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Abstract

Many real-world problems, including multi-speaker text-to-speech synthesis, can
greatly benefit from the ability to meta-learn large models with only a few task-
specific components. Updating only these task-specific modules then allows the
model to be adapted to low-data tasks for as many steps as necessary without
risking overfitting. Unfortunately, existing meta-learning methods either do not
scale to long adaptation or else rely on handcrafted task-specific architectures.
Here, we propose a meta-learning approach that obviates the need for this often
sub-optimal hand-selection. In particular, we develop general techniques based
on Bayesian shrinkage to automatically discover and learn both task-specific and
general reusable modules. Empirically, we demonstrate that our method discovers
a small set of meaningful task-specific modules and outperforms existing meta-
learning approaches in domains like few-shot text-to-speech that have little task data
and long adaptation horizons. We also show that existing meta-learning methods
including MAML, iMAML, and Reptile emerge as special cases of our method.

1 Introduction

The goal of meta-learning is to extract shared knowledge from a large set of training tasks to solve
held-out tasks more efficiently. One avenue for achieving this is to learn task-agnostic modules and
reuse or repurpose these for new tasks. Reusing or repurposing modules can reduce overfitting in
low-data regimes, improve interpretability, and facilitate the deployment of large multi-task models
on limited-resource devices as parameter sharing allows for significant savings in memory. It can also
enable batch evaluation of reused modules across tasks, which can speed up inference time on GPUs.

These considerations are important in domains like few-shot text-to-speech synthesis (TTS), char-
acterized by large speaker-adaptable models, limited training data for speaker adaptation, and long
adaptation horizons [1]]. Adapting the model to a new task for more optimization steps generally
improves the model capacity without increasing the number of parameters. However, many meta-
learning methods are designed for quick adaptation, and hence are inapplicable in this few data and
long adaptation regime. For those that are applicable [2-5], adapting the full model to few data can
then fail because of overfitting. To overcome this, modern TTS models combine shared core modules
with handcrafted, adaptable, speaker-specific modules [6, [1} [7, 8]]. This hard coding strategy is often
suboptimal. As data increases, these hard-coded modules quickly become a bottleneck for further
improvement, even in a few-shot regime. For this reason, we would like to automatically learn the
smallest set of modules needed to adapt to a new speaker and then adapt these for as long as needed.

Automatically learning reusable and broadly applicable modular mechanisms is an open challenge in
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causality, transfer learning, and domain adaptation [9-12]]. In meta-learning, most existing gradient-
based algorithms, such as MAML [13]], do not encourage meta-training to develop reusable and
general modules, and either ignore reusability or manually choose the modules to fix [[14,[15}[5,[16H18]].
Some methods implicitly learn a simple form of modularity for some datasets [17,[19] but it is limited.

In this paper, we introduce a novel approach for automatically finding reusable modules. Our
approach employs a principled hierarchical Bayesian model that exploits a statistical property known
as shrinkage, meaning that low-evidence estimates tend towards their prior mean; e.g., see Gelman
et al. [20]. This is accomplished by first partitioning any neural network into arbitrary groups of
parameters, which we refer to as modules. We assign a Gaussian prior to each module with a scalar
variance. When the variance parameter shrinks to zero for a specific module, as it does if the data
does not require the module parameters to deviate from the prior mean, then all of the module’s
parameters become tied to the prior mean during task adaptation. This results in a set of automatically
learned modules that can be reused at deployment time and a sparse set of remaining modules that
are adapted subject to the estimated prior.

Estimating the prior parameters in our model corresponds to meta-learning, and we present two
principled methods for this based on maximizing the predictive log-likelihood. Importantly, both
methods allow many adaptation steps. By considering non-modular variants of our model, we show
that MAML [[13]], Reptile [2], and iMAML [3]] emerge as special cases. We compare our proposed
shrinkage-based methods with their non-modular baselines on multiple low-data, long-adaptation
domains, including a challenging variant of Omniglot and TTS. Our modular, shrinkage-based meth-
ods exhibit higher predictive power in low-data regimes without sacrificing performance when more
data is available. Further, the discovered modular structures corroborate common knowledge about
network structure in computer vision and provide new insights about WaveNet [21] layers in TTS.

