
Content

14



A Adaptive Regularization

We illustrate that the two Algorithms can heuristically be viewed as GD on adaptively `2-regularized
regression problems. The regularization parameter changes for each iteration in the algorithms:

min
xt+1

(
1

2
‖Axt+1 −Ax∗‖2 + λ(wt, gt, η, A, y)‖xt+1‖2

)
.

However, it is difficult to characterize the behavior of λt in general.

WN. Let xt = gtwt

‖wt‖ . Notice that:

gt+1wt+1

‖wt+1‖
=

gt
‖wt‖

wt + (
gt+1

‖wt+1‖
− gt
‖wt‖

)wt − ηt
gt+1

‖wt+1‖
gt
‖wt‖

(I − wtw
T
t

‖wt‖2
)AT r

This can be translated to the update of xt as

xt+1 =xt − ηt
gt+1gt

‖wt+1‖‖wt‖
AT r −

(
1− gt+1‖wt‖

gt‖wt+1‖
− ηt

gt+1

‖wt+1‖
〈 wt
‖wt‖2

, AT r〉
)
xt

rPGD. Let xt = gtwt. The update of wt in Algorithm 2 is

wt+1 =
1

‖vt‖
(wt − ηtgtAT (Axt −Ax∗)). (8)

We can now write the update of xt+1 = gt+1wt+1 as

xt+1 = xt −
ηtgtgt+1

‖vt‖
AT (Axt −Ax∗)− (1− gt+1

gt‖vt‖
)xt.

Both updates can be viewed as a gradient step on the following `2-regularized regression problem,
with specific choices of λt at iteration t:

1

2
‖Axt+1 −Ax∗‖2 + λt‖xt+1‖2,

We see that the regularization parameter changes for each iteration for both WN and rPGD, as follows:

(WN) λt =
‖wt+1‖‖wt‖
gt+1gt

(1− gt+1‖wt‖
gt‖wt+1‖

− η gt+1

‖wt+1‖
〈 wt
‖wt‖2

, AT r〉)

(rPGD) λt =(gt‖vt‖ − gt+1)/(ηtg
2
t gt+1).

The regularization parameter λt is highly dependent on gt, gt+1 and the input matrix A. However, it
is difficult to characterize the behavior of λt in general. In particular, we require the parameters gt,
gt+1, wt and wt+1 updated in a way that λt > 0. For the simpler setting of orthogonal A, we can see
for rPGD that: 1) If the learning rate of g is small enough, we will have gt+1 < gt‖vt‖, which means
that λt > 0; 2) When gtwt is close to g∗w∗, we will have ‖vt‖ ≈ 1, and gt+1 ≈ gt, which means
that λt ≈ 0.

B Proof of Lemma 2.2

Proof. rPGD. First we start with the reparametrized Projected Gradient Descent algorithm. The
gradients for rPGD are

∇wf(w, g) = g∇L(gw), ∇gf(w, g) = wT∇L(gw),

First, the gradient step on g clearly leads to the gradient flow for g. Second, for the update on w,
we expand all terms to first order in η. Let at = ∇wt

f(wt, gt). We start by expanding the squared
Euclidean norm

‖wt − η∇wtf(wt, gt)‖22 = ‖wt − ηat‖22
= ‖wt‖2 − 2ηw>t at + η2‖at‖22
= 1− 2ηw>t at +O(η2).

15



On the last line, we have used that the iterates are normalized, so ‖wt‖2 = 1.

Now, we can use the expansion (1 + x)1/2 = 1 + x/2 +O(x2), valid for |x| � 1, on the right hand
side of the above display, to get

‖wt − η∇wt
f(wt, gt)‖2 = 1− ηw>t at +O(η2).

Next we use this expansion in the update rule for the weights:

wt+1 =
wt − η∇wtf(wt, gt)

‖wt − η∇wt
f(wt, gt)‖2

=
wt − ηat

1− ηw>t at +O(η2)

= (wt − ηat) · (1 + ηw>t at +O(η2)).

In the last line, we have used the expansion

1

1− ηx+O(η2)
= 1 + ηx+O(η2)

valid for |η| � 1 and x of a constant order. Recall now that for an arbitrary vector w, we defined
Pw⊥ = I − ww>

‖w‖22
as the projection into the orthocomplement of w. Since ‖wt‖ = 1, we have

Pt = I − wtw>t . By expanding the product and rearranging, keeping only the terms of larger order
than η, we find

wt+1 = wt − ηat + ηwtw
>
t at +O(η2)

= wt − ηPtat +O(η2).

Taking η → 0 and substituting the expression for at and ∇wf(w, g), we obtain the rPGD flow
dynamics for w, i.e., ẇt = −gtPt∇L(gtwt). The update rule for g follows directly.

WN. We now study weight normalization Salimans and Kingma [2016]. The WN objective function
can be written using the loss function L(x) = ‖Ax− y‖2/2 as

h(g, w) = L

(
g
w

‖w‖

)
.

The discrete time algorithm is thus updated as

vt = wt/‖wt‖
rt = y − gtAvt

gt+1 = gt − cη · 〈vt,∇L
(
gt

wt
‖wt‖

)
〉

wt+1 = wt − η · gt · Pt
1

‖wt‖
∇L(gt

wt
‖wt‖

).

When η → 0, we recover the gradient flow on gt and wt, i.e., recalling vt = wt/‖wt‖

ġt = −c · 〈vt,∇L(gtvt)〉

ẇt = −gt · Pt
1

‖wt‖
∇L(gtvt) = − gt

‖wt‖
· Pt∇L(gtvt).

Note the fact d‖wt‖2
dt = 2wTt ẇt = 0 which gives ‖wt‖ = ‖w0‖ = 1.

Hence, for WN with initialization ‖w0‖ = 1, we have that gt, vt evolves exactly equivalent to the
rPGD flow. The final formula for WN and rPGD that we will analyze is:

ġt = −c · wTt AT rt
ẇt = −gt · PtAT rt.

16



C Remaining Proofs for Section 2

C.1 Proof of Lemma 2.3

Proof. At a stationary points of the loss, we have, with r = y −Agw

∂gh(w, g) = wTAT r = 0

∂wh(w, g) = g · Pw⊥AT r = 0.

If g 6= 0, then we get Pw⊥AT r = 0. By adding this up with the first equation, we get AT r = 0.
Using that the smallest eigenvalue of AAT is nonzero, we conclude that r = 0. Hence this is
stationary point with zero loss, which is also a global minimum.

Else, if g = 0, we see that r = y −Agw = y. Hence in this case, the stationary points belong to the
set S := {(g, w) : g = 0, yTAw = 0}. This finishes the proof.

C.2 Proof of Lemma 2.4 (dynamics of loss ‖rt‖)

We have

d[1/2‖rt‖2]/dt = rTt ṙt = rTt Ad(gtwt)/dt

= rTt A[ġtwt + gtẇt]

= −rTt A[c · wtwTt AT rt + g2tPtAT rt]
= −rTt A[c · wtwTt + g2tPt]AT rt

Thus,

d[1/2‖rt‖2]/dt ≤ −min{g2t , c}‖AT rt‖2, d[1/2‖rt‖2]/dt ≥ −max{g2t , c}‖AT rt‖2. (9)

We get a geometric convergence of the loss to zero, as soon as we can get a lower bound on g2t , which
will be discussed below. If we have g2t ≥ C2 for some constant C2 > 0, we have

min(g2t , c)r
T
t AA

T rt ≥ min(C2, c)λmin(AAT )‖rt‖2

and so with k := min(C2, c)λmin(AAT ),

d[1/2 · ‖rt‖2]/dt ≤ −k‖rt‖2 ⇒ ‖rt‖2 ≤ exp(−kt)‖r0‖2.

