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1 Partial Optimal Transport with dummy points

The proof involves 3 steps:

1. we first justify the definition of p̄ and q̄ in the extended problem formulation, and show that
T̄(n+1)(m+1) should be equal to zero in order to have an equivalence between the original
and the extended constraint set;

2. we then show that, for an optimal T̄ ∗, we have T̄ ∗(n+1)(m+1) = 0 if C̄(n+1)(m+1) > 2ξ;

3. we finally show that the solution of the extended Wasserstein problem T̄ ∗ deprived from its
last row and column and the one of the partial-Wasserstein one T ∗ are the same, and we
show that W p

p (p̄, q̄)− PW p
p (p, q) = ξ(‖p‖1 + ‖q‖1 − 2s).

1.1 Equivalence between the constraint set of the extended Wasserstein problem and the
partial-W problem

Let recall the formulation of partial OT problem that aims to transport only a fraction 0 ≤ s ≤
min(‖p‖1, ‖q‖1) of the mass as cheaply as possible. In that case, the problem to solve is:

min
T∈Πu(p,q)

〈C,T 〉F

with the constraint set:

Πu(p, q) =
{
T ∈ R|p|×|q|+ |T1|q| ≤ p,T>1|p| ≤ q,1>|p|T1|q| = s

}
. (1)

To express this as a standard discrete Kantorovitch optimal transport problem, we get rid of the
inequality constraints by re-writting (using standard tricks of linear programming):

T1|q| + b = p

T>1|p| + a = q

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



with b ∈ R|p|+ and a ∈ R|q|+ two unknown vectors. Using the fact that 1>|p|T1|q| = s, we get then the
following equality constraint for marginal q:

1
>
|p|T1|q| + 1

>
|p|b = 1

>
|p|p

s+ 1
>
|p|b = ‖p‖1

and for marginal p

1
>
|p|T1|q| + a>1|q| = q>1|q|

s+ a>1|q| = ‖q‖1

The relations s+a>1|q| = ‖p‖1 and s+1
>
|p|b = ‖q‖1 take into account the constraint related to the

transported mass s and we establish in subsection 1.2.1 of the supplementary material that this mass
is preserved whenever we solve the extended problem without the explicit constraint 1>|p|T1|q| = s.
Gathering these elements leads to this equivalent formulation

min
T∈Πu(p,q)

〈C,T 〉F

with Πu(p, q) re-expressed as

Πu(p, q) =
{
T ∈ R|p|×|q|+ | T1|q| + b = p,T>1|p| + a = q,1>|p|T1|q| = s,

a ∈ R|q|+ ,a>1|q| = ‖q‖1 − s, b ∈ R|p|+ ,1>|p|b = ‖p‖1 − s
}
.

By defining the following augmented matrices and vectors

T̄ =

[
T b
a> β

]
, p̄ =

[
p

‖q‖1 − s

]
, and q̄ =

[
q

‖p‖1 − s

]
we get this compact formulation

Πe(p̄, q̄) =
{
T̄ ∈ R|p̄|×|q̄|+ |T̄1|q̄| = p̄, T̄>1|p̄| = q̄, β = 0

}
. (2)

In the following, we show how solving a Wasserstein problem under the constraint set (2) and how
recovering the solution of the original partial problem (with the constraint set 1) from it.

1.2 Proof of Proposition 1

Let us denote T̄ ∗ the optimal coupling of the extended problem

T̄ ∗ = argmin
T̄∈Π(p̄,q̄)

n+1∑
i=1

m+1∑
j=1

C̄ij T̄ ij

and recall that we set

C̄ =

[
C ξ1m
ξ1>n 2ξ +A

]
with A > 0.

1.2.1 We first check that 1>n T̄ \∗1m = s when T̄ ∗(n+1)(m+1) = 0

Assume T̄ \∗ is the matrix T̄ ∗ with the last row and column removed. Let us first suppose that
T̄ ∗(n+1)(m+1) = 0. As a consequence and because of the constraints on the marginals, we have

m∑
j=1

T̄ ∗(n+1)j = ‖q‖1 − s

and
n∑
i=1

T̄ ∗i(m+1) = ‖p‖1 − s.
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We can also easily see that

1
>
n+1T̄

∗
1m+1 = ‖p‖1 + ‖q‖1 − s

as ‖p̄‖1 = ‖q̄‖1 = ‖p‖1 + ‖q‖1 − s. This implies that

1
>
n T̄
\∗
1m = 1

>
n+1T̄

∗
1m+1 −

m∑
j=1

T̄ ∗(n+1)j −
n∑
i=1

T̄ ∗i(m+1) − T̄
∗
(n+1)(m+1)

= (‖p‖1 + ‖q‖1 − s)− (‖q‖1 − s)− (‖p‖1 − s)− 0

= s.