In summary, we introduce a hierarchical Bayesian model for modular meta-learning along with two
parameter-estimation methods, which we show generalize existing meta-learning algorithms. We
then demonstrate that our approach enables identification of a small set of meaningful task-specific
modules. Finally, we show that our method prevents overfitting and improves predictive performance
on problems that require many adaptation steps given only small amounts of data.

1.1 Related Work

Multiple Bayesian meta-learning approaches have been proposed to either provide model uncertainty
in few-shot learning [22H25]] or to provide a probabilistic interpretation and extend existing non-
Bayesian works [26H28]]. However, to the best of our knowledge, none of these account for modular
structure in their formulation. While we use point estimates of variables for computational reasons,
more sophisticated inference methods from these works can also be used within our framework.

Modular meta-learning approaches based on MAML-style backpropagation through short task
adaptation horizons have also been proposed. The most relevant of these, Alet et al. [29], proposes to
learn a modular network architecture, whereas our work identifies the adaptability of each module. In
other work, Zintgraf et al. [16] hand-designs the task-specific and shared parameters, and the M-Net
in Lee and Choi [14] provides an alternative method for learning adaptable modules by sampling
binary mask variables. In all of the above, however, backpropagating through task adaptation is
computationally prohibitive when applied to problems that require longer adaptation horizons. While
it is worth investigating how to extend these works to this setting, we leave this for future work.

Many other meta-learning works [14, |15} |5, 30432] learn the learning rate (or a preconditioning
matrix) which can have a similar modular regularization effect as our approach if applied modularly
with fixed adaptation steps. However, these approaches and ours pursue fundamentally different and
orthogonal goals. Learning the learning rate aims at fast optimization by fitting to local curvature,
without changing the task loss or associated stationary point. In contrast, our method learns to control
how far each module will move from its initialization by changing that stationary point. In problems
requiring long task adaptation, these two approaches lead to different behaviors, as we demonstrate in
Appendix|C] Further, most of these works also rely on backpropagating through gradients, which does
not scale well to the long adaptation horizons considered in this work. Overall, generalizing beyond
the training horizon is challenging for “learning-to-optimize” approaches [33,[34]. While WarpGrad
[S]] does allow long adaptation horizons, it is not straightforward to apply its use of a functional map-
ping from inputs to a preconditioning matrix for module discovery and we leave this for future work.



Algorithm 1: Meta-learning pseudocode.

Input: Batch size B, steps L, and learning rate o @
Initialize ¢
while not done do
{t1,...,tB} < sample mini-batch of tasks 7 N
for each task t in {t1,...,ts} do 0t m

Initialize 6; < ¢

for stepl =1...L do

| 6: < TASKADAPT(D:, ¢, ;)

Module m: 1:M

end
end
// Meta update
¢<—¢—a~%ZtAt(Dt,d)79t) Datan: I:N
end Qaskt: 1T

Figure 1: (Left) Structure of a typical meta-learning algorithm. (Right) Bayesian shrinkage graphical
model. The shared meta parameters ¢ serve as the initialization of the neural network parameters for
each task 0;. The o are shrinkage parameters. By learning these, the model automatically decides
which subsets of parameters (i.e., modules) to fix for all tasks and which to adapt at test time.

Finally, L2 regularization is also used for task adaptation in continual learning [35) [36] and
meta-learning [37H39, |3]]. However, in these works, the regularization scale(s) are either treated as
hyper-parameters or adapted per dimension with a different criterion from our approach. It is not
clear how to learn the regularization scale at a module level in these works.