C.3 Proof of Lemma 2.5

Define P⊥ the projection into the orthocomplement of the row span of A, hence w⊥ = P⊥w and
P⊥AT = 0. For simplicity, write h(wt, gt) = ht

dw⊥t
dt

= P⊥
dwt
dt

= − gt
‖wt‖

P⊥(I − wtw
>
t

‖wt‖2
)∇wht =

gt
‖wt‖

P⊥
wtw

>
t

‖wt‖2
∇wht =

gt

‖wt‖2
P⊥wt (∇ght)

= − gt

‖wt‖2
P⊥wt

(
1

c

dgt
dt

)
= −1

2

P⊥wt

‖wt‖2 c
dg2t
dt

= −1

2

w⊥t

‖w0‖2 c
dg2t
dt
.

The last equality due to the fact that d‖wt‖2/dt = 2wTt ẇt = 0, which is also observed in [Tian et al.,

2019, Tian, 2019]. Solving the dynamics dw⊥t
dt = − 1

2
w⊥t

c‖w0‖2
dg2t
dt with ‖w0‖ = 1 results in (6).

C.4 Proof of Theorem 2.6 (Convergence in the general case)

C.4.1 Proof that either the loss converges to zero, or the iterates (gt, wt) converge to the
stationary set S defined in Lemma 2.3.

We start with the ODE for the loss,

d[1/2‖rt‖2]/dt = −rTt A[c · wtwTt + g2tPt]AT rt. (10)

This shows that the loss is decreasing, possibly not strictly.

17



If we have g2t bounded away from zero, then the loss converges to zero geometrically. Thus, the only
remaining case is when gt → 0.

Now, we have that the iterates take the form xt = gtwt, and ‖wt‖ = 1 are bounded. Hence, as
gt → 0, we must have xt → 0.

Since the loss is continuous, we also have ‖rt‖2 = ‖y −Agtwt‖2 → ‖y‖2.

Suppose that the loss does not converge to zero. Since the loss is decreasing, this means that
‖rt‖ → c > 0 for some constant c.

From Equation (10), this implies that

(rTt Awt)
2 → 0.

Else, if this quantity is bounded away from zero, then d[1/2‖rt‖2]/dt < −c′ for some c′ > 0, which
would show ‖rt‖ decreases unboundedly, and is a contradiction.

Thus, we conclude that if the residual rt does not converge to zero, then the iterates xt = gtwt
converge to zero: xt → 0. Moreover, gt → 0 and yTAwt → 0. Given that wt is bounded, this shows
that (gt, wt) converges to the set of those stationary points of the loss characterized by

S := {(g, w) : g = 0, yTAw = 0}.

Note specifically that we have not shown that wt converges to a specific stationary point, but rather
only that it converges to the set S of stationary points given above.

Now, in general, to avoid converging to this set, we must make some additional assumptions on
the initialization. For instance, if we initialize with g0, w0 such that the loss is less than the loss at
x0 = 0, then, since we know that the loss is non-increasing, this shows that we will avoid converging
to the above set of "bad" stationary points.

This result does not give a rate of convergence, so it is weaker than the result when gt is bounded
away from zero. However, it is also more general. Initializing such that the loss is less than the loss
at zero can be achieved conveniently, because we can calculate the value of the loss.

C.4.2 Part I: Characterizing the solution when c > 0

The characterization follows by tracking the dynamics of the components in the row span of A and
its orthocomplement separately. The component in the row span converges to x∗. The normalized
component w⊥t in the orthocomplement is characterized by the invariant from the prior lemma. The
scale of that component converges to g∗, as gt → g∗. This gives the desired result.

C.4.3 Part II: Fixed gt, i.e. c = 0

For the fixed gt case, we have

d[1/2 · ‖rt‖2]/dt = rTt ṙt = rTt Ad(gtwt)/dt

= rTt A[ġtwt + gtẇt]

= rTt Ag0ẇt

= −rTt Ag0Ptg0AT rt
= −g20‖PtAT rt‖2.

Now, it follows that ‖rt‖ is a non-increasing quantity, which is also strictly decreasing as long as
‖PtAT rt‖ > 0. It also follows that as t → ∞, we have ‖PtAT rt‖ → 0. Now, since g0 < g∗, it
follows that AT rt has a norm that is strictly bounded away from zero, i.e., ‖AT rt‖ > c0 > 0 for
some c0 > 0. So, we do not have the residual going to zero in this case. Hence, this can also be
written as wt = ct ·AT rt/‖AT rt‖, for some sequence of scalars ct with lim inf c2t > 0.

Hence, wt becomes asymptotically parallel to the row space of A. Now, since wt lives on the
compact space of unit vectors, considering any subsequence of it, it also follows that it has a
convergent subsequence. Let w be the limit along any convergent subsequence. It follows that
w = ±AT r/‖AT r‖. Next we note that the solution with + actually maximizes the loss over

18



‖w‖ = 1. Hence, the only possible solution is w = −AT r/‖AT r‖. Since this holds for any
convergent subsequence, it follows that wt itself must converge.

Now we get a more explicit form for the solution w. We can say that w is the unique unit norm vector
such that w = −ĉAT r, for some ĉ > 0. Then we can write that equation as

w = −ĉAT (Agw − y)

(I + cgATA)w = ĉAT y

w = (ĉ−1I + gATA)−1AT y.

Thus, w is the unique vector of the above form such that ‖w‖ = 1. This can be viewed as a form
of implicit regularization. Namely, w is the unique vector, for which there is some regularization
parameter ĉ such that, w minimizes the regularized least squares objective

1

2
‖Agw − y‖2 +

g

2ĉ
‖w‖2

and ‖w‖ = 1. This w will in general not be the pointing in the direction of the optimal solution. We
recall that the optimal solution w∗ has the form w∗ = A†b/‖A†y‖, where A† is the pseudoinverse
of A. We recall that the action of the pseudoinverse can be characterized as the limit of ridge
regularization with infinitely small penalization, i.e., A†y = limλ→0(ATA + λI)−1AT y. For
orthogonal A, we see that w converges to the right direction, because AT = A†. However, for general
A, the flow does not in general converge to the min-norm direction.

Now, suppose we start the flow for both gt, wt again from a point w0 that belongs to the span of the
row space of A (call it R). Then, by the update rule for wt, it follows that wt ∈ R for all t. Therefore,
the derivative of the loss becomes

d[1/2 · ‖rt‖2]/dt = rTt ṙt = rTt Ad(gtwt)/dt

= rTt A[ġtwt + gtẇt]

= −rTt A[wtw
T
t A

T rt + g2tPtAT rt]
= −(rTt Awt)

2.

From arguments similar to before, it follows that rTt Awt → 0 as t→∞. Moreover, from a similar
subsequence argument it also follows that wt → w such that rTAw = 0. Since ‖w‖ = 1 and A has
full row rank, it follows that r = 0. Hence the flow converges to a zero of the loss. Moreover, since
w ∈ R, it follows that this is the minimum norm solution.

C.5 Proof of Theorem 2.7 (Convergence rate)

C.5.1 First case

Note first that by (6), we have

g2t = 2 log ‖w⊥0 ‖+ g20 − 2 log ‖w⊥t ‖ ≥ 2 log ‖w⊥0 ‖+ g20 (11)

where the last inequality is due to the fact ‖w⊥t ‖ ≤ ‖wt‖ = 1. Thus, we have our first lower bound.
From Lemma 2.4, we get the convergence rate for the first case.