Hence, we have established that 1>n T̄
\∗
1m = s.

1.2.2 Let show that 1>n T̄ \∗1m = s+ T̄ ∗(n+1)(m+1) when T̄ ∗(n+1)(m+1) 6= 0

Let us now suppose that T ∗(n+1)(m+1) 6= 0. This implies that

1
>
n T̄
\∗
1m = 1

>
n+1T̄

∗
1m+1 −

m+1∑
j=1

T̄ ∗(n+1)j −
n+1∑
i=1

T̄ ∗i(m+1) + T̄ ∗(n+1)(m+1)

= (‖p‖1 + ‖q‖1 − s)− (‖q‖1 − s)− (‖p‖1 − s) + T̄ ∗(n+1)(m+1)

= s+ T̄ ∗(n+1)(m+1)

1.2.3 We now show that T̄ ∗(n+1)(m+1) = 0 when C̄(n+1)(m+1) > 2ξ

We have

T̄ ∗ = argmin
T̄∈Π(p̄,q̄)

n+1∑
i=1

m+1∑
j=1

C̄ij T̄ij

= argmin
T̄∈Π(p̄,q̄)

n∑
i=1

m∑
j=1

T̄ijC̄ij +

n∑
i=1

T̄i(m+1)C̄i(m+1) +

m∑
j=1

T̄(n+1)jC̄(n+1)j

+ T̄(n+1)(m+1)C̄(n+1)(m+1)

= argmin
T̄∈Π(p̄,q̄)

n∑
i=1

m∑
j=1

T̄ ijCij + ξ

n∑
i=1

T̄i(m+1) + ξ

m∑
j=1

T̄(n+1)j + T̄(n+1)(m+1)C̄(n+1)(m+1)

= argmin
T̄∈Π(p̄,q̄)

n∑
i=1

m∑
j=1

T̄ijCij + ξ(‖p‖1 − s− T̄(n+1)(m+1)) + ξ(‖q‖1 − s− T̄(n+1)(m+1))

+ T̄(n+1)(m+1)C̄(n+1)(m+1)

= argmin
T̄∈Π(p̄,q̄)

n∑
i=1

m∑
j=1

T̄ijCij + ξ(‖p‖1 + ‖q‖1 − 2s) + (C̄(n+1)(m+1) − 2ξ)T̄(n+1)(m+1).

Let us now suppose that T̄ ∗(n+1)(m+1) > 0. Let us suppose that there exists a coupling Γ that belongs
to the admissible constraint set Π(p̄, q̄) such that Γ(n+1)(m+1) = 0. We then have:

n∑
i=1

m∑
j=1

T̄ ∗ijCij+ξ(‖p‖1 + ‖q‖1 − 2s) + (C̄(n+1)(m+1) − 2ξ)T̄ ∗(n+1)(m+1)

≤
n∑
i=1

m∑
j=1

ΓijCij + ξ(‖p‖1 + ‖q‖1 − 2s)
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that we can rewrite as
n∑
i=1

m∑
j=1

T̄ ∗ijCij + (C̄(n+1)(m+1) − 2ξ)T̄ ∗(n+1)(m+1) ≤
n∑
i=1

m∑
j=1

ΓijCij . Then,

(C̄(n+1)(m+1) − 2ξ)T̄ ∗(n+1)(m+1) ≤
n∑
i=1

m∑
j=1

ΓijCij −
n∑
i=1

m∑
j=1

T ∗ijCij

We know that
∑n
i=1

∑m
j=1 T̄

∗
ij = s + T̄ ∗(n+1)(m+1) and that

∑n
i=1

∑m
j=1 Γij = s by construction.

We can then write
n∑
i=1

m∑
j=1

Γij =

n∑
i=1

m∑
j=1

T̄ ∗ij − T̄ ∗(n+1)(m+1)

and it implies that we can build a coupling Γ such that
n∑
i=1

m∑
j=1

ΓijCij ≤
n∑
i=1

m∑
j=1

T̄ ∗ijCij

Such a coupling can be obtained by moving some of the mass T̄ ∗ij > 0 (i and js can be chosen
randomly), with i ≤ n and j ≤ m, towards the last row and column, such that we move a mass
T̄ ∗(n+1)(m+1), ending up with

∑n
i=1

∑m
j=1 Γij = s. It is straighforward to see that, by doing so, we

ensure that Γ remains an admissible coupling (see fig. 1 for an illustration). Then,

(C̄(n+1)(m+1) − 2ξ)T̄ ∗(n+1)(m+1) ≤
n∑
i=1

m∑
j=1

ΓijCij −
n∑
i=1

m∑
j=1

T̄ ∗ijCij

(C̄(n+1)(m+1) − 2ξ)T̄ ∗(n+1)(m+1) ≤
n∑
i=1

m∑
j=1

ΓijCij −
n∑
i=1

m∑
j=1

ΓijCij

(C̄(n+1)(m+1) − 2ξ)T̄ ∗(n+1)(m+1) ≤ 0

Setting C̄(n+1)(m+1) > 2ξ contradicts the initial hypothesis, and then we can conclude that
T̄ ∗(n+1)(m+1) = 0 when C̄(n+1)(m+1) > 2ξ .