2 Gradient-based Meta-Learning

We begin with a general overview of gradient-based meta-learning, as this is one of the most common
approaches to meta-learning. In this regime, we assume that there are many tasks, indexed by ¢, and
that each of these tasks has few data. That is, each task is associated with a finite dataset D; = {Xt,n}
of size Iy, which can be partitioned into training and validation sets, D" and D}* respectively. To
solve a task, gradient-based meta-learning adapts task-specific parameters 6, € R” by minimizing a
loss function ¢(Dy; 6;) using a local optimizer. Adaptation is made more efficient by sharing a set of
meta parameters ¢ € RP between tasks, which are typically used to initialize the task parameters.

Algorithm 1 summarizes a typical stochastic meta-training procedure, which includes MAML [13],
implicit MAML (iMAML) [3], and Reptile [2]. Here, TASKADAPT executes one step of optimization
of the task parameters. The meta-update A, specifies the contribution of task ¢ to the meta parameters.
At test time, multiple steps of TASKADAPT are run on each new test task.

MAML implements task adaptation by applying gradient descent to minimize the training loss
(Fain(g,) = ¢(Drin; @,) with respect to the task parameters. It then updates the meta parameters
by gradient descent on the validation loss £*(8,) = ¢(D}¥;8,), resulting in the meta update
AMAML — 7, 0731(8,(¢)). This approach treats the task parameters as a function of the meta
parameters, and hence requires backpropagating through the entire L-step task adaptation process.
When L is large, as in TTS systems [[1]], this becomes computationally prohibitive.

Reptile and iMAML avoid this computational burden of MAML. Reptile instead optimizes 6; on
the entire dataset D;, and moves ¢ towards the adapted task parameters, yielding A?epme =¢ — 0.
Conversely, IMAML introduces an L2 regularizer % ||6; — ¢||? and optimizes the task parameters
on the regularized training loss. Provided that this task adaptation process converges to a stationary
point, implicit differentiation enables the computation of the meta gradient based only on the final
solution of the adaptation process, AMAML — (T 4 %V%tﬁgain(ﬂt)) 71V9t€¥a1(9t). See Rajeswaran
et al. [3]] for details.

3 Modular Bayesian Meta-Learning

In standard meta-learning, the meta parameters ¢ provide an initialization for the task parameters 0
at test time. That is, all the neural network parameters are treated equally, and hence they must all be
updated at test time. This strategy is inefficient and prone to overfitting. To overcome it, researchers



often split the network parameters into two groups, a group that varies across tasks and a group that
is shared; see for example [1, [L6]. This division is heuristic, so in this work we explore ways of
automating it to achieve better results and to enable automatic discovery of task independent modules.
More precisely, we assume that the network parameters can be partitioned into M disjoint modules
0,=(0,1,...,0¢m,...,0,n) where 0, ,, are the parameters in module m for task ¢. This view of
modules is very general. Modules can correspond to layers, receptive fields, the encoder and decoder
in an auto-encoder, the heads in a multi-task learning model, or any other grouping of interest.

We adopt a hierarchical Bayesian model, shown in Figure[T] with a factored probability density:

p(61.7,D|o”, p) H H N(Ovm| @, 07, Hp (D116,). )

t=1m=1

The 6, ,, are conditionally independent and normally distributed 6; ,,, ~ N (6 1,|®,,,, o2,1) with
mean ¢,,, and variance o2,, where I is the identity matrix.

The m-th module scalar shrinkage parameter o2, measures the degree to which ; ,,, can deviate from
@,,,- More precisely, for values of 02, near zero, the difference between parameters ; ,,, and mean
@,,, will be shrunk to zero and thus module m will become task independent. Thus by learning the
parameters o2, we discover which modules are task independent. These independent modules can be
reused at test time, reducing the computational burden of adaptation and likely improving generaliza-
tion. Shrinkage is often used in automatic relevance determination for sparse feature selection [40]].

We place uninformative priors on ¢,, and ¢,,, and follow an empirical Bayes approach to learn
their values from data. This formulation allows the model to automatically learn which modules to
reuse—i.e. those modules for which o2, is near zero—and which to adapt at test time.