C.5.2 Second case

Lemma C.1 (Lower bound on gt). Under the same setting of Lemma 2.2, suppose the initialization
of g0 and w0 satisfies 〈Aw0, Aw

∗〉 > 0 and g0 ≥ 0. Let ‖Ag
∗w∗‖2−‖A(g0w0−g∗w∗)‖2

λmax
> δ for some

small δ. 4 We have the lower bound of gt:

gt ≥
∥∥Ag∗w∗‖2 − ‖A(g0w0 − g∗w∗)‖2

)
λmax

− δ

2
for t ≥ s

4Note this is not an assumption. ‖Ag∗w∗‖2 − ‖A(g0w0 − g∗w∗)‖2 > 0 is true from the our assumed
condition 〈Aw0, Aw

∗〉 > 0. See the lemma’s proof for details.

19



where the time s depends on our initialization g0 > 0:

s =

0 if g0 ≥ min

{
2g∗〈Aw0,Aw

∗〉
‖Aw0‖2 ,

‖Ag∗w∗‖2−‖A(g0w0−g∗w∗)‖2)
λmax

− δ
}
,

1
λmax

log
(

2
δ

(
‖Ag∗w∗‖2−‖A(g0w0−g∗w∗)‖2

λmax
− g0

))
otherwise.

Proof of Lemma C.1. We start with the dynamics

dgt
dt

= −〈Awt, A(gtwt − g∗w∗)〉 = −gt‖Awt‖2 + g∗〈Awt, Aw∗〉

dg2t
dt

= −2〈Agtwt, A(gtwt − g∗w∗)〉 = ‖Ag∗w∗‖2 − ‖A(gtwt − g∗w∗)‖2 − ‖Agtwt‖2

There is a geometric interpretation. Consider the points 0, z∗ = Ag∗w∗, and zt = Agtwt. Then, we
have

dg2t
dt

= ‖z∗‖2 − ‖zt − z∗‖2 − ‖zt‖2.

By the Pythagorean theorem, this quantity is positive if and only if the angle between the vectors zt
and z∗ − zt is "acute" (i.e., less than π/2 radians, or 90 degrees). This can be visualized by drawing
the triangle with vertices at 0, z∗, and zt, and noting that the angle in question is the one at the vertex
zt. Thus, the above result states that as long as that angle is acute, gt will increase. The general
convergence result states that ‖zt − z∗‖2 is non-increasing, while our initalization condition states
that ‖z∗‖2 − ‖z0 − z∗‖2 > 0. Moreover, ‖zt‖2 can be upper bounded by a constant times g2t . Taken
together, these facts imply that if g2t becomes small, then dg2t

dt becomes positive, and hence g2t starts
to grow again. Thus, the dynamics of g2t show a "self-balancing" dynamics. This is made rigorous
below.

Denote δt = 2g∗〈Awt,Aw
∗〉

‖Awt‖2 , then

dgt
dt

= ‖Awt‖2 (δt − gt) and
dg2t
dt

= gt‖Awt‖2 (δt − 2gt) (12)

‖Ag∗w∗‖2 − ‖A(gtwt − g∗w∗)‖2 =gt‖Awt‖2
(

2g∗〈Awt, Aw∗〉
‖Awt‖2

− gt
)

= gt‖Awt‖2 (δt − gt)

From this condition: ‖Ag∗w∗‖2 − ‖A(g0w0 − g∗w∗)‖2 = ‖Aw0‖2
(
g0δ0 − g20

)
> 0, we have that

〈Ag0w0, Ag
∗w∗〉 > 0. Wihtout loss of generality, we assume gt > 0 and 〈Aw0, Ag

∗w∗〉 > 0. 5

δ < g0 < min

{
δ0,

(δ0 − g0)

λmax
g0‖Aw0‖2

}
(13)

which means

g0 <
2g∗〈Aw0, Aw

∗〉
‖Aw0‖2

⇔ ‖Ag∗w∗‖2 > ‖A(g0w0 − g∗w∗)‖2

g0 <
(δ0 − g0)

λmax
g0‖Aw0‖2

(12)⇔ ‖Ag∗w∗‖2 − ‖A(g0w0 − g∗w∗)‖2 − λmaxg
2
0 > 0.

Since we always have ‖A(gtwt − g∗w∗)‖ ≥ ‖A(gsws − g∗w∗)‖ for t > s, it implies

dg2t
dt
≥ ‖Ag∗w∗‖2 − ‖A(g0w0 − g∗w∗)‖2 − λmaxg

2
t

= λmax

(
(δ − g0)

λmax
g0‖Aw0‖2 − g2t

)
> 0 (14)

Solving (14) gives

g2t ≥
(
g0 −

(δ − g0)

λmax
g0‖Aw0‖2

)
e−λmaxt +

(δ − g0)

λmax
g0‖Aw0‖2

5we could prove similarly for the case g0 < 0 and 〈Aw0, Ag
∗w∗〉 < 0

20



This means that for initialization g0 satisfying (13), it will take time at most

s =
1

λmax
log

(
2

δ

(
(δ − g0)

λmax
g0‖Aw0‖2 − g0

))
such that gs ≥ (δ−g0)

λmax
g0‖Aw0‖2 − 1

2δ. Thus after s,

inf
t≥s

gt ≥
(δ − g0)

λmax
g0‖Aw0‖2 −

1

2
δ.

D Beyond Linear Regression

Here we illustrate that the invariant in the optimization path holds more generally than for linear
regression, and specifically for certain general loss functions that only depend on a small dimensional
subspace of the parameter space. Let L : Rd → R be the loss function, and our goal is to solve

min
x∈Rd

L(x) (15)

where L(x) is differentiable and satisfies Assumption D.1.

Assumption D.1 (Low-dimensional gradient). There exists a projection matrix P ∈ Rd×d with rank
r < d such that

(I − P )∇L(x) = 0,∀x ∈ Rd.

Let P⊥ = (I − P ). Assumption D.1 is equivalent to the fact that the gradient of L lives in the
low-dimensional space given by the span of P ,∇L(x) ∈ span(P ). This implies

L(x) = L(Px) ∀x ∈ Rd.
This means that the objective only depends on the projection of x into the span of P . To use the
orthogonal projection in what follows, define x‖ = Px and x⊥ = P⊥x. For the undetermined linear
regression, P = A† where A† is the pseudo-inverse of the matrix A.
Theorem D.2 (WN flow Invariance for General Loss). Consider the loss function in (15) with
Assumption D.1. The WN method transforms the loss function to h(g, w) = L

(
gt

wt

‖wt‖

)
. The WN

gradient flow from Algorithm 1 with initial condition (w0, g0), started from w0 with not necessarily
unit norm, has the invariant

w⊥t = exp

(
g20 − g2t
2‖w0‖2

)
w⊥0 .

The proof of the above theorem is a simple extension of the proof of Lemma2.5 with A>rt =

∇L
(
gt

wt

‖wt‖

)
. This result suggests that the reason for the invariance is that the original objective

function before reparametrization only depends on a smaller dimensional space.

E Remaining Proofs for Section 3

E.1 Proof of Theorem 3.2 Case (a)

We restate the case (a) of Theorem 3.2 here.
Theorem E.1 (Updating g in Phase I). Suppose we initialize with g0 < g∗. Let δ0 = (g∗)2− (g0)2 >
0, 0 < ρ < 1 and δ < ε

2g∗+ε . Suppose the number of iterations T1 and T2 is of the order:

T1 =

(
1 +

(g∗)2

ρδ0

)
log

(
1− ‖Aw0‖2

δ2

)
= O

(
(g∗)2

ρδ0
log

(
1

δ2

))
,

T2 =
1

γ(2)
log

(
ρδ0

g∗2(1− ε)
√
ε

)
= O

(
1

γ(2)
log

(
ρ(g∗2 − g20)

g∗2
√
ε

))
.

