii) we show that the resulting bound (which is a function of D1) has small expectation and
converges to 0 quickly.

This establishes the following bound on the expected suboptimality incurred by MIMIC-MD in
Theorem 4.1 (a) and the policy in Theorem 4.2 which approximately optimizes OPT.
Lemma A.12.∑
s∈S

∑
a∈A

H∑
t=1

E

[∣∣∣∣∣Prπ∗
[
T ED1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T ED1

t (s, a))

|D2|

∣∣∣∣∣
]
≤
√

8|S|H2

N
∧ 8

3

|S|H 3
2

N

(34)

To show the high probability guarantee on MIMIC-MD in Theorem 4.1 (b), the key approach is
similar. However, we instead

(i) fix D1 and use sub-Gaussian concentration [BLM13] to establish high probability deviation
bounds on the empirical estimate of Prπ̂[ED1 , st = s, at = a], and

(ii) use missing mass concentration (Theorem A.2) to show that the resulting deviations (which
are a function of D1) concentrate.

Lemma A.13. Fix δ ∈ (0,min{1, H/5}). Then, with probability ≥ 1− δ,∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣∣∣Prπ∗
[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣
.
|S|H3/2

N

(
1 +

3 log(2|S|H/δ)√
|S|

)1/2√
log(2|S|H/δ). (35)

The high probability guarantee of MIMIC-MD follows suit by invoking Lemma A.11 and
Lemma A.13.

A.4 Proof of lower bounds

In this section we discuss the proof of Theorem 5.1 establishing lower bounds on the expected
suboptimality in the no-interaction, active and known-transition settings.

A.4.1 Active and no-interaction settings

In this section we discuss the proof of the lower bounds in Theorem 5.1 (a) for the no-interaction and
active settings. We emphasize that the active setting is strictly a generalization of the no-interaction
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setting: they are no different if the learner queries and plays the expert’s action at each time while
interacting with the MDP.

Formally, in the active setting, we assume the learner sequentially rolls out policies π1, · · ·πN to
generate trajectories tr1, · · · , trN . The learner is aware of the expert’s action at each state visited in
each trajectory trn, however may or may not choose to play this action while rolling out πn. We
assume that the policy πn is learnt causally, and can depend on all the previous information collected
by the learner: the trajectories tr1, · · · , trn−1, as well as the expert’s policy at each state visited in
these trajectories.

Notation: We use D = tr1, · · · , trn to denote the trajectories collected by the learner by rolling out
π1, · · · , πN . In addition the learner exactly knows the expert’s policy π∗t (·|s) at all states s ∈ St(D).
We also define A = {π∗t (·|s) : t ∈ [H], s ∈ St(D)} as the expert’s policy at states visited in D,
which is also known to the learner by virtue of actively querying the expert.

The expert policy is deterministic in the lower bound instances we construct. Therefore, we define
Πmimic(D,A) (similar to Πmimic(D) in eq. (4)) as the family of deterministic policies which mimics
the expert on the states visited in D. Namely,

Πmimic(D,A) ,
{
π ∈ Πdet : ∀t ∈ [H], s ∈ St(D), πt(s) = πAt (s)

}
(36)

where δπAt (s) is the policy observed by the learner upon actively querying the expert in a trajectory that
visits s at time t. Informally, Πmimic(D,A) is the family of expert policies which are “compatible”
with the dataset (D,A) collected by the learner.

Define MS,A,H as the family of MDPs over state space S , action space A and with episode length H .

In order to prove the lower bound on the expected suboptimality of any learner π̂(D,A), it suffices
lower bound the Bayes expected suboptimality. Namely, it suffices to find a joint distribution P over
MDPs and expert policies supported on MS,A,H ×Πdet−exp such that,

E(π∗,M)∼P

[
JM(π∗)− E [JM(π̂(D,A))]

]
& min

{
H,
|S|H2

N

}
. (37)

Construction of P: First we choose the expert’s policy uniformly from Πdet. That is, for each
t ∈ [H] and s ∈ S , π∗t (s) ∼ Unif(A). Conditioned on π∗, the distribution over MDPs induced by P
is deterministic and given by the MDPM[π∗] in fig. 2. TheM[π∗] is defined with respect to a fixed
initial distribution over states ρ = {ξ, · · · , ξ, 1−(|S|−2)ξ, 0} where ξ = 1

N+1 . In addition, there is
a special state b ∈ S which we refer to as the “bad state”. At each state s ∈ S \ {b}, choosing the
expert’s action renews the state in the initial distribution ρ and dispenses a reward of 1, while any
other choice of action deterministically transitions to the bad state and offers no reward. In addition,
the bad state is absorbing and dispenses no reward irrespective of the choice of action. That is,

Pt(·|s, a) =

{
ρ, s ∈ S \ {b}, a = π∗t (s)

δb, otherwise,
(38)

and the reward function of the MDP is given by,

rt(s, a) =

{
1, s ∈ S \ {b}, a = π∗t (s)

0, otherwise.
(39)

We first state a simple consequence of the construction of the MDP instances and P .
Lemma A.14. Consider any policy π∗ ∈ Πdet. Then, the value of π∗ on the MDPM[π∗] is H .

Proof. Playing the expert’s action at any state in S \ {b} is the only way to accrue non-zero reward,
and in fact accrues a reward of 1. In addition, note that the expert never visits the bad state b by virtue
of the distribution ρ placing no mass on b. Therefore, the value of π∗ on the MDPM[π∗] is H .

The intuition behind the lower bound construction is as follows. Although the learner can actively
query the expert, at the states unvisited in the dataset D, the learner has no idea about the expert’s
policy or the transitions induced under different actions. Intuitively it is clear that the learner cannot
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1

∼ρ

· · · |S|−1

∼ρ

b

Figure 2: MDP template when Nsim = 0: Upon playing the expert’s (green) action at any state except
b, learner is renewed in the initial distribution ρ = {ξ, · · ·, ξ, 1−(|S|−2)ξ, 0} where ξ= 1

N+1 . Any
other choice of action (red) deterministically transitions the state to b.

guess the expert’s action with probability ≥ 1/2 at such states, a statement which we prove by
leveraging the Bayesian construction. In turn, the learner is forced to visit the bad state b at the next
point in the episode, and then on collects no reward.

Therefore, to bound the expected reward collected by a learner, it suffices to bound the probability that
a learner visits a state unvisited in the expert dataset. The remainder of the proof is in showing that in
this MDP construction, in expectation any learner visits such states with probability ε & |S|/N at
each point in an episode. Moreover, conditioned on the dataset D, these events occur independently
across time. Thus informally, the expected suboptimality of a learner is lower bounded by,

Hε+ (H − 1)ε(1− ε) + · · ·+ (1− ε)H & min{H,H2ε}. (40)

where ε = |S|/N .

We return to a more formal exposition of the proof of the lower bound. Recall that our objective is to
lower bound the Bayes expected suboptimality of π̂. Invoking Lemma A.14, the objective is to lower
bound

E(π∗,M)∼P

[
H − E

[
JM(π̂(D,A))

]]
(41)

To this end, we first try to understand the conditional distribution of the expert’s policy given the
dataset (D,A) collected by the learner. Recall that the dataset D contains trajectories generated by
rolling out a sequence of policies π1, · · · , πn, and A captures the expert’s policy at states visited in
D.