4 Meta-Learning as Parameter Estimation

By adopting the hierarchical Bayesian model from the previous section, the problem of meta-learning
becomes one of estimating the parameters ¢ and 0. A standard solution to this problem is to
maximize the marginal likelihood p(D|¢, 0%) = [ p(D|0)p(60|¢, o*) df. We can also assign a prior
over ¢. In both cases, the marginalizations are intractable, so we must seek scalable approximations.

It may be tempting to estimate the parameters by maximizing p(01.7, D|a?, ¢) w.rt. (02, ¢,01.7),
but the following lemma suggests that this naive approach leads to all task parameters being tied to
the prior mean, i.e. no adaptation will occur (see Appendix [A]for a proof):

Lemma 1. The function f : (62, ¢,01.7) — logp(01.7, D|o?, ¢) diverges to +cc as % — 07F
when 6, ,, = ¢, forallt € {1,...., T}, me{1,..M

The undesirable result of Lemma [I|is caused by the use of point estimate of 8.7 in maximum
likelihood estimation of o2 and ¢. In the following two subsections, we propose two principled
alternative approaches for parameter estimation based on maximizing the predictive likelihood over
validation subsets.

4.1 Parameter estimation via the predictive likelihood

Our goal is to minimize the average negative predictive log-likelihood over T' validation tasks,

EPLL(a%:——Zlogp (DD o )= Zlog (Df"|6:) p(6:| Dy o7 $) d6,. (2)

To justify this goal, assume that the training and validation data is distributed i.i.d according to some
distribution v(D" DY), Then, the law of large numbers implies that as 7" — oo,

tere(o?, @) — E, (ppn) [KL(v(D} D) [p (DI | DI, 0%, ¢))] + Hw(D} D), (3)

where KL denotes the Kullback-Leibler divergence and H the entropy. Thus minimizing ¢py 1, with re-
spect to the meta parameters corresponds to selecting the predictive distribution p (D} | D", o2, ¢)
that is closest (approximately) to the true predictive distribution v(D}|D'i") on average. This
criterion can be thought of as an approximation to a Bayesian cross-validation criterion [41].



Computing {pr 1, is not feasible due to the intractable integral in equation (2). Instead we make use of
a simple maximum a posteriori (MAP) approximation of the task parameters:

0:(c?, ¢) = argemin (rin(g,, 0%, @), where £ = —logp (Dgai“wt) —logp (6:/0%,¢). (4)

We note for clarity that /74" corresponds to the negative log of equation (1)) for a single task. Using
these MAP estimates, we can approximate EPLL(0'2, @) as follows:

1 T

lpii (o, @) = = > 0" (0:(0%,¢)).  where £ = —logp(D}"|6). )
t=1

We use this loss to construct a meta-learning algorithm with the same structure as Algorithm 1.
Individual task adaptation follows from equation (4)) and meta updating from minimizing ¢pr1, (02, @)
in equation (5) with an unbiased gradient estimator and a mini-batch of sampled tasks.
Minimizing equation (3) is a bi-level optimization problem that requires solving equation (@) implicitly.
If optimizing £ requ1res only a small number of local optimization steps, we can compute the
update for ¢ and o2 with back-propagation through 6, yielding

ATV = V52 4 £(0:(0%, 9))- (©6)
This update reduces to that of MAML if 02, — oo for all modules and is thus denoted as o-MAML.

We are however more interested in long adaptation horizons for which back-propagation through the
adaptation becomes computationalliexpensive and numerically unstable. Instead, we apply the im-
il

plicit function theorem on equation (4)) to compute the gradient of 6, with respect to o and ¢, giving
Ao‘ 1MAML v E dl(et)Hg 0, H9,§7 (7)

where & = (0, ¢) is the full vector of meta-parameters, Ho, = V2 ,£{*", and derivatives are

evaluated at the stationary point 6; = 9,5(0'2, ¢). A detailed derivation is provided in Appendix
Various approaches have been proposed to approximate the inverse Hessian [3142-44]. We use the
conjugate gradient algorlthm We show in Appendix[B.2]that the meta update for ¢ is equivalent to that
of iMAML when o2, is constant for all m, and thus refer to this more general method as o-iMAML.