Fix g1 = g0 at the first step. For iterations t = 1, . . . , T1 − 1, set the stepsize for g to

γ(1) < min

{
‖Ag0w0‖2

2T1((g∗)2 − ‖Ag0w0‖2)
log

(
(1− ρ)

g∗2

g20
+ ρ

)
,

1

2(1 + ‖Aw0‖2)

}

21



and to any γ(2) ≤ 1
4 for t = T1, T1 + 1, . . . , T1 + T2 − 1. Set ηt = 1/g2t . Then we reach ‖w⊥T ‖ ≤ ε

and ‖AgTwT − b‖2 ≤ εg∗2 after T = T1 + T2 iterations.

Proof. The norm ‖w⊥‖. Let us first get the upper bound of gt+1 to see how the norm of ‖w⊥t ‖ =
1− ‖Awt‖2 evolves. Suppose that we have for some 0 < ρ < 1

(g∗)2 − ‖AgT1wT1‖2 ≥ (g∗)2 − g2T1
= ρδ0 (16)

By Lemma E.6, we have

‖w⊥T1
‖2 = (1− ‖AwT1‖2) ≤ exp(−

T1∑
i=1

(g∗)2 − ‖Agiwi‖2

(g∗)2 + (g∗)2 − ‖Agiwi‖2
)(1− ‖Aw0‖2) (17)

≤ exp(−
T1∑
i=1

(g∗)2 − ‖AgT1
wT1
‖2

(g∗)2 + (g∗)2 − ‖AgT1
wT1
‖2

)(1− ‖Aw0‖2) (18)

≤ exp(− ρδ0T1
(g∗)2 + ρδ0

)(1− ‖Aw0‖2) (19)

we have ‖w⊥T1
‖2 = 1− ‖AwT1

‖2 ≤ δ2 when

T1 =

(
1 +

(g∗)2

ρδ0

)
log

(
1− ‖Aw0‖2

δ2

)
.

Now we only need to verify condition (16). To see this, notice that we use Lemma E.3:

gt+1 ≤gt +
γgt
2

(‖vt‖2 − 1) for t < T1

Note ‖vt‖2 = g∗2/(g2t ‖Awt+1‖2) > 1 as ‖Awt+1‖ < 1 and g∗2 > g2t . Thus, even though gt grows
with the rate γ(1)(‖vt−1‖2 − 1), we use our choice of γ(1) and gt+1 < g∗. In fact, we set γ(1) small
such that after T1 there is a gap between g∗ and gT1

. We let the gap satisfies (g∗)2 − g2T1
≥ ρδ0:6

g2T1+1 ≤
T1+1∏
t=1

(
1 +

1

2
γ(1)(‖vt−1‖2 − 1)

)2

g21
(a)

≤ exp
(
γ(1)(‖v0‖2 − 1)T1

)
g20

(b)

≤ (g∗)2 − ρδ0

(20)

where step (a) due to g1 = g0 and the that

‖vt‖2

‖vt−1‖2
≤
g2t−1
g2t
≤ 1 (21)

which is due to g2t ‖vt‖2 − g2t−1‖vt−1‖2 < 0 (Lemma E.5 and gt − gt−1‖vt−1‖ ≤ g∗ − g∗

‖Awt‖ < 0)
In step (b) as long as we make sure

γ(1) ≤
log
(
(g∗2 − ρδ0)/g20

)
(‖v0‖2 − 1)T1

=
‖Ag0w0‖2

2T1((g∗)2 − ‖Ag0w0‖2)
log

(
(1− ρ)

g∗2

g20
+ ρ

)
which is satisfied by our choice of γ(1) for fixed T1, g0, and δ0.

The loss‖A(gTwT − g∗w∗)‖. By Lemma E.2,

‖A(gt+1wt+1 − g∗w∗)‖2 = (gt+1 − gt‖vt‖)2

which means we only need to analyze the term

gt‖vt‖ − gt+1 = (1− γ(1))(gt−1‖vt−1‖ − gt) (22)

− (gt−1‖vt−1‖ − gt‖vt‖)
(

1− γ(1)

gt

gt−1‖vt−1‖
(gt + gt−1‖vt−1‖)

(gt‖vt‖+ gt−1‖vt−1‖)
)
.

6Note that one could use 1
2
δ0 for the convenience of the proof.

22



Again, for t < T1, we have from (21) that gt−1‖vt−1‖ − gt‖vt‖ > 0. Meanwhile, with Lemma E.4
and Lemma E.5, we have

gt(gt + gt−1‖vt−1‖)
gt−1‖vt−1‖(gt‖vt‖+ gt−1‖vt−1‖)

≥ g2t
gt−1‖vt−1‖(gt‖vt‖+ gt−1‖vt−1‖)

≥ g20
2g20‖v0‖2

≥ 1

2(1 + ‖Aw0‖2)

By our choice of γ(1),

γ(1) ≤ 1

2‖v0‖2
≤ gt(gt + gt−1‖vt−1‖)
gt−1‖vt−1‖(gt‖vt‖+ gt−1‖vt−1‖)

We have from (22) that t > T1

gt‖vt‖ − gt+1 ≤ (1− γ(2))t−T1(gT1
‖vT1
‖ − gT1

)

= (1− γ(2))t−T1(g2T1
‖vT1
‖2 − g2T1

)/(gT1
‖vT1
‖+ gT1

)

= (1− γ(2))t−T1
(
g∗2/‖AwT1

‖2 − g2T1

)
/(g∗/‖AwT1

‖+ gT1
) (23)

≤ (1− γ(2))t−T1
(
g∗2 − g2T1

)
/ (g∗(1− ε) + gT1

) (24)

= (1− γ(2))t−T1ρδ0/ (g∗(1− ε) + gT1
) (25)

≤ (1− γ(2))t−T1ρδ0/ (g∗(1− ε)) . (26)

So we have gT ‖vT ‖ − gT ≤ g∗
√
ε after T = T1 + 1

γ(2) log
(

ρδ0
(g∗2(1−ε))

√
ε

)

E.1.1 Technical Lemmas for Theorem E.1

In the following section, we assume AA> = Im×m and use rt = A(gtwt − g∗w∗) to denote the
negative residual.
Lemma E.2. With the step-size η = 1

g2t
, we have the following equalities: We have the following

property:

Awt+1 =
Ag∗w∗

gt‖vt‖
(27)

g2t ‖vt‖2 = g2t+((g∗)2 − ‖Agtwt‖2) =
g∗2

‖Awt+1‖2
(28)

‖Awt+1‖2 =
(g∗)2

(g∗)2 + g2t (1− ‖Awt‖2)
(29)

1− ‖Awt+1‖2 =
1

‖vt‖2
(
1− ‖Awt‖2

)
(30)

g2t+1 − ‖Agt+1wt+1‖2 =
‖Agt+1wt+1‖2

(g∗)2
(
g2t − ‖Agtwt‖2

)
. (31)

Proof. With the update of wt:

vt+1 = wt − ηgtA>rt, wt+1 =
vt
‖vt‖

,

we can get

Awt+1 =
Awt − 1

gt
rt

‖vt‖
=
Ag∗w∗

gt‖vt‖
,

23



and

‖vt‖2 =‖wt‖2 − 2η〈Agtwt, rt〉+ η2g2t ‖rt‖2

=1 + η(‖Ag∗w∗‖2 − ‖Agtwt‖2 − ‖rt‖2) + η2g2t ‖rt‖2

Moreover,

‖Awt+1‖2 =
1

‖vt‖2
‖Awt − ηgtrt‖2

⇔ ‖vt‖2‖Awt+1‖2 = ‖Awt‖2 − 2η〈Agtwt, rt〉+ η2g2t ‖rt‖2

= ‖Awt‖2 − 2η〈Agtwt, rt〉+ η2g2t ‖rt‖2

= ‖Awt‖2 + η(‖Ag∗w∗‖2 − ‖Agtwt‖2 − ‖rt‖2) + η2g2t ‖rt‖2.