Lemma A.15. Conditioned on the dataset (D,A) collected by the learner, the expert’s deterministic
policy π∗ is distributed ∼ Unif(Πmimic(D,A)). In other words, at each state visited in the expert
dataset, the expert’s choice of action is fixed as the one returned when the expert was actively queried
at this state. At the remaining states, the expert’s choice of action is sampled uniformly from A.

Definition A.3. Define P(D,A) as the joint distribution of (π∗,M) conditioned on the dataset
(D,A) collected by the learner. In particular, π∗ ∼ Unif(Πmimic(D,A)) andM =M[π∗].

From Lemma A.15 and the definition of P(D,A) in Definition A.3, we apply Fubini’s theorem to
give,

E(π∗,M)∼P

[
H − E [JM(π̂)]

]
= E

[
E(π∗,M)∼P(D,A) [H − JM(π̂(D,A))]

]
(42)

Next we relate this to the first time the learner visits a state unobserved in D.

Lemma A.16. Define the stopping time τ as the first time t that the learner encounters a state st 6= b
that has not been visited in D at time t. That is,

τ =

{
inf{t : st 6∈ St(D) ∪ {b}} ∃t : st 6∈ St(D) ∪ {b}
H otherwise.

(43)

Then, conditioned on the dataset (D,A) collected by the learner,

E(π∗,M)∼P(D,A)

[
J(π∗)− E [J(π̂)]

]
≥
(

1− 1

|A|

)
E(π∗,M)∼P(D,A)

[
Eπ̂(D,A) [H − τ ]

]
(44)
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1 · · · |S|

Figure 3: MDP template when Nsim →∞, Each state is absorbing, initial distribution is given by
{ξ, · · ·, ξ, 1− (|S|−1)ξ} where ξ = 1

N+1

Plugging the result of Lemma A.16 into eq. (42), we have that,

E(π∗,M)∼P

[
J(π∗)− E [J(π̂)]

]
≥
(

1− 1

|A|

)
E
[
E(π∗,M)∼P(D,A) [Eπ̂ [H − τ ]]

]
(45)

(i)

≥
(

1− 1

|A|

)
H

2
E
[
E(π∗,M)∼P(D,A)

[
Prπ̂

[
τ ≤ bH/2c

]]]
(46)

=

(
1− 1

|A|

)
H

2
E(π∗,M)∼P

[
E
[
Prπ̂

[
τ ≤ bH/2c

]]]
(47)

where (i) uses Markov’s inequality and the last equation uses Fubini’s theorem.

The last remaining element of he proof is to indeed bound the probability that the learner visits a
state unobserved in the dataset before time bH/2c. In Lemma A.17 we prove that for any learner π̂,
E(π∗,M)∼P [E [Prπ̂ [τ ≤ bH/2c]]] is lower bounded by & min{1, |S|H/N}. Therefore,

E(π∗,M)∼P

[
J(π∗)− E [J(π̂)]

]
&

(
1− 1

|A|

)
H

2
min

{
1,
|S|H
N

}
. (48)

Since
(

1− 1
|A|

)
is a constant for |A| ≥ 2 the statement of Theorem 5.1 follows.

Lemma A.17. For any learner policy π̂,

E(π∗,M)∼P

[
E
[
Prπ̂

[
τ ≤ bH/2c

]]]
≥ 1−

(
1− |S| − 2

e(N + 1)

)bH/2c
& min

{
1,
|S|H
N

}
. (49)

A.4.2 Known-transition setting

As in the proof of Theorem 5.1 (a), in order to prove the lower bound on the expected suboptimality
of any learner π̂(D,A), it suffices lower bound the Bayes expected suboptimality. Namely, it suffices
to find a joint distribution P over MDPs and expert policies supported on MS,A,H ×Πdet−exp such
that,

E(π∗,M)∼P

[
J(π∗)− E [J(π̂(D,P ))]

]
& min

{
H,
|S|H
N

}
. (50)

Construction of P As in the proof of Item 5.1 (a), we first sample the expert’s policy uniformly
from Πdet. That is, for each t ∈ [H] and s ∈ S , the action π∗t (s) is drawn uniformly from A. Condi-
tioned on π∗, the distribution over MDPs induced by P is deterministic and given by the construction
M[π∗] in fig. 2.M[π∗] is defined with initial distribution over states ρ = {ξ, · · · , ξ, 1−(|S|−1)ξ}
where ξ = 1

N+1 . Each state s ∈ S is absorbing inM[π∗]. Formally, for each s ∈ S the transition
function ofM[π∗] is,

Pt(·|s, a) = δs. (51)

At any state s, choosing the expert’s action π∗t (s) returns a reward of 1, while any other choice of
action offers 0 reward.

rt(s, a) =

{
1, a = π∗t (s)

0, otherwise.
(52)

Note that all the MDPsM[π∗] for π∗ ∈ Πdet share a common set of transition functions and initial
state distribution. Therefore, fixing P and ρ, we define P ′ to be the joint distribution over expert
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policies and reward functions induced by P . Then the objective is to lower bound the Bayes expected
suboptimality,

E(π∗,r)∼P′
[
Jr(π

∗)− E [Jr(π̂(D,P ))]
]
. (53)

In this construction, it is yet again the case that the expert’s policy π∗ collects maximum reward H
onM[π∗].
Lemma A.18. Consider any policy π∗ ∈ Πdet. Then, the value of π∗ on the MDPM[π∗] is H .

Proof. At each state visited π∗ plays the only action which accrues a reward of 1. By accumulating a
local reward of 1 at each step, π∗ has value equal to H on the MDPM[π∗].

With this explanation, invoking Lemma A.18 shows that out objective is to now lower bound,

E(π∗,r)∼P′ [H − E [Jr(π̂(D,P ))]] . (54)

Similar to Lemma A.15, we can compute the conditional distribution of the expert’s policy (which
marginally follows the uniform prior) given the expert dataset D.
Lemma A.19. Conditioned on D, the distribution of the expert policy π∗ is uniform over the family
of deterministic policies Πmimic(D) (as defined in eq. (4)).

For brevity of notation, we define this conditional distribution of the expert policy given the dataset
D by P ′(D).
Definition A.4. Define P ′(D) as the joint distribution of (π∗, r) conditioned on the expert dataset
D. In particular, π∗ ∼ Unif(Πmimic(D)) and r = r[π∗].

From Lemma A.19 and Definition A.4 and applying Fubini’s theorem,

E(π∗,r)∼P′ [E [H − Jr(π̂(D,P ))]] = E
[
E(π∗,r)∼P′(D) [H − Jr(π̂(D,P ))]

]
(55)

Fixing the expert dataset D, we subsequently show that the suboptimality incurred by the learner
is Ω(H) if initialized in a state unobserved in the expert dataset D. The key intuition is to identify
that here the learner’s knowledge of the transition function plays no role as each state in the MDP is
absorbing. Therefore, once again at states unvisited in the expert dataset, the learner cannot guess the
expert’s action with high probability at states, leading to errors that growing linearly in H .
Lemma A.20. For any learner’s policy π̂ conditioned on the expert dataset D,

E(π∗,r)∼P′(D) [H − Jr(π̂(D,P ))] ≥ H
(

1− 1

|A|

)(
1− ρ(S1(D))

)
(56)

Therefore, from Lemma A.20 and eq. (55),

E(π∗,r)∼P′ [E [H − Jr(π̂(D,P ))]] ≥ H
(

1− 1

|A|

)
E
[
1− ρ(S1(D))

]
, (57)

The last ingredient left to show is that the probability mass on states unobserved in the expert dataset,
1− ρ(S1(D)), is not too small in expectation. Here we realize that this boils down to calculating the
expected missing mass of the distribution ρ given N samples drawn independently. By construction
of ρ, we show that this is & |S|/N in expectation.