Γ

n + 1

n

0
0 m m + 1

s

‖p‖1 − s

‖
q‖

1
−
s

0

T

n + 1

n

0
0 m m + 1

s+ t

‖p‖1 − s− t

‖
q‖

1
−
s
−
t

t

Tij > 0

Ti′j′ > 0

Figure 1: Repartition of the mass for matrices Γ and T . Each of them has a total mass of ‖q‖1 +
‖p‖1 − s. From a matrix T , one can build a coupling matrix Γ by arbitrary moving some mass
Tij > 0 towards the marginal, until we get

∑n
i=1

∑m
j=1 Γij = s.

1.2.4 We then prove Proposition 1

Let us denote T̄ \∗ the matrix T̄ ∗ deprived from its last row and column. We then show that T̄ \∗ = T ∗

where T ∗ is the solution of the original partial-W problem:

T ∗ = argmin
T∈Πu(p,q)

n∑
i=1

m∑
j=1

CijTij .
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We have

T̄ ∗ = argmin
T̄∈Π(p̄,q̄)

n+1∑
i=1

m+1∑
j=1

C̄ij T̄ij

= argmin
T̄∈Π(p̄,q̄)

n∑
i=1

m∑
j=1

Cij T̄ij + ξ(‖p‖1 + ‖q‖1 − 2s)

= argmin
T̄∈Π(p̄,q̄)

n∑
i=1

m∑
j=1

Cij T̄ij + constant

As we have p̄ = [p, ‖q‖1 − s] and q̄ = [q, ‖p‖1 − s], we can write

n+1∑
i=1

Tij = qj ,∀j ≤ m =⇒
n∑
i=1

Tij ≤ qj =⇒ (T̄
\∗

)>1n ≤ q

m+1∑
j=1

Tij = pi,∀i ≤ n =⇒
m∑
j=1

Tij ≤ pi =⇒ T̄
\∗
1m ≤ p

We also have
∑n
i=1

∑m
j=1 T̄

\∗
ij = s. Finally, we can write that T̄ \∗ belongs to the following constraint

set:
{T̄ \∗ ∈ Rn×m+ |T̄ \∗1m ≤ p, (T̄ \∗)>1n ≤ q,1>n T̄

\∗
1m = s}

which is the same like Πu(p, q). We then reach the result

T̄ \∗ = argmin
T∈Πu(p,q)

n∑
i=1

m∑
j=1

CijTij = T ∗

Finally we can write:

W p
p (p̄, q̄)− PW p

p (p, q) = ξ(‖p‖1 + ‖q‖1 − 2s).

as long as C̄(n+1)(m+1) = 2ξ +A, with A > 0 and

W p
p (p̄, q̄) = PW p

p (p, q)

when ξ = 0.

1.2.5 We finally show how to construct T̄ ∗ from T ∗

We have

T ∗ = argmin
T∈Πu(p,q)

n∑
i=1

m∑
j=1

CijTij = argmin
T∈Πu(p,q)

n∑
i=1

m∑
j=1

C̄ijTij = T̄ \∗

Setting T̄ ∗(n+1)(m+1) = 0, T̄ ∗i(m+1) = p̄i −
∑m
j=1 T̄

∗
ij and T̄ ∗(n+1)j = q̄j −

∑n
i=1 T̄

∗
ij , we recover the

constraint set Π(p̄, q̄) and finally T̄ ∗.

1.3 Adding dummy points to the GW problem does not solve a partial-GW problem

While solving the partial-W problem can be achieved by adding dummy points and extending the
cost matrix C in an appropriate way, the same strategy can not be set up for solving GW. Indeed, the
equivalence between the partial and the extended problem is permitted because we can ensure that (as
long as A > 0 and ξ is a positive scalar) T̄ ∗(n+1)(m+1) = 0, which implies that

∑n
i=1

∑m
j=1 T̄

∗
ij = s.