Letting η = 1
g2t

, we have:

g2t ‖vt‖2 = g2t + ((g∗)2 − ‖Agtwt‖2)

‖vt‖2‖Awt+1‖2 =
(g∗)2

g2t
.

From (28), we can get (29), and with (29), we can obtain (31) and (30) after some algebra.

Lemma E.3. For η = 1
g2t

and γ = γt, we have gt+1 ≤ gt + γgt
2 (‖vt‖2 − 1) and

gt‖vt‖ − gt+1 =(1− γ)(gt−1‖vt−1‖ − gt)

− (gt−1‖vt−1‖ − gt‖vt‖)
(

1− γ

gt

gt−1‖vt−1‖
(gt + gt−1‖vt−1‖)

(gt‖vt‖+ gt−1‖vt−1‖)
)

Proof. The update of gt+1 is

gt+1 =gt − γ〈Awt, rt〉

=gt +
γ

2gt
((g∗)2 − ‖Agtwt‖2 − ‖rt‖2)

=gt +
γgt
2

(‖vt‖2 − 1)− γ

2gt
‖rt‖2.

where the second equality due to 〈Agtwt, rt〉 = ‖Ag∗w∗‖2−‖Agtwt‖2−‖rt‖2 and the last equality
due to update of ‖vt‖ (see equality 28). This finishs the proof for the first inequality.

Denoting Ct = α2
t−1g

2
t−1(‖Awt−1‖2 − 1), we get

gt+1 =gt +
γ

2gt
g2t (‖vt‖2 − 1)− γ

2gt
‖rt‖2

=gt +
γgt
2
‖vt‖2 −

γgt
2
− γ

2gt

(
(gt−1‖vt−1‖ − gt)2 + Ct

)
=gt +

γgt
2
‖vt‖2 −

γgt
2
− γ

2gt

(
(g2t−1‖vt−1‖2 + g2t − 2gtgt−1‖vt−1‖) + Ct

)
=gt +

γgt
2
‖vt‖2 −

γ

2gt
g2t−1‖vt−1‖2 + γ(gt−1‖vt−1‖ − gt)−

γ

2gt
Ct

=gt +
γ

2gt

(
g2t ‖vt‖2 − g2t−1‖vt−1‖2

)
+ γ(gt−1‖vt−1‖ − gt)−

γ

2gt
Ct

⇒ gt‖vt‖ − gt+1 =gt‖vt‖ − gt −
γ

2gt

(
g2t ‖vt‖2 − g2t−1‖vt−1‖2

)
− γ(gt−1‖vt−1‖ − gt) +

γ

2gt
Ct

=(1− γ)(gt−1‖vt−1‖ − gt)− gt−1‖vt−1‖+ gt‖vt‖

− γ

2gt

(
g2t ‖vt‖2 − g2t−1‖vt−1‖2

)
+

γ

2gt
α2
t−1g

2
t−1(‖Awt−1‖2 − 1)︸ ︷︷ ︸

Term1

.

24



We prove the lemma with following simplification for Term1:

Term1 =− γ

2gt

(
g2t ‖vt‖2 − g2t−1‖vt−1‖2

)
+

γ

2gt
α2
t−1g

2
t−1(‖Awt−1‖2 − 1)

=− γ

2gt
(

g2t
‖vt−1‖2

− g2t−1)(1− ‖Awt−1‖2) +
γ

2gt
α2
t−1g

2
t−1(‖Awt−1‖2 − 1)

=− γ

2gt
(1− ‖Awt−1‖2)(

g2t
‖vt−1‖2

− g2t−1 − (
gt

‖vt−1‖
− gt−1)2)

=− γ

2gt
(1− ‖Awt−1‖2)(

2gtgt−1
‖vt−1‖

− 2g2t−1)

=− γgt−1
gt

(1− ‖Awt−1‖2)(
gt

‖vt−1‖
− gt−1)

=− γgt−1‖vt−1‖
gt

g2t ‖vt‖2 − g2t−1‖vt−1‖2

gt + gt−1‖vt−1‖

where at the last step we use Lemma E.5 to have:

(1− ‖Awt−1‖2)(
gt

‖vt−1‖
− gt−1) =

1
gt

‖vt−1‖ + gt−1
(1− ‖Awt−1‖2)(

g2t
‖vt−1‖2

− g2t−1)

=
g2t ‖vt‖2 − g2t−1‖vt−1‖2

gt
‖vt−1‖ + gt−1

= ‖vt−1‖
g2t ‖vt‖2 − g2t−1‖vt−1‖2

gt + gt−1‖vt−1‖

Lemma E.4. If η = 1
g2t

and gt − gt−1‖vt−1‖ < 0, we always have that

gt+1 > gt, ∀t

Proof. Notice that gt+1 = gt − γ〈Awt, rt〉, so we only need to prove that 〈Awt, rt〉 < 0. Indeed,

〈Awt, rt〉 = gt‖Awt‖2 − g∗〈Awt, Aw∗〉 =
gt(g

∗)2

g2t−1‖vt−1‖2
− (g∗)2

gt−1‖vt−1‖
=

(g∗)2(gt − gt−1‖vt−1‖)
g2t−1‖vt−1‖2

< 0.

Lemma E.5. We have the following identity for the recursion on g2t ‖vt‖2:

g2t ‖vt‖2−g2t−1‖vt−1‖2 = (
g2t

‖vt−1‖2
−g2t−1)(1−‖Awt−1‖2) = (g2t −g2t−1‖vt−1‖2)(1−‖Awt‖)2.

Proof. By Lemma E.2, we use the (28) to get

g2t ‖vt‖2 − g2t−1‖vt−1‖2 =g2t (1− ‖Awt‖2)− g2t−1(1− ‖Awt−1‖2)

=(
g2t

‖vt−1‖2
− g2t−1)(1− ‖Awt−1‖2)

=(g2t − g2t−1‖vt−1‖2)(1− ‖Awt‖)2.

Lemma E.6. We have the following bound on the closeness of Awt to unit norm:

‖w⊥t ‖ ≤ (1− ‖Awt‖2) ≤ exp(−
t∑
i=1

(g∗)2 − ‖Agiwi‖2

(g∗)2 + (g∗)2 − ‖Agiwi‖2
)(1− ‖Aw0‖2). (32)

25



Proof. If we keep gt ≤ g∗, by (29) we always have that

1− ‖Awt+1‖2 =
g2t (1− ‖Awt‖2)

(g∗)2 + g2t (1− ‖Awt‖2)

≤ (g∗)2

(g∗)2 + (g∗)2 − ‖Agtwt‖2
(1− ‖Awt‖2)

≤ exp(− (g∗)2 − ‖Agtwt‖2

(g∗)2 + (g∗)2 − ‖Agtwt‖2
)(1− ‖Aw0‖2).

The first inequality holds due to

g2t
(g∗)2 + g2t (1− ‖Awt‖2)

≤ g2t + ((g∗)2 − g2t )

(g∗)2 + g2t (1− ‖Awt‖2) + ((g∗)2 − g2t )

Thus,

(1− ‖Awt‖2) ≤ exp(−
t∑
i=1

(g∗)2 − ‖Agiwi‖2

(g∗)2 + (g∗)2 − ‖Agiwi‖2
)(1− ‖Aw0‖2).