Lemma A.21. E[1− ρ(S1(D))] ≥ |S|−1
e(N+1) .

Plugging Lemma A.21 back into eq. (57) certifies a lower bound on the Bayes expected suboptimality
of any learner π̂. This implies the existence of an MDP on which the learner’s expected suboptimality
is & |S|H/N .
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B.1 Missing proofs for analysis of behavior cloning

B.1.1 Proof of Lemma A.1

Since the expert dataset D is composed of trajectories generated by i.i.d. rollouts of π∗, we have that
Pr[s 6∈ Sτ (D)] = (1− Prπ∗ [sτ = s])|D|. Therefore,

H∑
t=1

∑
s∈S

Prπ∗ [st = s] Pr[s 6∈ St(D)] ≤
H∑
τ=1

∑
s∈S

Prπ∗ [sτ = s]
(

1− Prπ∗ [sτ = s]
)|D|

(58)

Noting that maxx∈[0,1] x(1− x)N = 1
N+1

(
1− 1

N+1

)N
≤ 4

9N , from eq. (58),

H∑
τ=1

∑
s∈S

Prπ∗ [sτ = s]
(

1− Prπ∗ [sτ = s]
)|D|

≤
H∑
τ=1

∑
s∈S

4

9|D|
≤ 4

9

|S|H
|D|

(59)

B.1.2 Proof of Theorem A.2

To prove this theorem, we invoke a result of [MOHG03] on the concentration of missing mass.
Theorem B.1 (Concentration of missing mass [MOHG03]). Consider an arbitrary distribution ν
on X , and let XN i.i.d.∼ ν be a dataset of N samples drawn i.i.d. from ν. Let β ≥ 0 and σ ≥ 0 be
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constants such that
∑
x∈X (ν(x))2e−(N−β)ν(x) ≤ σ2. For any 0 ≤ ε ≤ βσ2, we have the following,

Pr
(
m0(ν,XN )− E[m0(ν,XN )] ≥ ε

)
≤ exp

(
− ε2

2σ2

)
. (60)

We prove Theorem A.2 by an appropriate choice of parameters β, σ2 and ε (as functions of the
confidence parameter δ). In particular, choose β = N − N√

log(1/δ)
≥ N

3 . For this choice of β,

∑
x∈X

(ν(x))2e−(N−β)ν(x) =
∑
x∈X

(ν(x))2e
− N√

log(1/δ)
ν(x)

, (61)

≤ |X | sup
ν∈[0,1]

ν2e
− N√

log(1/δ)
ν
, (62)

(i)
= |X |

(
4e−2 log(1/δ)

N2

)
. (63)

where (i) involves computing the supremum explicitly by differentiation. Therefore, for β =
N− N√

log(H/δ)
, a feasible choice of σ2 in Theorem B.1 that upper bounds

∑
x∈X (ν(x))2e−(N−β)ν(x)

is 3|X | log(1/δ)
N2 . Choose ε =

3
√
|X | log(1/δ)

N (note that this choice satisfies ε ≤ βσ2 since β ≥ N/3

and σ2 = 9|X | log(1/δ)
N2 ). Invoking Theorem B.1 with this choice of β, σ2 and ε,

Pr

(
m0(ν,XN )− E[m0(ν,XN )] ≥

3
√
|X | log(1/δ)

N

)
≤ exp

−
(

3
√
|X |N−1 log(1/δ)

)2

9|X |N−2 log(1/δ)

 = δ.

(64)
This proves Theorem A.2.

B.1.3 Proof of Lemma A.3

We decompose
∑H
τ=1

∑
s∈S Prπ∗ [sτ = s]1(s 6∈ Sτ (D)) as

∑
τ Zτ where Zτ =

∑
s∈S Prπ∗ [sτ =

s]1(s 6∈ Sτ (D)). Observe that for each fixed τ , Zτ is in fact the missing mass of the distribution over
states at time τ rolling out π∗, given N samples from the distribution. Applying the missing mass
concentration inequality from Theorem A.2, with probability ≥ 1− δ/H ,

Zτ − E[Zτ ] ≤
3
√
|S| log(H/δ)

N
. (65)

Therefore, by union bounding, with probability ≥ 1− δ,

H∑
τ=1

Zτ ≤
H∑
τ=1

E[Zτ ] +H ·
3
√
|S| log(H/δ)

N
. (66)

Using
∑H
τ=1 Zτ =

∑H
τ=1

∑
s∈S Prπ∗ [sτ = s]1(s 6∈ Sτ (D)) and applying Lemma A.1 to claim that∑H

τ=1 E[Zτ ] ≤ 4|S|H/9N completes the proof.

B.2 Reduction of IL to supervised learning under TV distance (Lemma A.4)

For each τ ∈ [H], define the policy π̃τ = {π∗1 , · · · , π∗τ , π̂τ+1, · · · , π̂H} with π̃0 = π̂. π̃τ plays the
expert’s policy till time τ and the learner’s policy for the remainder of the episode. Then,

J(π∗)− J(π̂) =
∑H

τ=1
J(π̃τ )− J(π̃τ−1) (67)

For any fixed τ ∈ [H], observe that π̃τ and π̃τ−1 roll out the same policy till time τ−1. Therefore the
expected reward collected until time τ − 1 for both policies is the same. By linearity of expectation,

J(π̃τ )− J(π̃τ−1) =
∑H

t=τ
Eπ̃τ [rt(st, at)]− Eπ̃τ−1 [rt(st, at)] . (68)
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Now fix some t ≥ τ and consider Eπ̃τ [rt(st, at)]− Eπ̃τ−1 [rt(st, at)]. First observe that,

Eπ̃τ−1 [rt(st, at)] = E sτ∼fτπ∗
aτ∼π̂τ (·|sτ )

[ Eπ̃τ−1 [rt(st, at)|sτ , aτ ] ] (69)

=
∑
s∈S

∑
a∈A

fτπ∗(s) π̂τ (a|s) Eπ̃τ−1 [rt(st, at)|sτ = s, aτ = a] (70)

=
∑
s∈S

∑
a∈A

fτπ∗(s) π̂τ (a|s) Eπ̂ [rt(st, at)|sτ = s, aτ = a] (71)

where in the last equation we use the fact that π̃τ−1 rolls out π̂ time τ onwards, and the fact that we
condition on the state visited and action played at time τ . Moreover, we also use the fact that rt(st, at)
only depends on (st, at) which appears at time t ≥ τ . Noting that π̃τ = (π∗1 , · · · , π∗τ , π̂τ+1, · · · , π̂H),
a similar decomposition gives,

Eπ̃τ [rt(st, at)] =
∑
s∈S

∑
a∈A

fτπ∗(s) π
∗
τ (a|s) Eπ̃τ [rt(st, at)|sτ = s, aτ = a] (72)