If we extend the intra-domain cost matrices Cs and Ct on the same pattern as follows

C̄s =

[
Cs ξ1n
ξ1>n A

]
and C̄t =

[
Ct ξ1m
ξ1>m A

]
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(with a constant A > 2ξ) the GW formulation involves pairs of points. We have

T̄ ∗ = argmin
T∈Π(p̄,q̄)

n∑
i,k=1

m∑
j,l=1

(
Ctik − Csjl

)2
TijTkl + (?)

where

(?) = 2

n∑
i,k=1

( (
Ctik −A

)2
Ti(m+1)Tk(m+1) +

m∑
j=1

(
Ctik − ξ

)2
TijTk(m+1)

)
+ 2

m∑
j,l=1

( (
A− Csjl

)2
T(n+1)jT(n+1)l +

n∑
i=1

(
ξ − Csjl

)
TijT(n+1)l

)
+ 2

m∑
j=1

(A− ξ)2
T(n+1)jT(n+1)(m+1) + 2

n∑
i=1

(ξ −A)
2
Ti(m+1)T(n+1)(m+1)

+ 2

n∑
i=1

n∑
j=1

(
Ctik − ξ

)2
TijT(n+1)(m+1) + 0,

does not allows having T̄ ∗(n+1)(m+1) = 0, and hence
∑n
i=1

∑m
j=1 T̄

∗
ij 6= s.

2 Details of Frank-Wolfe algorithm for partial-GW

2.1 Line-search

The step size in the line-search of Frank-Wolfe algorithm for partial-GW is given by

γ
(k)
min ← argmin

γ∈[0,1]

{
JCs,Ct

(
(1− γ)T (k) + γT̃ (k)

)}
.

Define E(k) = T̃ (k) − T (k) and the function φ : [0, 1]→ R such that

φ(γ(k)) = JCs,Ct(T (k) + γE(k)).

Straightforwardly, one has

φ(γ) = 〈M(Cs,Ct) ◦ (T (k) + γE(k)),T (k) + γE(k)〉F
= 〈M(Cs,Ct) ◦ T (k),T (k)〉F + γ〈M(Cs,Ct) ◦ T (k),E(k)〉F + γ〈M(Cs,Ct) ◦E(k),T (k)〉F

+ γ2〈M(Cs,Ct) ◦E(k),E(k)〉F .

Since we choose a quadratic cost, p = 2, then for any T ,R one has 〈M(Cs,Ct) ◦ R,T 〉F =
〈M(Cs,Ct) ◦ T ,R〉F and we can then rewrite

φ(γ) = γ2〈M(Cs,Ct) ◦E(k),E(k)〉F + 2γ〈M(Cs,Ct) ◦E(k),T (k)〉F + 〈M(Cs,Ct) ◦ T (k),T (k)〉F .

We then have to find γ(k)
o that minimises φ(γ) = aγ2 + bγ + c, with

a = 〈M(Cs,Ct)◦E(k),E(k)〉F , b = 2〈M(Cs,Ct)◦E(k),T (k)〉F , c = 〈M(Cs,Ct)◦T (k),T (k)〉F
with its derivative φ′(γ) = 2aγ + b. This yields the following cases:

Case 1: a > 0. In that case, φ(γ) is a convex function, whose minimum on [0, 1] is reached for

γ
(k)
min = min{− b

2a
, 1}.

Indeed, we have for k ≥ 1

T̃ (k) = argmin
T∈Π(p,q)

〈∇JCs,Ct(T (k)),T 〉F

= argmin
T∈Π(p,q)

〈M(Cs,Ct) ◦ T (k),T 〉F

6



Hence
〈M(Cs,Ct) ◦ T (k), T̃ (k)〉F ≤ 〈M(Cs,Ct) ◦ T (k),T (k)〉F
〈M(Cs,Ct) ◦ T̃ (k),T (k)〉F ≤ 〈M(Cs,Ct) ◦ T (k),T (k)〉F
〈M(Cs,Ct) ◦E(k),T (k)〉F ≤ 0.

Then, b = 2〈M(Cs,Ct) ◦E(k),T (k)〉F ≤ 0 hence − b
2a ≥ 0.

Case 2: a < 0. In that case, φ(γ) is a concave function, whose minimum is reached either for
γ = 0 or γ = 1. We have φ(0) = c > 0 and φ(1) = a+ b+ c. The minimum is then obtained for 0
if a+ b > 0, and 1 otherwise. We have previously shown that b ≤ 0, which implies that

γ
(k)
min = 1.

2.2 Convergence guarantee.

Intuitively a stationary point T o for partial-GW problem verifies that every direction in the polytope
with origin T o is correlated with the gradient of the loss JCs,Ct(·), namely 〈∇JCs,Ct(T o);T −
T o〉F ≥ 0 for all T ∈ Πu(p, q). A good criterion to measure distance to a stationary point at iteration
k is the often used Frank-Wolfe gap, which is defined by

gk = 〈∇JCs,Ct(T (k)),T (k) − T̃ (k)〉F .
Note that gk is always non-negative, and zero if and only if at a stationary point. Thanks to Theorem
1 in Lacoste-Julien (2016) we have

min
0≤k≤K

gk ≤
max(2J0, Ldiam(Πu(p, q))2)√

K + 1
,

where J0 = JCs,Ct(T (0)) − minT∈Πu(p,q) JCs,Ct(T ) defines the initial suboptimality, L is a
Lipschitz constant of ∇JCs,Ct and diam(Πu(p, q)) is the ‖ · ‖F -diameter of Πu(p, q) (see (4)).
Therefore we can state the following lemma characterizing the convergence guarantee:

Lemma 1 The Frank-Wolfe gap gK = min0≤k≤K gk for the partial-GW loss JCs,Ct after K
iterations satisfies

gK ≤
2 max(J0,

√
2s(max(Csij) + max(Ctij)))√

K + 1
(3)

where s is the total mass to be transported and max(Csij) is the maximum value of cost matrix
max(Ctij), similarly for Ct.