E.2 Proof of Theorem E.7 Case (b)

Here we discuss the case (b) of Theorem 3.2
Theorem E.7 (Fixing g in Phase I). Suppose the initialization satisfies 0 < g0 < g∗, and that w0

is a random vector with ‖w0‖ = 1. Set ηt = 1/g2t at all iterations. For any 0 < ε < 0.5, let the
learning rate of g in Phase II satisfies

0 < γ <
g∗ − g0

(1− ε2)(g∗ − g0) + ε2g∗
< 1. (33)

Let the number of iterations be

T1 =
log(1/ε2)

log(g∗2/g20)
, T2 =

log( 1−(1−ε2)g0/g∗
ε2 )

log( 1
1−(1−ε2)γ )

. (34)

Then after T = T1 + T2 iterations, the output of Algorithm 2 will satisfy

〈wT , w∗〉 ≥ 1− ε, (1− 2ε2)g∗ ≤ gT ≤ g∗, (35)

which indicates that gTwT is close to the minimum `2-norm solution g∗w∗. We can also bound the
final loss as f(wT , gT ) = ‖AgTwT −Ag∗w∗‖2/2 ≤ 3εg∗2.

Simplification for T1 and T2 (here we assume γ < 1
4 to get the order in Theorem 3.2):

T1 =
log(1/ε2)

log(g∗2/g20)
=

log(1/ε2)

log(1 + (g∗2 − g20)/g20)

(a)
≈ log(1/ε2)

(g∗2 − g20)/g20
=
g20
δ0

log(1/ε2), (36)

T2 =
log
(
(g∗ − g0)/(g∗ε2) + g0/g

∗)
log (1 + (1− ε2)γ/(1− (1− ε2)γ))

(b)
≈

log
(
(g∗ − g0)/(g∗ε2)

)
(1− ε2)γ/(1− (1− ε2)γ)

(c)
≈ 1

γ
log

(
g∗2 − g20
g∗2ε2

)
.

(37)

For step (a) and (b), we apply log(1 + x) ≥ x log 2, x < 1 for denominator. For step (b), we take
out the constant term g0/g

∗ in the numerator. For step (c) inside the log term, we multiply g∗ + g0
for both numerator and denominator as follows

g∗ − g0
g∗ε2

=
(g∗ − g0)(g∗ + g0)

g∗(g∗ + g0)ε2
≤ (g∗2 − g20)

g∗2ε2
.

Proof. For any vector w ∈ Rd, we use w‖ ∈ Rd to denote its projection onto the row space of A. We
use w⊥ ∈ Rd to denote its component in the subspace that is orthogonal to the row space of A. Since
A has orthogonal rows, we can write w = w‖ + w⊥, where

w‖ = A>Aw, w⊥ = (I −A>A)w. (38)

26



Since w∗ is the minimum `2-norm solution, w∗⊥ must be zero, i.e., (I − A>A)w∗ = 0 and
A>Aw∗ = w∗.

We will show that the algorithm has two phases. We now look at each phase in more detail.

Phase I. For any t = 0, ..., T1 − 1, only w is updated.

vt
(a)
= wt − ηtg2tA>Awt + ηtgtg

∗A>Aw∗

(b)
= (I −A>A)wt +

g∗

g0
A>Aw∗

(c)
= w⊥t +

g∗

g0
w∗, (39)

where (a) follows from substituting the partial gradient, (b) is true because of the choice of our
learning rates: ηt = 1/g2t and γt = 0, and (c) follows from the fact that A has orthonormal rows.
Since w⊥t is orthogonal to w∗ and g0 < g∗, we have

‖vt‖2 = ‖w⊥t ‖2 + g∗2/g20 ≥ g∗2/g20 > 1. (40)
After normalization, we have wt+1 = vt/‖vt‖. As shown in (39), gradient update does not7 change
the component in the orthogonal subspace: v⊥t = w⊥t . Since ‖vt‖2 > 1, the orthogonal component
will shrink after the normalization step:

‖w⊥t+1‖2 =
‖v⊥t ‖2

‖vt‖2
=

‖w⊥t ‖2

‖w⊥t ‖2 + g∗2/g20
≤ g20
g∗2
‖w⊥t ‖2. (41)

Since g0 < g∗, after T1 = log(1/ε2)
log(g∗2/g20)

iterations, we have

‖w⊥T1
‖2 ≤ (g20/g

∗2)T1 ≤ ε2. (42)

As indicated in (39), w‖t is in the same direction as w∗ for t ≥ 1. Since ‖w⊥T1
‖ ≤ ε, ‖w‖T1

‖ ≥
√

1− ε2 ≥ 1− ε. Therefore, 〈wT1
, w∗〉 = ‖w‖T1

‖ ≥ 1− ε.
Phase II. For iteration t = T1, ..., T1 + T2 − 1, the algorithm updates both w and g. The learning
rate of updating g is set as a constant 0 < γ < 1. The gradient update on g is

gt+1 = gt − γgtwTt A>Awt + γg∗wTt A
>Aw∗

(a)
= gt − γgt‖w‖t ‖2 + γg∗

〈
w
‖
t , w

∗
〉
,

(b)
= gt − γgt‖w‖t ‖2 + γg∗‖w‖t ‖, (43)

where (a) follows from the fact that A has orthonormal rows and w∗ lies in the row space of A, and
(b) is true because (39) implies that w‖t is in the same direction as w∗ for t ≥ 1.

We will now prove that the following two properties (see Lemma E.8) hold during Phase II:

• Property (i): ‖w⊥t+1‖ ≤ ‖w⊥t ‖ ≤ ε.

• Property (ii): letting γ′ = γ(1− ε2), we have
(1− γ′)gt + γ′g∗ ≤ gt+1 ≤ g∗.

We will now finish the proof of Theorem E.7 using these two properties. After T = T1 +T2 iterations,
by Property (i) and the same argument as in Phase I, we have 〈wT , w∗〉 = ‖w‖T ‖ ≥ 1 − ε. By
Property (ii), we can rewrite the lower bound of gT as

g∗ − gT ≤ (1− γ′)(g∗ − gT−1)

≤ (1− γ′)T2(g∗ − gT1
)

(a)
= (1− γ′)T2(g∗ − g0)

(b)

≤ 2ε2g∗, (44)
7This is always true for linear regression because the gradient∇wf(w, g) lies in the row space of A.

27



where (a) follows from the fact that gT1 = g0, and (b) follows from our choice of T2: it is easy to
verify that T2 satisfies (1 − γ′)T2(g∗ − g0 + δ) = δ, which implies that (1 − γ′)T2(g∗ − g0) < δ.
By our definition, δ = ε2g∗/(1 − ε2) < 2ε2g∗ for 0 < ε < 0.5. Therefore, by (44), we have
gT ≥ (1− 2ε2)g∗.

Given 〈wT , w∗〉 ≥ 1− ε and (1− 2ε2)g∗ ≤ gT ≤ g∗, we can bound the loss as

f(wT , gT ) = g2T ‖AwT ‖2/2− gT g∗ 〈AwT , Aw∗〉+ g∗2/2

≤ g∗2/2− (1− 2ε2)g∗2(1− ε) + g∗2/2

≤ 3εg∗2.

E.2.1 Technical Lemmas for Theorem E.7

Lemma E.8. We have following property in Phase II for Theorem E.7

• Property (i): ‖w⊥t+1‖ ≤ ‖w⊥t ‖ ≤ ε.

• Property (ii): letting γ′ = γ(1− ε2), we have

(1− γ′)gt + γ′g∗ ≤ gt+1 ≤ g∗.