In summary, our goal of maximizing the predictive likelihood of validation data conditioned on
training data for our hierarchical Bayesian model results in modular generalizations of the MAML and
iMAML approaches. In the following subsection, we will see that the same is also true for Reptile.

4.2 Estimating ¢ via MAP approximation

If we instead let ¢ be a random variable with prior distribution p(¢), then we can derive a different
variant of the above algorithm. We return to the predictive log-likelihood introduced in the previous
section but now integrate out the central parameter ¢. Since ¢ depends on all training data we will
rewrite the average predictive likelihood in terms of the joint posterior over (01.7, ¢), i.e.

T
1 . .
frua (%)=~ Yog (DR DR, o) = — 1 log [T o(D}16) (67, SR, o) 06100
t=1

(®)

Again, to address the intractable integral we make use of a MAP approximation, except in this case
we approximate both the task parameters and the central meta parameter as

(61:7(0”), $(0°)) = argmin—log p(61.7, $|DY*F, & )fargmmzwmm 0:,0%,¢) ~log p(¢).
01.79 6179
)

We assume a flat prior for ¢ in this paper and thus drop the second term above. Note that when the
number of training tasks 7" is small, an informative prior would be preferred. We can then estimate



Fixed 0> Learned o ‘ Allows long adaptation?
&»joim Reptile o-Reptile ‘ v
Back-prop. = MAML o-MAML ‘ X

Pl Implicit grad. iIMAML  o-iIMAML v

Table 1: The above algorithms result from different approximations to the predictive likelihood.

the shrinkage parameter o2 by plugging this approximation into Eq. (8). This method gives the same
task adaptation update as the previous section but a meta update of the form

1 ~
NS Reptile _ T(Qbm . Hm t) A% Reptile __ _vetfzal(0t>H5t19t H9t0'2 , (10)

6., os, b/ t,o?

where derivatives are evaluated at 8, = 6, (%), and the gradient of ¢ wrt. o2 is ignored. Due to lack
of space, further justification and derivation of this approach is provided in Appendices and[B.4]

We can see that Reptile is a special case of this method when 02, — oo and we choose a learning
rate proportional to o2, for ¢,,,. We thus refer to it as o-Reptile.

Table [I] compares our proposed algorithms with ex1st1ng algorithms in the literature. Our three
algorithms reduce to the algorithms on the left when o2, — oo or a constant scalar for all modules.
Another variant of MAML for long adaptation, ﬁrst—order MAML, can be recovered as a special case
of iIMAML when using one step of conjugate gradient descent to compute the inverse Hessian [3]].

4.3 Task-Specific Module Selection

When the parameters ¢ and o2 are estimated accurately, the values of o2, for task-independent
modules shrink towards zero. The remaining modules Wlth non-zero 02 are considered task-
specific [40]. In practice, however, the estimated value of o2, will never be exactly zero due to the
use of stochastic optimization and the approximation in estlmatlng the meta gradients. We therefore
apply a weak regularization on o2 to encourage its components to be small unless nonzero values are
supported by evidence from the task data (see Appendix [D]for details).

While the learned crfn values are still non-zero, in most of our experiments below, the estimated value
o2, for task-independent modules is either numerically indistinguishable from 0 or at least two orders
of magnitude smaller than the value for the task-specific modules. This reduces the gap between
meta-training, where all modules have non-zero afn, and meta-testing, where a sparse set of modules
are selected for adaptation. The exception to this is the text-to-speech experiment where we find the
gap of o2, between modules to not be as large as in the image experiments. Thus, we instead rank the
modules by the value of o2, and select the top-ranked modules as task-specific.

Ranking and selecting task-specific modules using the estimated value of o2, allows us to trade off
between module sparsity and model capacity in practice, and achieves robustness against overfitting.
It remains unclear in theory, however, if the task sensitivity of a module is always positively correlated
with o2, especially when the size of modules varies widely. This is an interesting question that we
leave for future investigation.