Note that for the implementations, one can set max(Csij) = 1 = max(Ctij), hence the upper bound
in (3) becomes more tight regarding a good initialization of Algorithm 1. This can be used to reduce
significantly the initial suboptimality J0. Furthermore, according to Theorem 1 in Lacoste-Julien
(2016), Algorithm 1 takes at most O(1/ε2) iterations to find an approximate stationary point with a
gap smaller than ε.

Proof of Lemma 1. Let us first calculate the diameter of the couplings set Πu(p, q) with respect to
the Frobenieus norm ‖ · ‖F . One has

diam(Πu(p, q)) = sup
(T ,Q)∈Πu(p,q)2

‖T −Q‖F . (4)

Using triangle inequality and the fact that Tij , Qij are probability masses that is Tij , Qij ∈ [0, 1], we
get

‖T −Q‖2F ≤ 2‖T ‖2F + 2‖Q‖2F

≤ 2

n,m∑
i,j

T 2
ij + 2

n,m∑
i,j

Q2
ij

≤ 2

n,m∑
i,j

Tij + 2

n,m∑
i,j

Qij

≤ 4s

7



where s in the total mass to be transported. Thus diam(Πu(p, q)) ≤ 2
√
s.

For the Lipschitz constant of the gradient of JCs,Ct we proceed as follows: for any T ,Q ∈ Πu(p, q)
we have

‖∇JCs,Ct(T )−∇JCs,Ct(Q)‖2F =

n,m∑
i,j

( n,m∑
k,l

Mijkl(Tkl −Qkl)
)2

≤ sup
i,j,k,l

M2
ijkl

n,m∑
i,j

( n,m∑
k,l

(Tkl −Qkl)
)2

≤ 4 sup
i,j,k,l

M2
ijkl‖T −Q‖2F .

We have also

sup
i,j,k,l

M2
ijkl =

1

4
sup
i,j,k,l

(Csik − Cjl)2 ≤ 1

2
((max(Csij))

2 + (max(Ctkl))
2).

Hence the Lipschitz constant of ∇JCs,Ct(·) verifies L ≤
√

2(max(Csij) + max(Ctkl)). This gives
the desired result.

3 Equivalence between the regularized extended problem and the PU
learning problem and proof of Proposition 2

Let’s denote T̄ ∗ the optimal coupling of the extended problem

T̄ ∗ = argmin
T̄∈Π(p̄,q̄)

n+1∑
i=1

m+1∑
j=1

C̄ij T̄ij + ηΩ(T̄ ) (5)

in which Ω(T̄ ) =
∑n
i=1

(
‖T̄i(:m)‖2 + ‖T̄i(m+1)‖2

)
where T̄i(:m) is a vector that contains the values

of the ith line of T̄ associated to the first m columns.

3.1 We first show that
∑n
i=1

∑m
j=1 T̄

∗
ij = s

Let recall that by construction, we have p̄ = [p, ‖q‖1 − s] and q̄ = [q, ‖p‖1 − s]. Also due to
the definition of the marginals pi = 1−α

n for i = 1, · · · , n and qj = s+α
m for j = 1, · · · ,m we get

‖p‖1 = 1− α, ‖q‖1 = s+ α.

Therefore we arrive at the results
∑n+1
i=1

∑m+1
j=1 T̄ ∗ij = 1 by construction. Using the development

in Section 1.2.2 of the supplemental, we can establish that
∑n+1
i=1 T̄

∗
i(m+1) = 1 − α − s, and∑m+1

j=1 T̄
∗
(n+1)j = α. Thereon we attain

∑n
i=1

∑m
j=1 T̄

∗
ij = 1− (1− α− s+ α) = s.