Proof. We will argue by induction. We first show that the above two properties hold when t = T1.
Since gT1

= g0 < g∗, by (41), we have ‖w⊥T1+1‖ ≤ gT1
‖w⊥T1

‖/g∗ < ‖w⊥T1
‖ ≤ ε. By (43), we have

gT1+1

(a)

≤ gT1
− γgT1

(1− ε2) + γg∗

= gT1 − γgT1(1− ε2) + γ(1− ε2)g∗ + γε2g∗

(b)
= g0 − γ′g0 + γ′g∗ + γ′δ

= g∗ − (1− γ′)(g∗ − g0) + γ′δ, (45)

and

gT1+1

(c)

≥ gT1
− γgT1

‖w‖T1
‖2 + γg∗‖w‖T1

‖2

= gT1 + γ(g∗ − gT1)‖w‖T1
‖2

(d)

≥ gT1 + γ(g∗ − gT1)(1− ε2)

= (1− γ′)gT1 + γ′gT1 , (46)

where inequalities (a), (c), and (d) follow from the fact that 1− ε2 ≤ ‖w‖T1
‖2 ≤ 1, and (b) follows

from our definition γ′ = γ(1 − ε2), δ = ε2g∗/(1 − ε2), and the fact that gT1
= g0 < g∗. By the

upper bound of γ given in (33), we can verify that (1− γ′)(g∗ − g0) > γ′δ, and hence, (45) implies
that gT1+1 < g∗.

Now suppose that Property (i) and (ii) hold for t = T1, ..., k − 1, where T1 ≤ k − 1 < T1 + T2 − 1.
We need to prove that they also hold for the k-th iteration. By assumption, gk ≤ g∗, so using the
same argument as (40) and (41), we have ‖vk‖2 ≥ 1 and ‖w⊥k+1‖ = ‖w⊥k ‖/‖vk‖ ≤ ‖w⊥k ‖ ≤ ε,
where the last step follows from Property (i) at the (k − 1)-th iteration. Therefore, Property (i) holds
for the k-th iteration.

To prove Property (ii), first note that by assumption, 1 − ε2 ≤ ‖w‖k‖2 ≤ 1. We can use the same
argument as (46) to show that gk+1 ≥ (1− γ′)gk + γ′g∗. We can also use a similar argument as (45)
to get

gk+1 ≤ g∗ − (1− γ′)(g∗ − gk) + γ′δ, (47)

28



where γ′ = γ(1− ε2) and δ = ε2g∗/(1− ε2). The above equation can be rewritten as

g∗ − gk+1 + δ ≥ (1− γ′)(g∗ − gk + δ)

≥ (1− γ′)k+1−T1(g∗ − gT1
+ δ)

(a)

≥ (1− γ′)T2(g∗ − g0 + δ)

(b)
= δ, (48)

where (a) follows from the fact that k ≤ T1 + T2 − 1, and (b) can be verified for our choice of T2.
Eq. (48) implies that gk+1 ≤ g∗.

E.3 General A matrix

Proposition E.9 (General Matrix A). For a full rank matrix A with λmax(AA>) = 1, we fix δ > 0.
In Phase I with fixed g = g0 that satisfies g0 ≤ g∗λmin(AA

>)
2+δ ,we can reach to a solution satisfying

‖w⊥T1
‖ ≤ ε where

T1 =
1

log(1 + δ)
log

(
‖w⊥0 ‖
ε

)
.

Moreover, if the singular values of A do not decrease too fast, so that the following inequality holds:

1

m
‖AA>‖2F ≥ λ2min(AA>) + 2

√
log(m)

m
, (49)

and w∗ is randomly drawn on the sphere, then with probability 1−O( 1
m ), we only need that

g0 ≤
g∗

(2 + δ)

√
‖AA>‖2F − 2

√
m log(m)

m
. (50)

Lemma E.10 (For all w∗). Let σi be the singular values of A in decreasing order, let r be the rank
of A, so that σr > 0. We fix g := g0 satisfying

g0 ≤
g∗σr

2 + δ − σr

and update only w using rPGD. Then we have the orthogonal component w⊥ decreases geometrically
such that ‖w⊥T1

‖ ≤ ε after iteration

T1 =
1

log(1 + δ)
log

(
‖w⊥0 ‖
ε

)

Proof. Consider the singular value decomposition of A>A = UΣU> with

Σ =


σ1

. . .
σm

0d−m

 with 1 = σ1 ≥ σ2 ≥ . . . ≥ σm > 0. (51)

Moreover U is a d × d orthogonal matrix. We now use superscripts t to illustrate the tth iteration
wt since we use subscript for the eigenvalues index. Let η = 1

g2tσ1
= 1

g2t
. The update of vt can be

written as

vt = wt−ηg0A>A(g0wt−g∗w∗) = (I−A>A)wt+
g∗

g0
A>Aw∗ = U (I − Σ)U>wt+

g∗

g0
UΣU>w∗

29



‖vt‖ = ‖g
∗

g0
ΣU>w∗ + (I − Σ)U>wt‖

=

∥∥∥∥∥∥∥∥
g∗

g0


σ1

. . .
σm

0d−m

U>w∗ +


0

. . .
0

1d−m

U>wt +


1− σ1

. . .
1− σm

0d−m

U>wt
∥∥∥∥∥∥∥∥

≥

√√√√(g∗
g0

)2 m∑
i=1

σ2
i [U>w∗]2i +

d∑
i=m+1

[U>wt]2i −

√√√√ m∑
i=1

(1− σi)2[U>wt]2i

≥ g∗

g0
σm − (1− σm) (52)

≥
(
g∗

g0
+ 1

)
σm − 1

≥ 1 + δ

since we have
σm ≥

2 + δ(
g∗

g0
+ 1
) ⇔ g0 ≤

g∗σm
2 + δ − σm

and σm ≤ 2

Note that the singular values are sorted so that σm ≤ σ1 = 1, so the second inequality clearly holds.
The above inequality implies that as long as we have g0 small, we can always guarantee ‖v‖ ≥ 1 + δ.
Using the equality

‖w⊥t+1‖ =
‖w⊥t ‖
‖vt+1‖

≤ 1

1 + δ
‖w⊥t ‖

we see that the orthogonal component w⊥ decreases geometrically.

Lemma E.11 (random vector w∗ uniformly distributed on the sphere). Suppose further that w∗
is randomly drawn on the sphere, i.e. w∗ = z

‖z‖ where z ∼ N (0, Id). If the input data matrix A
satisfies :

• the maximum eigenvalue of λmax(AA>) = 1

• the rank of AA> is m.

• the spectral of A ∈ Rm×d satisfies 1
m

(
‖AA>‖2F − 2

√
m log(m)

)
≥ σ2

m where the σm is

the minimum eigenvalue of AA>.

Then we can fix g := g0 satisfying

g0 ≤
g∗

(2 + δ − σm)

√
‖AA>‖2F − 2

√
m log(m)

m

and update only w using rPGD. Then with probability 1−O( 1
m ), we have the orthogonal component

w⊥ decreases geometrically such that ‖w⊥T1
‖ ≤ ε after iteration

T1 =
1

log(1 + δ)
log

(
‖w⊥0 ‖
ε

)
Proof. Since w∗ is uniform on the d-dimensional sphere, u∗ := U>w∗ (let [U>w∗]i = u∗i ) is also
uniform on the d-dimensional sphere. Moreover, we can represent the random vector u∗ as a standard
Normal random vector divided by its norm, i.e.

u∗ =
z

‖z‖
,

30



where z ∼ N (0, Id). We want to lower bound
∑m
i=1 σ

2
i [U>w∗]2i =

∑m
i=1 σ

2
i (u∗i )

2. We can write
m∑
i=1

(u∗i )
2σ2
i =

∑m
i z

2
i σ

2
i∑m

i=1 z
2
i

.

Thus we need to get the upper bound of
∑m
i=1 z

2
i and the lower bound of

∑m
i=1 z

2
i σ

2
i . Note that

1 = σ1 ≥ σ2 ≥ . . . σr > 0.