=
∑
s∈S

∑
a∈A

fτπ∗(s) π
∗
τ (a|s) Eπ̂ [rt(st, at)|sτ = s, aτ = a] (73)

where in the last equation we similarly use the fact that π̃τ rolls out π̂ time τ + 1 onwards, and the
fact that we condition on the action played at time τ . Subtracting eq. (71) from eq. (73),

Eπ̃τ [rt(st, at)]− Eπ̃τ−1 [rt(st, at)]

≤
∑
s∈S

fτπ∗(s)
∑
a∈A

Eπ̂ [rt(st, at)|sτ = s, aτ = a]
(
π∗τ (a|s)− π̂τ (a|s)

)
(74)

Observe that Eπ̂ [rt(st, at)|sτ = s, aτ = a] is a function of (s, a) and is bounded in [0, 1] (since
pointwise 0 ≤ rt ≤ 1). Therefore,

Eπ̃τ [rt(st, at)]− Eπ̃τ−1 [rt(st, at)] ≤
∑
s∈S

fτπ∗(s) sup
g:A→[0,1]

∑
a∈A

g(a)
(
π∗τ (a|s)− π̂τ (a|s)

)
(75)

(i)
=
∑
s∈S

fτπ∗(s)TV
(
π∗τ (a|s), π̂τ (a|s)

)
(76)

= Es∼fτ
π∗

[
TV
(
π∗τ (a|s), π̂τ (a|s)

)]
. (77)

where (i) uses the dual representation of TV distance. Summing over t ≥ τ and τ ∈ [H] and invoking
eqs. (67) and (68) we get,

J(π∗)− J(π̂) ≤ H
H∑
τ=1

Es∼fτ
π∗

[
TV
(
π∗τ (a|s), π̂τ (a|s)

)]
. (78)

Using the definition of Tpop (eq. (19)) completes the proof.

B.3 Missing proofs for Theorem 3.3

B.3.1 Proof of Lemma A.5

Recall that we assume that the trajectories in the expert dataset are ordered arbitrarily as {tr1, · · · , trN}
where trn = {(sn1 , an1 ), · · · , (snH , anH)}. Nt,s = {n ∈ [N ] : snt = s} as defined in eq. (21) is the set
of indices of trajectories in D that visit the state s at time t. In order to prove this result, suppose the
learner’s policy π̂

With this, we define the randomized policy Xunif(D) as,

Xunif
t (·|s) =

{
δ
a
n(t,s)
t

if |Nt,s| ≥ 1,

Unif(A) otherwise.
(79)

where each nt,s is a random variable independently sampled from Unif(Nt,s) whenever Nt,s 6= ∅.
Note that fixing D and n(t, s) for all t, s such that Nt,s 6= ∅, the random variable Xunif is a fixed
stochastic policy.
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The policy Xunif(D) in a sense corresponds to just extracting the randomness in the actions chosen
at visited states in the policy π̂(D) returned by MIMIC-EMP. In particular, it is a short proof to see
that the random variables J(Xunif(D)) and J(π̂(D)) have the same expectation.

Lemma B.2. E[J(π̂(D))] = E[J(Xunif(D))].

Proof. Consider some trajectory tr = {(s1, a1), · · · , (sH , aH)}. Fixing the expert dataset D,

E
[
PrXunif (D)[tr]

∣∣∣D] = E

[
ρ(s1)

(∏H−1

t=1
Xunif
t (at|st)Pt(st+1|st, at)

)
Xunif
t (aH |sH)

]
(80)

From eq. (79) and Algorithm 1, observe that Xunif(·|s)
t = π̂(·|s) = Unif(A) at states s : Nt,s = ∅

(i.e. which were not visited in the expert dataset). Moreover, on the remaining states Xunif
t (at|st) is

independently sampled from the empirical distribution over states at time t. In particular, this means
that E[Xunif

t (at|st)] = π̂t(at|st). Plugging this in gives,

E[PrXunif (D)[tr]] = Prπ̂(D)[tr] (81)

Multiplying both sides by
∑H
t=1 rt(st, at), summing over all trajectories tr and taking expectation

with respect to the expert dataset D completes the proof.

First we provide an auxiliary result that is critical to showing that the policies J(Xunif(D)) and
πfirst(D) have the same value in expectation.

To this end, first define D≤τ,<τ = {((sn1 , an1 ), · · · , (snτ−1, a
n
τ−1), snτ ) : n ∈ [N ]} to be the truncation

of the expert dataset D till time τ , excluding the actions played at this time. D≤τ,≤τ and other similar
notations are defined analogously.
Lemma B.3. Condition on D≤τ,<τ which represents the truncation of trajectories in the expert
dataset D till the state visited at time τ . At any state s that is visited at least once in D at time τ
(namely with |Nτ,s| > 0), the actions {anτ : n ∈ Nτ,s} played at trajectories that visit the state s at
time τ are drawn independently and identically ∼ π∗τ (·|s).

Proof. Recall that we condition on D≤τ,<τ which captures trajectories in the expert dataset truncated
till the state visited at time τ . Since each trajectory trn ∈ [N ] is rolled out independently, the action
anτ in each trajectory trn is drawn independently from π∗τ (·|snτ ).

More importantly, conditioned on D≤τ,<τ the states snτ visited in different trajectories is determined.
This implies that Nτ,s for s ∈ S is a measurable function of D≤τ,<τ .

These two statements together imply that states s ∈ S having Nτ,s > 0 (which is a measurable
function of D≤τ,<τ ) are such that all the actions {anτ : n ∈ Nτ,s} are independent.

Proof of Lemma A.5. In order to prove this result, we use an inductive argument. The induction
hypothesis is that the expected value of Xunif(D) and πfirst(D) are the same, conditioned on the
expert dataset till time t and the actions from the empirical distribution sampled by Xunif(D) at
different states till time t. We formalize this hypothesis in equations after first proving the base case.
To recognize the fact that we prove the statement starting from t = H , we define HH as the base
case, and inductively proveHt−1 assuming the hypothesisHt.
First observe that,

E
[
J(Xunif(D))

∣∣∣D≤H,<H ,{n(t, s)
∣∣∣ t ≤ H, s : Nt,s > 0

}]
= E

[
J(πfirst(D))

∣∣∣D≤H,<H] (82)

This is because conditioned on D≤H,<H , the only randomness is in the actions that are played in
the different trajectories at time H . By Lemma B.3 these are distributed i.i.d. ∼ π∗t (·|s). Taking
expectation with respect to {nH,s : t ≤ H, s : Nt,s > 0}, results in proof of the base case for t = H ,

HH : E
[
J(Xunif(D))

∣∣∣D≤H,<H ,{n(t, s)
∣∣∣ t < H, s : Nt,s > 0

}]
= E

[
J(πfirst(D))

∣∣∣D≤H,<H]
In general consider the hypothesisHτ ,

Hτ : E
[
J(Xunif(D))

∣∣∣D≤τ,<τ ,{n(t, s)
∣∣∣ t < τ, s : Nt,s > 0

}]
= E

[
J(πfirst(D))

∣∣∣D≤τ,<τ].
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Taking expectation with respect to {snτ : n ∈ [N ]}, where conditionally snτ ∼ Pτ (·|snτ−1, a
n
τ−1),

E
[
J(Xunif(D))