5 Experimental Evaluation

We evaluate our shrinkage-based methods on challenging meta-learning domains that have small
amounts of data and require long adaptation horizons, such as few-shot text-to-speech voice synthesis.
The aim of our evaluation is to answer the following three questions: (1) Does shrinkage enable
automatic discovery of a small set of task-specific modules? (2) Can we adapt only the task-
specific modules without sacrificing performance? (3) Does incorporating a shrinkage prior improve
performance and robustness to overfitting in problems with little data and long adaptation horizons?

5.1 Experiment setup

Our focus is on long adaptation, low data regimes. To this end, we compare iMAML and Reptile
to their corresponding shrinkage variants, o-iMAML and o-Reptile. For task adaptation with the
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Figure 2: Module discovery with o-iMAML and o-Reptile for large-data augmented Omniglot. (a,b)
The learned o2 for each module (y-axis is log scale). (c,d) Test accuracy when only that layer is
adapted versus when all layers are adapted using the learned o2.

shrinkage variants, we use proximal gradient descent [45] for the image experiments, and introduce a
proximal variant of Adam [46] (pseudocode in Algorithm[3) for the text-to-speech (TTS) experiments.
The proximal methods provide robustness to changes in the prior strength o2 over time. We provide
further algorithmic details in Appendix |D} We evaluate on the following domains.

Few-shot image classification. We use the augmented Omniglot protocol of Flennerhag et al. [4],
which necessitates long-horizon adaptation. For each alphabet, 20 characters are sampled to define
a 20-class classification problem. The domain is challenging because both train and test images
are randomly augmented. Following Flennerhag et al. [4]], we use a 4-layer convnet and perform
100 steps of task adaptation. We consider two regimes: (Large-data regime) We use 30 training
alphabets (T' = 30), 15 training images (K = 15), and 5 validation images per class. Each image
is randomly re-scaled, translated, and rotated. (Small-data regime) To study the effect of overfitting,
we vary T' € {5,10,15,20} and K € {1, 3, 5,10, 15}, and augment only by scaling and translating.

Text-to-speech voice synthesis. Training a neural TTS model from scratch typically requires tens
of hours of speech data. In the few-shot learning setting [6} 1, [7, [8]], the goal is to adapt a trained
model to a new speaker based on only a few minutes of data. Earlier work unsuccessfully applied
fast-adaptation methods such as MAML to synthesizing utterances [1]]. Instead, their state-of-the-art
method first pretrains a multi-speaker model comprised of a shared core network and a speaker
embedding module and then finetunes either the entire model or the embedding only. We remove the
manually-designed speaker embedding layers and perform task adaptation and meta-updates on only
the core network.

The core network is a WaveNet vocoder model [21]] with 30 residual causal dilated convolutional
blocks as the backbone, consisting of roughly 3M parameters. For computational reasons, we use
only one quarter of the channels of the standard network. As a result, sample quality does not reach
production level but we expect the comparative results to apply to the full network. We meta-train
with tasks of 100 training utterances (about 8 minutes) using 100 task adaptation steps, then evaluate
on held-out speakers with either 100 or 50 (about 4 minutes) utterances and up to 10, 000 adaptation
steps. For more details see Appendix

Short adaptation. While our focus is on long adaptation, we conduct experiments on short-adaptation
datasets (sinusoid regression, standard Omniglot, and minilmageNet) for completeness in Appendix [E]

5.2 Module discovery

To determine whether shrinkage discovers task-specific modules, we examine the learned prior
strengths of each module and then adapt individual (or a subset of the) modules to assess the effect
on performance due to adapting the chosen modules. In these experiments, we treat each layer as a
module but other choices of modules are straightforward.

Image classification. Fig.[2] shows our module discovery results on large-data augmented Omniglot
for o-IMAML and o-Reptile using the standard network (4 conv layers, 4 batch-norm layers, and
a linear output layer). In each case, the learned o2 (Fig. a,b)) of the output layer is considerably
larger than the others. Fig.[2|c,d) show that the model achieves high accuracy when adapting only
this shrinkage-identified module, giving comparable performance to that achieved by adapting all
layers according to 2. This corroborates the conventional belief that the output layers of image
classification networks are more task-specific while the input layers are more general, and bolsters
other meta-learning studies [[17, 25]] that propose to adapt only the output layer.