3.2 Proof of Proposition 2

Given a solution T̄ ∗ of the extended PU learning problem stated in Equation (5) of the supplementary,
we can write the objective function of the extended problem as

n+1∑
i=1

m+1∑
j=1

C̄ij T̄
∗
ij =

n∑
i=1

m∑
j=1

Cij T̄
∗
ij + ξ

n∑
i=1

T̄ ∗i(m+1) + ξ

m∑
j=1

T̄ ∗(n+1)j + (2ξ +A)T̄ ∗(n+1)(m+1)

=

n∑
i=1

m∑
j=1

Cij T̄
∗
ij + ξ(1− α− s+ α) + 0

=

n∑
i=1

m∑
j=1

Cij T̄
∗
ij + ξ(1− s).
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Let’s then show that (T̄ ∗)n,mi,j=1 = T ∗, where T ∗ is the solution of the original PU problem:

T ∗ = argmin
T∈ΠPU (p,q)

n∑
i=1

m∑
j=1

CijTij .

As shown before, we know that T̄ ∗(n+1)(m+1) = 0, hence we can rewrite the extended problem as

T̄ ∗ = argmin
T̄∈Π(p̄,q̄)

n∑
i=1

m∑
j=1

Cij T̄ij + η

n∑
i=1

(
‖T̄i(:m)‖2 + ‖T̄i(m+1)‖2

)
.

We now turn this problem into its equivalent constrained form, namely there exists some λ > 0,
related to the regularization parameter η, such that

T̄ ∗ =

{
argminT̄∈Π(p̄,q̄)

∑n
i=1

∑m
j=1 Cij T̄ij

s.t.
∑n
i=1 ‖T̄i(:m)‖2 + ‖T̄i(m+1)‖2 ≤ λ

Let T̄ \∗ ∈ Rn×m such that T̄ \∗ij = T̄ij for all i, j ∈ {1, . . . , n} × {1, . . . ,m}. Since we have
the polytope constraint

∑m+1
j=1 T̄ij = pi, ∀i, this means that

∑m
j=1 T̄ij ≤ pi and analagously∑n

i=1 T̄ij ≤ qj . Using the established results from section 3.1 of the supplementary, we can derive
that the matrix T̄ \∗ ∈ Rn×m belongs to the following constraint set:

Πu(p, q) = {Q ∈ Rn×m+ |Q1m ≤ p,Q>1n ≤ q,1>nQ1m = s}.

Let define ui = T̄i(:m) for all i = 1, . . . , n and v = T̄(:n)(m+1) ∈ Rn . Then the problem can be
re-formulated as

T̄ ∗ =

 argmin
T̄ \∗∈Πu(p,q),ui,v,w

∑n
i=1

∑m
j=1 Cij T̄

\∗
ij

s.t.
∑n
i=1 ‖ui‖2 + ‖v‖1 ≤ λ

On the other hand, using the polytope constraints we have

n∑
i=1

‖ui‖2 =

n∑
i=1

√√√√ m∑
j=1

T̄ 2
ij ≤

n∑
i=1

√√√√ m∑
j=1

T̄ij

≤
n∑
i=1

√
pi =

n∑
i=1

√
1− α
n

=
√
n
√

1− α.

and

‖v‖1 =

n∑
i=1

T̄i(m+1) = qm+1 = 1− α− s.

Gathering those results, we get
n∑
i=1

‖ui‖2 + ‖v‖1 ≤
√
n
√

1− α+ (1− α− s).

Therefore, for any value of λ such that λ > λb :=
√
n
√

1− α+(1−α−s), the group-lasso constraint∑n
i=1 ‖ui‖2 + ‖v‖1 ≤ λ is always satisfied for any choice of ui,v verifying ‖v‖1 = 1− α− s and

the marginal constraints
pi = ‖ui‖1 + T̄i(m+1), ∀i. (6)

One can choose a particular sparse solution for ui as follows:

• if T̄i(m+1) = 0, for i ∈ {1, . . . , n}, condition (6) implies necessary that
∑m
j=1 T̄

\∗
ij =∑m

j=1 T̄ij = ‖ui‖1 = pi.

• If not, one can choose ui such that ‖ui‖1 = 0, and hence
∑m
j=1 T̄ij =

∑m
j=1 T̄

\∗
ij = 0.
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So it remains that the solution of the constrained problem is such that

T̄ \∗ ∈ ΠPU (p, q) = {Q ∈ Rn×m+ |Q1m = {p, 0},Q>1n ≤ q,1>nQ1m = s},

that is either
∑m
j=1 T̄ij or T̄i(m+1) is exactly 0. This means that there exists some value ηb, related to

λb =
√
n
√

1− α+ (1− α− s), such that for η ≥ ηb, solving the extended problem (5) amounts to
solving our PU learning formulation, which concludes the proof.

4 Initialization of partial-W and -GW

The partial-OT computation is based on a augmented problem with a dummy point and, as such,
is convex. On the contrary, the GW problem is non-convex and, although the algorithm is proved
to converge, there is no guarantee that the global optimum is reached. The quality of the solution
is therefore highly dependent on the initialization. We propose to rely on an initial Wasserstein
barycenter problem to build a first guess of the transport matrix.