∣∣∣D<τ,<τ ,
{
n(t, s)

∣∣∣ t < τ, s : Nt,s > 0
}]

= E
[
J(πfirst(D))

∣∣∣D<τ,<τ

]
. (83)

Furthermore, taking expectation with respect to the actions {anτ : n ∈ [N ]} results in,

E
[
J(Xunif(D))

∣∣∣D<τ,<τ−1,
{
n(t, s)

∣∣∣ t < τ, s : Nt,s > 0
}]

= E
[
J(πfirst(D))

∣∣∣D<τ,<τ−1

]
(84)

Invoking Lemma B.3, we see that the expectation on the LHS is the same irrespective of the choice
of indices {n(τ, s) : s : Nτ,s > 0} which the policy Xunif chooses to play. Therefore,

E
[
J(Xunif(D))

∣∣∣D<τ,<τ−1,
{
n(t, s)

∣∣∣ t < τ − 1, s : Nt,s > 0
}]

= E
[
J(πfirst(D))

∣∣∣D<τ,<τ−1

]
(85)

This proves the induction hypothesisHτ−1 and consequently the hypothesisH1. Taking expectation
on both sides ofH1 with respect to sn1

i.i.d.∼ ρ proves the claim.

B.3.2 Proof of Lemma A.7

Fixing the table T∗, the probability of observing the trajectory tr = {(s1, a1), · · · , (sH , aH)} under
the deterministic policy πorc−first is,

Prπorc−first(tr) = ρ(s1)

(
H−1∏
t=1

1
(
at = T∗t,st(1)

)
Pt(st+1|st, at)

)
1
(
aH = T∗H,sH (1)

)
. (86)

Since the actions T∗t,st(1) are independently drawn from π∗t (·|st), taking expectation, we see that

E [Prπorc−first(tr)] = ρ(s1)

(
H−1∏
t=1

π∗t (at|st)Pt(st+1|st, at)

)
π∗H(aH |sH) = Prπ∗(tr). (87)

Multiplying both sides by
∑H
t=1 rt(st, at) and summing over all trajectories completes the proof.

B.3.3 Proof of Lemma A.9

Recall that the “failure” E is defined as the event that at some time t ∈ [H], a state st is visited such
that |Nt,st | = 0, i.e. that was not visited in the expert dataset. By union bounding,

E [Prπorc−first [E ]] ≤
H∑
t=1

∑
s∈S

E [Prπorc−first [Es,t]] , (88)

where Es,t is the event that a failure occurs at the state s at time t, i.e. the state s is visited at time t
and |Nt,s| = 0. Es,t is the intersection of two events. Therefore we have the upper bound,

E [Prπorc−first [Es,t]] ≤ min
{

E [Prπorc−first [st = s]] ,E [Prπorc−first [|Ns,t| = 0]]
}
. (89)

Observe that these two terms in the minimum are easy to compute. Firstly, using eq. (87), we have
that,

E [Prπorc−first [st = s]] = Prπ∗ [st = s]. (90)
On the other hand,

E [Prπorc−first [|Ns,t| = 0]] = E[1(|Ns,t| = 0)] = (1− Prπ∗ [st = s])N (91)

where the last equation uses Lemma A.6. Putting together eqs. (90) and (91) with eq. (89),

E [Prπorc−first [Es,t]] ≤ min

{
Prπ∗ [st = s],

(
1− Prπ∗ [st = s]

)N}
. (92)

In Lemma B.4 we show that the RHS is upper bounded by log(N)/N . Therefore,

E [Prπorc−first [Es,t]] ≤
logN

N
. (93)

Plugging back into eq. (88) completes the proof.
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Lemma B.4. For any x ∈ [0, 1] and N > 1, min{x, (1− x)N} ≤ logN
N .

Proof. x is an increasing function, while (1− x)N is decreasing. For x = logN
N ,

(1− x)N =

(
1− logN

N

)N
≤ e− logN ≤ N−1 (94)

Therefore for x ≥ log(N)
N , min{x, (1− x)N} ≤ 1

N . Therefore min{x, (1− x)N} ≤ logN
N .

B.4 Missing proofs for Theorems 4.1 (a) and 4.1 (b)

B.4.1 Proof of Lemma A.10

Observe that the complement EcD1
is the event that the policy under consideration only visits states

that were visited in at least one trajectory in the expert dataset.

To prove the statement, it suffices to prove that fixing the expert dataset D,

Eπ∗
[
1(EcD1

)
∑H

t=1
rt(st, at)

]
= Eπ̂

[
1(EcD1

)
∑H

t=1
rt(st, at)

]
. (95)

The learner mimics the expert at all the states observed in the expert dataset, i.e. having |Nt,s| > 0.
Observe that when the event EcD1

occurs, all the states visited in a trajectory have |Nt,s| > 0. Thus,
both expectations are carried out with respect to the same policy and are hence equal. More precisely,
observe that,

Eπ̂

[
1(EcD1

)
∑H

t=1
rt(st, at)

]
= E

s1∼ρ, t∈[H],
at∼π̂t(·|st)

st+1∼P (·|st,at)

[
1(EcD1

)
∑H

t=1
rt(st, at)

]
(96)

(i)
= E

s1∼ρ, t∈[H],
at∼π∗t (·|st)

st+1∼P (·|st,at)

[
1(EcD1

)
∑H

t=1
rt(st, at)

]
(97)

= Eπ∗
[
1(EcD1

)
∑H

t=1
rt(st, at)

]
(98)

where (i) uses the fact that when st ∈ St(D1) (as implied by EcD1
), then, π∗t (·|st) = π̂t(·|st).

B.4.2 Proof of Lemma A.11

First observe that we can write the reward rt(st, at) accrued in some trajectory at time t equals∑
s∈S

∑
a∈A rt(s, a)1((st, at) = (s, a)). Therefore, from Lemma A.10,

J(π∗)− J(π̂) =
∑
s∈S

∑
a∈A

H∑
t=1

rt(s, a)
(

Prπ∗
[
ED1

, st=s, at=a
]
− Prπ̂

[
ED1

, st=s, at=a
])

≤
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣Prπ∗
[
ED1 , st = s, at = a

]
− Prπ̂

[
ED1 , st = s, at = a

]∣∣∣
=
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣Prπ∗
[
T ED1
t (s, a)

]
− Prπ̂

[
T ED1
t (s, a)

]∣∣∣ (99)

where the inequality follows from the assumption that 0 ≤ rt(s, a) ≤ 1 and the last equation follows
from the definition T ED1

t (s, a) = {{(sτ , aτ )}Hτ=1|st=s, at=a, ∃τ∈[H] : sτ 6∈ Sτ (D1)} is the set
of trajectories that visit (s, a) at time t and at some point t′ in the episode visit a state not visited
in any trajectory at time t′ in D1. Using the definition of the learner’s policy π̂ in the optimization
problem OPT and applying the triangle inequality,

J(π∗)− J(π̂) ≤
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣∣∣Prπ∗
[
T ED1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T ED1

t (s, a))

|D2|

∣∣∣∣∣
+

∣∣∣∣∣
∑

tr∈D2
1(tr ∈ T ED1

t (s, a))

|D2|
− Prπ̂

[
T ED1
t (s, a)

]∣∣∣∣∣ . (100)
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Observe that the expert’s policy π∗ is a feasible policy to the optimization problem OPT. Since π̂ is
the minimizer of this optimization problem, we have the upper bound,

J(π∗)− J(π̂) ≤ 2
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣∣∣Prπ∗
[
T ED1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T ED1

t (s, a))

|D2|

∣∣∣∣∣ . (101)

B.4.3 Proof of Lemma A.12

Recall that the bound in Lemma A.11 applies when the expert dataset D is fixed. Also note that we
carry out sample splitting in Algorithm 2 to give datasets D1 and D2. Fixing the dataset D2 taking
expectation on both sides of Lemma A.11,

J(π∗)− E [J(π̂)] ≤ 2
∑
s∈S

∑
a∈A

H∑
t=1

E

[∣∣∣∣∣Prπ∗
[
T ED1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T ED1

t (s, a))

|D2|

∣∣∣∣∣
]
.