- o-IMAML  73.6 +1.3%

% e iMAML 72.8 +£1.2%

I oReptile 789+ 1.2%

107 \g’:&‘q ;@@g) 5 65) & bj’ & Q\)\}& Reptile 778+ 1.1%
& T FE oY Table 2: Average test accuracy and 95% confi-

Figure 3: Learned o> of WaveNet modules. dence intervals for 10 runs on large-data aug-
Every block contains four layers (See Ap- mented Omniglot.

pendix [E.2] for details).
065 0.9 - -
—" Ly - A u
0.60 ./ 038 J,/ X
o 3 ®
g g
3055 — So7 /
s — o s )
050 e 706 —— o-Reptile
Lo = Reptile
0.45 054 @ == g-iIMAML
iMAML
0.40

20 2 4 6 8 0 12 14

Number of training instances per class

6 8 10 12 14 16
Number of training alphabets

18

Figure 4: Mean test accuracy and 95% confidence intervals for 10 runs on small-data aug. Omniglot as
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However, the full story is not so clear cut. Our module discovery results (Appendix [E) on standard
few-shot short-adaptation image classification show that in those domains adapting the penultimate
layer is best, which matches an observation in Arnold et al. [19]]. Further, on sinusoid regression,
adapting the first layer performed best. Thus, there is no single best modular structure across domains.

Text-to-speech. Fig.[3|shows the learned o2 for each layer of our TTS WaveNet model, which consists
of 4 layers per residual block and 123 layers in total (Appendix [E.2] shows the full architecture).
Most o2 values are too small to be visible. The dilated conv layers between blocks 10 and 21 have
the largest o values and thus require the most adaptability, suggesting that these blocks model the
most speaker-specific features. These layers have a receptive field of 43—85 ms, which matches
our intuition about the domain because earlier blocks learn to model high-frequency sinusoid-like
waveforms and later blocks model slow-changing prosody. WaveNet inputs include the fundamental
frequency (f0), which controls the change of pitch, and a sequence of linguistic features that provides
the prosody. Both the earlier and later residual blocks can learn to be speaker-invariant given these
inputs. Therefore, it is this middle range of temporal variability that contains the information about
speaker identity. We select the 12 layers with o2 values above 3.0 for adaptation below. This requires
adding only 16% of the network parameters for each new voice. Note that this domain exhibits yet
another type of modular structure from those above.

5.3 Predictive Performance

Image classification accuracy. For each algorithm, we perform extensive hyperparameter tuning on
validation data. Details are provided in Appendix [E] Table 2] shows the test accuracy for augmented
Omniglot in the large-data regime. Both shrinkage variants obtain modest accuracy improvements
over their non-modular counterparts. We expect only this small improvement over the non-shrinkage
variants, however, as the heavy data augmentation in this domain reduces overfitting.

We now reduce the amount of augmentation and data to make the domain more challenging. Fig. 4
shows our results in this small-data regime. Both shrinkage variants significantly improve over their
non-shrinkage counterparts when there are few training instances per alphabet. This gap grows as
the number of training instances decreases, demonstrating that shrinkage helps prevent overfitting.
Interestingly, the Reptile variants begin to outperform the iMAML variants as the number of training
instances increases, despite the extra validation data used by the iIMAML variants. Results for all
combinations of alphabets and instances are shown in the appendix.

Text-to-speech sample quality. The state-of-the art approaches for this domain [[1]] are to finetune
either the entire model (aka. SEA-AII) or just the speaker embedding (SEA-Emb). We compare these
two methods to meta-training with Reptile and o-Reptile. We also tried to run o-MAML and o-
iMAML but o-MAML ran out of memory with one adaptation step and o-iMAML trained too slowly.