For partial-GW, as the Cs and Ct matrices do not lie in the same ground space, we can not define a
distance function between their members. Nevertheless, within a domain, we can build two sets of
“homogeneous” points. Instead of relying on a classical partitioning algorithm such as k-means, we
propose to look for a barycenter with atoms U2 = [u1

2,u
1
2] and weights b of the set U that minimizes

the following function:

f(b,U2) = W p
p (b, q) (7)

over the feasible sets for U2, where b = [π, 1− π]. In other word, we look for the set U2 that allows
having the most similar (in the Wasserstein sense) distribution q as U. The induced transport matrix
gives then two clusters, the one with mass π serving as an initialization matrix for the GW problem.

Whenever possible (that is to say when Pos and Unl belong to the same space), we also initialize the
GW algorithm with the solution of Partial-W, and the outer product of p̄ and q̄.

5 Effect of the group constraints on the Wasserstein coupling.

We first draw nP = 10 and nu = 10 samples, 6 of them being positives and we set α = 0. Fig.
5 shows the data and the obtained optimal couplings: enforcing a group constraint assigns some
unlabeled points to the dummy point, allowing a clear identification of the negatives among Unl,
whereas the solution with no such constraints may split the probability mass of the unlabeled positives
between Pos and the dummy point, preventing to consistently identify the negatives.

Un
l. 

ne
g.

Un
l. 

po
s.

Positives D

Un
l. 

ne
g.

Un
l. 

po
s.

Positives D

Figure 2: (Left) Positives (black) and Unlabeled (blue) samples (Middle) Transport matrix with no
group constraints, where darker color indicates stronger matching (Right) Transport matrix with
group constraints.“D” is the dummy point.
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Table 1: Standard deviation of accuracy rates on different datasets and scenarii.

DATASET/SCENARIO π PU PUSB P-W 0 P-W 0.025 P-GW 0 P-W 0.025

MUSHROOMS 51.8 0.040 0.047 0.012 0.008 0.008 0.011
SHUTTLE 78.6 0.032 0.045 0.009 0.012 0.018 0.017
PAGEBLOCKS 89.8 0.012 0.010 0.014 0.007 0.012 0.010
USPS 16.7 0.012 0.014 0.004 0.006 0.020 0.021
CONNECT-4 65.8 0.003 0.010 0.017 0.016 0.019 0.017
SPAMBASE 39.4 0.036 0.039 0.026 0.023 0.022 0.021
ORIGINAL MNIST 10 0.005 0.005 0.005 0.004 0.004 0.01
COLORED MNIST 10 0.035 0.034 0.004 0.006 0.008 0.012
SURF C→SURF C 10 0.019 0.015 0.017 0.014 0.015 0.017
SURF C→SURF A 10 0.014 0.018 0.012 0.014 0.018 0.016
SURF C→SURF W 10 0.010 0.064 0.014 0.013 0.016 0.010
SURF C→SURF D 10 0.006 0.036 0.000 0.000 0.022 0.020

DECAF C→DECAF C 10 0.022 0.017 0.013 0.016 0.013 0.009
DECAF C→DECAF A 10 0.019 0.022 0.006 0.006 0.004 0.014
DECAF C→DECAF W 10 0.030 0.009 0.006 0.006 0.014
DECAF C→DECAF D 10 0.033 0.008 0.010 0.009 0.015 0.003

SURF C→DECAF C 10 - - - - 0.012 0.013
SURF C→DECAF A 10 - - - - 0.011 0.011
SURF C→DECAF W 10 - - - - 0.006 006
SURF C→DECAF D 10 - - - - 0.010 0.010

DECAF C→SURF C 10 - - - - 0.024 0.024
DECAF C→SURF A 10 - - - - 0.037 0.037
DECAF C→SURF W 10 - - - - 0.022 0.022
DECAF C→SURF D 10 - - - - 0.013 0.013

6 Additionnal results

6.1 Standard deviation of accuracy rates of the experiments

6.2 Timings

We report the timings related to P-W 0 and P-GW 0 (those related to P-W 0.025 and P-GW 0.025
are similar) for 1 run. As P-GW iterates over a P-W resolution, one can infer that few iterations are
needed for P-GW to converge.

Table 2: Timings (in seconds) of 1 run of P-W 0 and P-GW 0.

MUSH. SHUTTLE PAGE. USPS CONN. SPAM. OR. MNIST COL. MNIST

P-W 0 1.4 0.9 1.2 1.1 1.4 1.0 1.4 1.0
P-GW 0 2.1 1.9 5.0 3.9 3.2 1.8 5.6 3.6

SURF C→ SURF * DECAF C→ DECAF *
* = C * = A * = W * = D * = C * = A * = W * = D

P-W 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P-GW 0 0.2 0.2 0.2 0.3 0.4 0.6 0.3 0.3

SURF C→ DECAF * DECAF C→ SURF *
* = C * = A * = W * = D * = C * = A * = W * = D

P-GW 0 0.2 0.2 0.2 0.2 0.6 0.3 0.2 0.5

6.3 Sensitivity to the proportion of positives w.r.t. the actual class prior

We vary the proportion of positives in the unlabeled dataset, using s = π′ = [0.8π, 0.9π, · · · , 1.2π],
as it is done in Kiryo et al. (2017), and report the results for P-W 0 and P-GW 0.
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Table 3: Accuracy rates of P-W 0 and P-GW 0 for different datasets and proportion of positives in
the unlabeled dataset.