By Jensen’s inequality, we can upper bound by the quadratic deviation,

J(π∗)− E [J(π̂)] ≤

2
∑
s∈S

∑
a∈A

H∑
t=1

E

(Prπ∗
[
T ED1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T ED1

t (s, a))

|D2|

)2
1/2

(102)

Observe that each trajectory tr ∈ D2 is generated by independently rolling out π∗. Therefore,
1
|D2|

∑
tr∈D2

1(tr ∈ T ED1
t (s, a)) is an unbiased estimate of Prπ∗ [T

ED1
t (s, a)]. Therefore the variance

in eq. (102) can be bounded as (here tr1 is an arbitrary trajectory in D2),

J(π∗)− E [J(π̂)] ≤ 2
∑
s∈S

∑
a∈A

H∑
t=1

(
1

|D2|
Var

[
1(tr1 ∈ T

ED1
t (s, a)

])1/2

(103)

≤ 2
∑
s∈S

∑
a∈A

H∑
t=1

(
1

|D2|
Prπ∗

[
T ED1
t (s, a)

])1/2

(104)

where the last inequality uses the fact that the variance of an indicator function is at most its mean,
and that each tr ∈ D2 is independently drawn by rolling out π∗. Taking expectation with respect to
the dataset D1, and applying Jensen’s inequality,

J(π∗)− E [J(π̂)] ≤ 2
∑
s∈S

∑
a∈A

H∑
t=1

1

|D2|1/2
(

E
[
Prπ∗

[
T ED1
t (s, a)

]])1/2

(105)

= 2
∑
s∈S

H∑
t=1

1

|D2|1/2
(

E
[
Prπ∗

[
ED1

, st = s, at = π∗t (st)
]])1/2

, (106)

where in the last equation, we use the fact that at each state s the expert plays a fixed action π∗t (s) at
time t. By an application of Cauchy Schwarz inequality,

J(π∗)− E [J(π̂)] ≤ 2

H∑
t=1

|S|1/2

|D2|1/2

(∑
s∈S

E
[
Prπ∗

[
ED1 , st = s, at = π∗t (s)

]])1/2

(107)

≤ 2

H∑
t=1

|S|1/2

|D2|1/2
(

E
[
Prπ∗

[
ED1

]])1/2

. (108)

Therefore, to prove the result it suffices to bound E [Prπ∗ [ED1
]], which we carry out in Lemma B.5.

Here we show that it is upper bounded by . 1∧|S|H/|D1|. Subsequently using |D1| = |D2| = N/2
completes the proof.
Lemma B.5. The probability of failure under the expert’s policy is upper bounded by,

E
[
Prπ∗

[
ED1

]]
≤ 4

9

|S|H
|D1|

(109)
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Proof. Conditioned on D1, we decompose based on the first failure time (i.e. the first time the event
ED1 is satisfied),

Prπ∗
[
ED1

∣∣∣D1

]
= Prπ∗

[
∃t ∈ [H] : st 6∈ St(D1)

∣∣∣D1

]
, (110)

=
∑H

τ=1
Prπ∗

[
∀t < τ, st ∈ St(D1), sτ 6∈ Sτ (D1)

∣∣∣D1

]
(111)

≤
∑H

τ=1
Prπ∗

[
sτ 6∈ Sτ (D1)

∣∣∣D1

]
(112)

=
∑H

τ=1

∑
s∈S

Prπ∗ [sτ = s]1(s 6∈ Sτ (D1)) (113)

Taking expectation with respect to the expert dataset,

E
[
Prπ∗

[
ED1

∣∣∣D1

]]
≤
∑H

τ=1

∑
s∈S

Prπ∗ [sτ = s]Pr[s 6∈ Sτ (D1)] (114)

The proof of the claim immediately follows by invoking Lemma A.1.

B.4.4 Proof of Lemma A.13

Starting from the bound in Lemma A.11 and using the fact that at each state s the expert plays a fixed
action π∗t (s) at time t,

J(π∗)− J(π̂) ≤ 2
∑
s∈S

H∑
t=1

∣∣∣∣∣Prπ∗
[
T ED1
t (s, π∗t (s))

]
−
∑

tr∈D2
1(tr ∈ T ED1

t (s, π∗t (s)))

|D2|

∣∣∣∣∣ (115)

Observe that 1(tr ∈ T ED1
t (s, π∗t (s))) is a sub-Gaussian random variable with variance bounded by

its expectation. Therefore, by sub-Gaussian concentration [BLM13], for each s ∈ S and t ∈ [H],
conditioned on D1, with probability ≥ 1− δ

2|S|H ,

∣∣∣∣∣
∑

tr∈D2
1(tr ∈ T ED1

t (s, π∗t (s)))

|D2|
− Prπ∗

[
T ED1
t (s, π∗t (s))

]∣∣∣∣∣
≤
(

Prπ∗
[
T ED1
t (s, π∗t (s))

])1/2

√
2 log(2|S|H/δ)

|D2|
(116)

By union bounding over s ∈ S and t ∈ [H], conditioned on D1 with probability ≥ 1− δ
2 ,

H∑
t=1

∑
s∈S

∣∣∣∣∣
∑

tr∈D2
1(tr ∈ T ED1

t (s, π∗t (s)))

|D2|
− Prπ∗

[
T ED1
t (s, π∗t (s))

]∣∣∣∣∣
≤

H∑
t=1

(∑
s∈S

Prπ∗
[
T ED1
t (s, π∗t (s))

])1/2√
2 log(2|S|H/δ)

|D2|
(117)

≤ H|S|1/2
(

Prπ∗
[
ED1

])1/2

√
2 log(2|S|H/δ)

|D2|
(118)

Applying Lemma A.3, with probability ≥ 1− δ/2,

Prπ∗ [ED1 ] ≤ 4|S|H
9|D1|

+H

√
log(H/δ)

|D1|
(119)
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Therefore union bounding the events of eqs. (118) and (119), with probability ≥ 1− δ,

H∑
t=1

∑
s∈S

∣∣∣∣∣
∑

tr∈D2
1(tr ∈ T ED1

t (s, π∗t (s)))

|D2|
− Prπ∗

[
T ED1
t (s, π∗t (s))

]∣∣∣∣∣
≤ H|S|1/2

(
4|S|H
9|D1|

+H

√
log(H/δ)

|D1|

)1/2√
2 log(2|S|H/δ)

|D2|
(120)

.
|S|H3/2

N

(
1 +

√
N log(H/δ)

|S|2

)1/2√
log(2|S|H/δ) (121)

using the assumption that N . |S|2/ log(H/δ) in the last inequality completes the proof.