We evaluate the generated sample quality using two voice synthesis metrics: (1) the voice similarity
between a sample and real speaker utterances using a speaker verification model [47, 1], and (2) the
sample naturalness measured by the mean opinion score (MOS) from human raters. Fig. [5|shows the
distribution of sample similarities for each method, along with an upper (lower) bound computed
from real utterances between the same (different) speakers. Sample naturalness for each method is
shown in Table[3] along with an upper bound created by training the same model on 40 hours of data.

o-Reptile and Reptile clearly outperform SEA-AIl and SEA-Emb. o-Reptile has comparable median
similarity with Reptile, and its sample naturalness surpasses Reptile with both 8 minutes of speech
data, and 4 minutes, which is less than used in meta-training. Overall, the o-Reptile samples have
the highest quality despite adapting only 12 of the 123 modules. SEA-AIl and Reptile, which adapt
all modules, overfit quickly and underperform, despite adaptation being early-stopped. Conversely,
SEA-Emb underfits and does not improve with more data because it only tunes the speaker embedding.

R i wolce —— 4 mins 8 mins
SEEERIAT, 4 min —_ SEA-Emb 1.51£0.05 1.57+0.05
o— ReBHlS: & mins —— SEA-All 1.414+0.04 1.73+£0.06
SEAEmD, 8 mins — Reptile 1.93+0.05 2.09 £0.06
o Reptile) 8 ming — ——— o'—l.ieptile. 1.98 +£0.06 2.28 +0.06
Real, same voice [ Trained with 40 hours 2.59 £ 0.07
(upper bound) 02 04 0’6 08 of data (upper bound)

Voice similarity ..
Figure 5: Box-plot of voice similarity measure- Table 3: Mean opinion score of sample natural-

ments from utterances (higher is better). ness. Scores range from 1-5 (higher is better).
5.4 Discussion

We thus answer all three experimental questions in the affirmative. In both image classification and
text-to-speech, the learned shrinkage priors correspond to meaningful and interesting task-specific
modules. These modules differ between domains, however, indicating that they should be learned
from data. Studying these learned modules allows us to discover new or existing knowledge about
the behavior of different parts of the network, while adapting only the task-specific modules provides
the same performance as adapting all layers. Finally, learning and using our shrinkage prior helps
prevent overfitting and improves performance in low-data, long-adaptation regimes.

6 Conclusions

This work proposes a hierarchical Bayesian model for meta-learning that places a shrinkage prior
on each module to allow learning the extent to which each module should adapt, without a limit on
the adaptation horizon. Our formulation includes MAML, Reptile, and iMAML as special cases,
empirically discovers a small set of task-specific modules in various domains, and shows promising
improvement in a practical TTS application with low data and long task adaptation. As a general
modular meta-learning framework, it allows many interesting extensions, including incorporating
alternative Bayesian inference algorithms, modular structure learning, and learn-to-optimize methods.

Broader Impact

This paper presents a general meta-learning technique to automatically identify task-specific modules
in a model for few-shot machine learning problems. It reduces the need for domain experts to
hand-design task-specific architectures, and thus further democratizes machine learning, which we
hope will have a positive societal impact. In particular, general practitioners who can not afford
to collect a large amount of labeled data will be able to take advantage of a pre-trained generic
meta-model and adapt its task-specific components to a new task based on limited data. One example
application might be to adapt a multilingual text-to-speech model to a low-resource language or the
dialect of a minority ethnic group.

As a data-driven method, like other machine learning techniques, the task-independent and task-
specific modules discovered by our method are based on the distribution of tasks in the meta-training
phase. Adaptation may not generalize to a task with characteristics that fundamentally differ from
those of the training distribution. Applying our method to a new task without examining the task



similarity runs the risk of transferring induced bias from meta-training to the out-of-distribution task.
For example, a meta image classification model trained only on vehicles is unlikely to be able to
be finetuned to accurately identify a pedestrian based on the adaptable modules discovered during
meta-training. To mitigate this problem, we suggest ML practitioners first understand whether the char-
acteristics of the new task match those of the training task distribution before applying our method.
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