P-W 0 P-GW 0
DATASET/SCENARIO 0.8π 0.9π π 1.1π 1.2π 0.8π 0.9π π 1.1π 1.2π

MUSHROOMS 89.1 93.7 96.3 93.7 89.0 88.9 93.0 95.0 93.2 88.5
SHUTTLE 83.8 90.6 95.8 91.3 84.0 83.1 90.0 94.2 89.7 82.9
PAGEBLOCKS 78.2 86.2 92.2 80.7 - 81.2 88.5 90.9 89.8 -
USPS 96.8 98.1 98.3 97.5 95.9 91.7 93.0 94.9 94.8 94.1
CONNECT-4 52.9 52.9 55.6 59.9 61.5 57.5 58.8 59.5 61.0 62.2
SPAMBASE 77.0 77.9 78.0 77.8 76.9 71.9 71.3 70.2 71.2 69.4
ORIGINAL MNIST 97.9 98.8 98.8 98.2 97.4 97.7 98.1 98.2 97.7 96.9
COLORED MNIST 92.0 91.8 91.5 91.3 90.9 96.6 97.3 97.3 97.5 97.0
SURF C→SURF C 91.2 90.6 90.0 89.8 89.2 87.8 87.0 87.2 86.4 86.0
SURF C→SURF A 83.6 82.8 81.6 80.6 79.8 87.4 86.4 85.6 85.0 83.6
SURF C→SURF W 83.6 82.8 81.6 81.4 80.4 86.2 85.8 85.6 84.6 84.0
SURF C→SURF D 82.0 81.0 80.0 79.0 78.0 88.4 88.6 87.6 87.0 86.0

DECAF C→DECAF C 93.6 93.4 94.0 94.0 94.0 87.8 87.2 86.4 86.4 85.8
DECAF C→DECAF A 82.2 81.2 80.2 79.2 78.2 90.4 90.4 89.2 88.8 88.4
DECAF C→DECAF W 82.0 81.0 80.2 79.2 78.2 89.4 89.2 89.2 88.4 87.6
DECAF C→DECAF D 82.0 81.2 80.8 80.2 79.0 93.4 94.2 94.2 93.4 93.0

SURF C→DECAF C - - - - - 88.4 88.2 87.0 86.2 85.4
SURF C→DECAF A - - - - - 95.2 94.4 94.4 93.0 91.4
SURF C→DECAF W - - - - - 96.4 95.2 94.4 93.4 92.2
SURF C→DECAF D - - - - - 97.6 97.6 97.4 96.6 95.6

DECAF C→SURF C - - - - - 86.2 86.2 85.0 84.2 83.2
DECAF C→SURF A - - - - - 84.8 84.0 82.6 82.6 81.8
DECAF C→SURF W - - - - - 85.6 85.6 83.8 83.0 82.2
DECAF C→SURF D - - - - - 84.4 83.2 82.8 81.0 80.6

References
Kiryo R., Niu G., Du Plessis M. C., Sugiyama M. Positive-unlabeled learning with non-negative risk

estimator // Advances in neural information processing systems. 2017.

Lacoste-Julien S. Convergence Rate of Frank-Wolfe for Non-Convex Objectives // CoRR. 2016.
abs/1607.00345.

12


	Partial Optimal Transport with dummy points
	Equivalence between the constraint set of the extended Wasserstein problem and the partial-W problem
	Proof of Proposition 1
	We first check that 1nT T* 1m=s when T*(n+1)(m+1) = 0
	Let show that 1nT T* 1m=sT*(n+1)(m+1) when T*(n+1)(m+1) =0
	We now show that  
	We then prove Proposition 1
	We finally show how to construct T* from T*

	Adding dummy points to the GW problem does not solve a partial-GW problem

	Details of Frank-Wolfe algorithm for partial-GW
	Line-search
	Convergence guarantee.

	Equivalence between the regularized extended problem and the PU learning problem and proof of Proposition 2
	We first show that i=1nj=1m T*ij = s
	Proof of Proposition 2

	Initialization of partial-W and -GW
	Effect of the group constraints on the Wasserstein coupling.
	Additionnal results
	Standard deviation of accuracy rates of the experiments
	Timings
	Sensitivity to the proportion of positives w.r.t. the actual class prior