B.5 Missing proofs for Theorem 5.1 (a)

B.5.1 Proof of Lemma A.15

Fix some policy π ∈ Πdet. Consider any time t ∈ [H] and state s ∈ St(D) which is visited in some
trajectory in the dataset at time t. If πt(s) does not match the action πAt (s) revealed by actively
querying the expert in a trajectory in D that visits s at time t, the likelihood of π given D is exactly
0 (since the expert is deterministic). On the other hand, the conditional probability of observing
(D,A) does not depend on the expert’s action on the states that were not observed in D, since no
trajectory visits these states. Since on these states the expert’s action marginally follows the uniform
distribution over A, the result immediately follows.

B.5.2 Proof of Lemma A.16

In order to prove this result, define the auxiliary random time τb to be the first time the learner first
encounters the state b while rolling out a trajectory. If no such state is encountered, τ is defined as
H + 1. Formally,

τb =

{
inf{t : st = b} ∃t : st = b

H + 1 otherwise.

Conditioning on the learner’s dataset (D,A), first observe that

H − E(π∗,M)∼P(D,A) [J(π̂)] = H − E(π∗,M)∼P(D,A)

[
Eπ̂

[∑H

t=1
rt(st, at)

]]
(122)

≥ E(π∗,M)∼P(D,A) [Eπ̂ [H − τb + 1]] (123)

where the last inequality follows from the fact that r is bounded in [0, 1], and the state b is absorbing
and offers 0 reward irrespective of the choice of action. Fixing the dataset (D,A) and the expert’s
policy π∗ (which determines the MDPM[π∗]), we study Eπ̂(D,A) [H − τb + 1] and try to relate it to
Eπ̂(D,A) [H − τ ].

To this end, first observe that for any t ≤ H − 1 and state s ∈ S,

Prπ̂ [τb = t+ 1, τ = t, st = s] = Prπ̂ [τb = t+ 1|τ = t, st = s] Prπ̂ [τ = t, st = s] (124)

=
(

1− π̂t(π∗t (s)|s)
)

Prπ̂ [τ = t, st = s] . (125)

where in the last equation, we use the fact that the learner must play an action other than π∗t (st) to
visit b at time t+1. Next we take expectation with respect to the randomness of π∗ which conditioned
on (D,A) is drawn from Unif(Πmimic(D,A)) which also specifies the underlying MDP M[π∗].
Observe that the dependence of the second term Prπ̂ [τ = t, st = s] on π∗ comes from the probability
computed with the underlying MDP chosen asM[π∗]. However observe that it only depends on the
characteristics ofM[π∗] till time t− 1 which are determined by π∗1 , · · · , π∗t−1. On the other hand,
the first term (1− π̂t(π∗t (s)|s)) depends only on π∗t . As a consequence the two terms depend on a
disjoint set of random variables, which are independent (since conditionally π∗ ∼ Πmimic(D,A)
defined in eq. (36))
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Therefore taking expectation with respect to the randomness of π∗ ∼ Unif(Πmimic(D,A)) and
M =M[π∗] (which defines the joint distribution P(D,A) in eq. (36)),

E(π∗,M)∼P(D,A)

[
Prπ̂(D,A) [τb = t+ 1, τ = t, st = s]

]
= E(π∗,M)∼P(D,A)

[
1− π̂t(π∗t (st)|st)

]
E(π∗,M)∼P(D,A)

[
Prπ̂ [τ = t, st = s]

]
(126)

(a)
=

(
1− 1

|A|

)
E(π∗,M)∼P(D,A)

[
Prπ̂ [τ = t, st = s]

]
(127)

where in (a), conditioned on (D,A) we use the fact that either (i) s = b, in which case τ 6= t
and both sides are 0, or (ii) if s 6= b, then τ = t implies that the state s visited at time t must
not be observed in D, so π∗t (s) ∼ Unif(A). Using the fact that Prπ̂ [τb = t+ 1, τ = t, st = s] ≤
Prπ̂ [τb = t+ 1, st = s] and summing over s ∈ S results in the inequality,

E(π∗,M)∼P(D,A)

[
Prπ̂ [τb = t+ 1]

]
≥
(

1− 1

|A|

)
E(π∗,M)∼P(D,A)

[
Prπ̂ [τ = t]

]
(128)

Multiplying both sides by H − t and summing over t = 1, · · · , H ,

E(π∗,M)∼P(D,A)

[
Eπ̂ [H − τb + 1]

]
≥
(

1− 1

|A|

)
E(π∗,M)∼P(D,A)

[
Eπ̂ [H − τ ]

]
(129)

here we use the fact that the initial distribution ρ places no mass on the bad state b. Therefore,
Prπ̂(D) [τb = 1] = ρ(b) = 0. This equation in conjunction with eq. (123) completes the proof.

B.5.3 Proof of Lemma A.17

Firstly, in Lemma B.7 we show that E
[
Prπ̂(D,A)[τ ≤ bH/2c]

]
≥ 1 − (1− γ)

bH/2c where γ is
defined as

∑
s∈S ρ(s)(1− ρ(s))N . Subsequently, in Lemma B.8 we show that γ & |S|/N . Putting

these two results together proves the statement of Lemma A.17.

Along the way to proving Lemma B.7, we introduce an auxiliary result.
Lemma B.6. Fix the dataset (D,A) collected by the learner, and any policy π∗ ∈ Πmimic(D,A)
(defined in eq. (36)). Recall that τ as defined in Lemma A.16 is the first time t that the learner
encounters a state st 6= b that has not been visited in D at time t.

For some t ∈ [H], consider Prπ̂(D) [τ = t] computed with the underlying MDP asM[π∗]. Then,

Prπ̂(D,A)[τ = t] = (1− ρ (St(D) \ {b}))
∏t−1

t′=1
ρ
(
St′(D) \ {b}

)
(130)

Proof. First observe that, the event {τ = t} implies that the learner only visits states in St′(D)∪ {b}
till time t′ < t, and visits a state in Sτ (D) ∪ {b} at time t. That is,

Prπ̂[τ = t] = Prπ̂

[
st 6∈ St(D) ∪ {b}, ∀t′ < t, st′ ∈ St′(D) ∪ {b}

]
(131)

= Prπ̂

[
st 6∈ St(D) ∪ {b}, ∀t′ < t, st′ ∈ St′(D) \ {b}

]
(132)

where in the last equation, we use the fact that by construction ofM[π∗], the learner is forced to visit
the state b at time t if the state b is visited at any time t′ < t.

Moreover, since the learner never visits b till time t− 1, this implies that the learner must play the
expert’s action at each visited state until time t− 1 (otherwise the state b is visited with probability 1
at time t). Therefore,

Prπ̂[τ = t] = Prπ∗
[
st 6∈ St(D) ∪ {b}, ∀t′ < t, st′ ∈ St′(D) \ {b}

]
. (133)

Since under the policy π∗ rolled out onM[π∗], the distribution over states induced is i.i.d. across
time and drawn from ρ, we have that,

Prπ̂[τ = t] = (1− ρ (St(D) ∪ {b}))
∏t−1

t′=1
ρ(St′(D) \ {b}) (134)

However the distribution ρ has no mass on the state b. Therefore ρ (St(D) ∪ {b}) = ρ (St(D) \ {b})
and the proof concludes.
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Corollary B.1. Prπ̂(D,A)[τ ≤ bH/2c] = 1−
∏bH/2c
t=1 ρ

(
St(D) \ {b}

)
.

Lemma B.7. Fix some policy π∗ ∈ Πmimic(D,A) and the MDP asM[π∗]. Then,

E
[
Prπ̂(D,A)[τ ≤ bH/2c]

]
≥ 1− (1− γ)

bH/2c (135)

where γ =
∑
s∈S ρ(s)(1− ρ(S))N .

Proof. Recall that the learner rolls out policies π1, · · · , πN to generate trajectories tr1, · · · , trN . First
observe that, conditioned on the learner’s dataset truncated till the states visited at time t,

E
[∏τ

t=1
ρ
(
St(D) \ {b}

)]
− E

[∏τ+1

t=1
ρ
(
St(D) \ {b}

)]
= E

[∏τ

t=1
ρ
(
St(D) \ {b}

)(
1− E

[
ρ (Sτ+1(D) \ {b})

∣∣∣D≤τ,<τ] )] (136)

where in the last equation we use the fact St(D) for all t ≤ τ is a measurable function of D≤τ,<τ .
Conditioned on D≤τ,<τ , consider the distribution over actions anτ played by the learner in different
trajectories. If anτ = π∗t (snτ ), the state snτ+1 is renewed in the distribution ρ. If anτ is any other action,
snτ+1 = b with probability 1, and does not provide any contribution to ρ (Sτ+1(D) \ {b}). Let the
random variable N ′ denote the number of trajectories that have already visited b prior to time τ or
play an action other than the expert’s action at time τ . By linearity of expectation,

1− E
[
ρ (Sτ+1(D) \ {b})

∣∣∣D≤τ,<τ] = E

[∑
s∈S\{b}

ρ(s) (1− ρ(s))
N ′
∣∣∣∣D≤τ,<τ] (137)

≥
∑

s∈S\{b}
ρ(s) (1− ρ(s))

N (138)

Recalling that γ is defined as the constant
∑
s∈S ρ(s) (1− ρ(s))

N and ρ(b) = 0, from eqs. (136)
and (138),

E

[∏τ+1

t=1
ρ
(
St(D) \ {b}

)]
≥ (1− γ)E

[∏τ

t=1
ρ
(
St(D) \ {b}

)]
(139)

We also have that E[ρ(S1(D) \ {b})] = 1 −
∑
s∈S\{b} ρ(s)(1 − ρ(s))N = 1 − γ since the initial

state s in each trajectory in D is sampled independently and identically from ρ. Using this fact and
recursing eq. (139) over τ = 1, · · · , bH/2c − 1 gives,

E

[∏bH/2c

t=1
ρ
(
St(D) \ {b}

)]
≥ (1− γ)bH/2c. (140)

Invoking Corollary B.1 completes the proof.

Lemma B.8. γ, defined in Lemma B.7 as
∑
s∈S ρ(s)(1− ρ(s))N is ≥ |S|−2

e(N+1) .

Proof. By the definition of ρ, we have that,

γ =
∑
s∈S

ρ(s)(1− ρ(s))N
(i)

≥ |S| − 2

N + 1

(
1− 1

N + 1

)N
≥ |S| − 2

e(N + 1)
. (141)

where in (i) we lower bound by only considering the |S| − 2 states having mass = 1
N+1 under ρ.

B.6 Missing proofs for Theorem 5.1 (b)

B.6.1 Proof of Lemma A.19

The proof of this result closely follows that of Lemma A.15. Fix some policy π ∈ Πdet. Consider
any time t ∈ [H] and state s ∈ St(D) which is visited in some trajectory in the dataset at time t. If
πt(s) does not match the unique action a∗t (s) played at time t in any trajectory in D that visits s
at this time, the likelihood of π given D is exactly 0 (recall we assume that the expert’s policy is
deterministic). On the contrary, the conditional probability of observing the expert dataset D does
not depend on the expert’s action on the states that were not observed in D, since no trajectory visits
these states. On these states the expert’s action marginally follows the uniform distribution over A.
Thus the result follows.
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B.6.2 Proof of Lemma A.20

Observe that,

E(π∗,r)∼P′(D) [H − Jr(π̂(D,P ))]

= E(π∗,r)∼P′(D)

[
Eπ̂

[∑H

t=1
1− rt(st, at)

]]
(142)

≥
∑H

t=1
E(π∗,r)∼P′(D)

[
Eπ̂
[
1(s1 6∈ S1(D))

(
1− rt(st, at)

)]]
(143)

By construction of theM[π∗] and P each state s ∈ S is absorbing. Therefore, s1 6∈ S1(D) ⇐⇒
{∀t ∈ [H], st 6∈ St(D)}. By the structure of the reward function r[π∗], the learner accrues a
reward of 1 at some state if and only if the learner plays the expert’s action at this state. Therefore,
rt(st, at) = 1(at = π∗t (st)) and,

E(π∗,r)∼P′(D)

[
Eπ̂
[
rt(st, at)

∣∣∣s1 6∈ S1(D)
]]

= E(π∗,r)∼P′(D)

[
Eπ̂
[
1(at = π∗t (st))

∣∣∣s1 6∈ S1(D)
]]

(144)

From Lemma A.19 observe that conditioned on D, the expert’s policy π∗ is sampled uniformly from
Πmimic(D). Since we condition on s1 6∈ S1(D) ⇐⇒ st 6∈ St(D) the state st is not visited in any
trajectory in D at time t. This implies that the expert’s action π∗t (st) is uniformly sampled from A.
Therefore,

Eπ̂
[
E(π∗,r)∼P′(D)

[
1(at=π

∗
t (st))

∣∣∣s1 6∈ S1(D)
]]

=
1

|A|
∑
a∈A

Eπ̂
[
1(at=a)

∣∣∣s1 6∈ S1(D)
]

=
1

|A|
.

Plugging this into eq. (144) and subtracting 1 from both sides we get that,

E(π∗,r)∼P′(D)

[
Eπ̂(D,P )

[
1− rt(st, at)

∣∣∣s1 6∈ S1(D)
]]

= 1− 1

|A|
. (145)

Plugging this back into eq. (143) we get that,

E(π∗,r)∼P′(D) [H − Jr(π̂(D,P ))] ≥ H
(

1− 1

|A|

)
Prπ̂(D,P ) [s1 6∈ S1(D)] (146)

Since s1 is sampled independently from ρ, the proof of the result concludes.

B.6.3 Proof of Lemma A.21

Note that the dataset D follows the posterior distribution generated by rolling out π∗ for N episodes
when π∗ is drawn from the uniform prior Unif(Πdet). Irrespective of the choice of π∗, note that the
initial distribution over states is still ρ. Therefore,

E[1− ρ(S1(D)] =
∑
s∈S

ρ(s)(1− ρ(s))N (147)

(i)

≥ |S| − 1

N + 1

(
1− 1

N + 1

)N
≥ |S| − 1

e(N + 1)
(148)

where in (i) we lower bound by considering only the |S| − 1 states having mass 1
N+1 under ρ.

Plugging this back into eq. (57) completes the proof of the theorem.
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