Since zi ∼ N (0, 1), X =
∑m
i=1 z

2
i is 1-sub-exponential r.v. with expectation 1. Thus, with Bernstein

inequality (i.e., see Theorem 2.8.1 in Vershynin [2018]), for ε > 0, we have that:

P

(
m∑
i=1

σ2
i z

2
i ≤

m∑
i=1

σ2
i − εm

)
≤ P

(∣∣∣∣∣ 1

m

m∑
i=1

σ2
i z

2
i −

1

m

m∑
i=1

σ2
i

∣∣∣∣∣ ≤ ε
)

≤ 2 exp

(
−cmin

(
ε2m2∑m
i=1 σ

4
i

,
εm

maxi σ2
i

))
≤ 2 exp

(
−cmin

(
ε2m2∑m
i=1 σ

2
i

,
εm

maxi σ2
i

))
since

m∑
i=1

σ2
i ≥

m∑
i=1

σ4
i

(53)

and

P

(
m∑
i=1

z2i ≥ (1 + ε)m

)
≤ P

(∣∣∣∣∣ 1

m

m∑
i=1

(z2i − 1)

∣∣∣∣∣ ≥ ε
)
≤ 2 exp(−cmin{mε2,mε}). (54)

where c is an absolute constant.

Let ε =
√

log(m)
m ≤ 1. Then, ε2m ≤ ε2m2∑m

i=1 σ
2
i
< εm

maxi σ2
i

= εm since 2
√
m logm <

∑
i σ

2
i . Thus

(53) and (54) can be simplified, respectively,

P

(
m∑
i=1

σ2
i z

2
i ≤

m∑
i=1

σ2
i −

√
m log(m)

)
≤ exp

(
−cmε2

)
=

1

m
e−c = O

(
1

m

)
(55)

and

P

(
m∑
i=1

z2i ≥ m+
√
m log(m)

)
≤ 1

m
e−c = O

(
1

m

)
. (56)

Then with probability 1−O
(

1
m

)
, we have

m∑
i=1

(u∗i )
2σ2
i =

∑m
i z

2
i σ

2
i∑m

r=1 z
2
i

≥
∑m
i=1 σ

2
i −

√
m log(m)

m+
√
m logm

≥ 1

m

m∑
i=1

σ2
i − 2

√
log(m)

m
≥ σ2

m

where the last inequality is due to the assumption that the spectral satisfies 1
m

∑m
i=1 σ

2
i > 2

√
log(m)
m +

σ2
m. To sum up, with probability 1−O

(
1
m

)
,

m∑
i=1

σ2
i [u∗]2i ≥

1

m

m∑
i=1

σ2
i − 2

√
log(m)

m
=

1

m

(
‖AA>‖2F − 2

√
m log(m)

)
Now, using the derivation in (52) for lower bound of ‖vt‖, we have that:

‖vt‖ ≥
g∗

g0

√
‖AA>‖2F − 2

√
m log(m)

m
− (1− σm) ≥ 1 + δ

⇒ g0 ≤
g∗

(2 + δ − σm)

√
‖AA>‖2F − 2

√
m log(m)

m

With g0 satisfying above, we can guarantee that ‖vt‖ ≥ 1 + δ.

31



F Experiments

We evaluate WN and rPGD on two problems: linear regression and matrix sensing. Due to space
limit, we only include the experiment for linear regression here and put the experiment for matrix
sensing to the appendix and matrix sensing. We show that for a wide range of initialization, WN and
rPGD converges to the minimum `2-norm solution for linear regression and the minimum nuclear
norm solution for matrix sensing. This is in contrast to the standard GD algorithm. For both problems
GD requires initialization very close to, or exactly at, the origin to converge to the minimum norm
solution Li et al. [2018]. We will compare with the following two step-size schemes.

(1) Algorithm with γt = ηt: We simultaneously update the weight vector (matrix) and the scalar g.
This is similar to the training of deep neural networks, where we use the same learning rate for all of
the layers.

(2) Two-phase algorithm: In Phase I, we use sufficiently small learning rate to update g, the scale
component (a scalar in linear regression). In Phase II, we use large step-size to update g. For
both phases, we use large learning rate to update the direction component (weight vector in linear
regression and weight matrix in matrix sensing)

F.1 Linear Regression

Let m = 20, d = 50. We generate the feature matrix as A = UΣV T ∈ Rm×d, where U ∈ Rm×m
and V ∈ Rd×m are two random orthogonal matrices chosen uniformly over the Stiefel manifold
of partial orthogonal matrices, and Σ is a diagonal matrix described below. Let κ = λmax(AA

>)
λmin(AA>)

.
We vary the condition number κ ≥ 1 of A in our experiments. The diagonal entries of Σ are set as
1, (1/κ)1/(m−1), (1/κ)2/(m−1), ..., 1/κ. Set g∗ = 3, and w∗ as an arbitrary unit norm vector.

Let w0 be a random unit norm vector. We run the standard gradient descent (GD) algorithm on the
problem 1 with the initialization x0 = g0w0. We run Algorithm 1 and 2 starting from the same
initialization, and plot |ĝ| = ‖ĝŵ‖2 as a function of g0. We run all of the algorithms until the squared
loss satisfies f(ŵ, ĝ) ≤ 10−5, where the final solution is denoted as ĝŵ. We have the following
observations:

Figure 1 shows the result when we set a very small but equal learning rate for w and g: ηt = γt =
0.005. It shows there is no difference between WN and rPGD when the learning rate is small, which
matches Lemma 2.2. We can see that both WN and rPGD can get close to the minimum norm solution
with a large range of initializations (g∗w∗ for g0 / 1.5) while this is only true for GD when g0 is
close to 0. This experiment supports our theory.

The top plot in Figure 3 shows the result when we set relatively large learning rates of w and g:
ηt = γt = 0.1, as in practice where we use the same non-vanishing learning rate for all the layers
when training deep neural networks. The plot shows a difference between WN and rPGD when
g0 > 2, while the two perform similarly when g0 < 2.

The bottom plot in Figure 3 is when we set (1) WN ηt = ‖wt‖/(g2t λmax) for w and γt = 0.005
for g; (2) rPGD ηt = 1/(g2t λmax) and γt = 0.005. This mimics the two-phase algorithm as shown in
Theorem 3.2. We can arrive at a solution close to the minimum norm solution for even wider range of
g0 / 3.

Robustness to the condition number κ. We repeat the previous experiment for various input matrix
A with a wider range of κ with fixed initialization g0 = 2.8. The top plot in Figure 4 shows that
for γt = ηt as κ increases, the `2-norm of the solutions provided by WN and rPGD also gradually
increases but not as much as those provided by the vanilla GD. The bottom plot in Figure 4 shows
that the performance of the two-phase algorithms, with ηt = 0 in the first 5000 iterations, thus have a
better performance compared with algorithm using γt = ηt.

F.2 Experiment: Matrix Sensing

We show that the normalization methods can also be applied to the matrix sensing problem, to
get closer to the minimum nuclear norm solutions. The goal in the matrix sensing problem is to
recover a low-rank matrix from a small number of random linear measurements. Here we follow the
setup considered in [Li et al., 2018] (for more related work on matrix sensing and completion, see,

32



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Initialization g0

3.0
3.2
3.4
3.6
3.8
4.0
4.2

Fi
na

l s
ol

ut
io

n 
|

̂ g|

Final solution as a function of initialization with γ= η= 0.1
vanilla GD solution
rPGD solution
WN solution
minimum-norm solution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Initialization g0

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

Fi
na

l s
ol

ut
io

n 
|

̂ g|

Final solution as a function of initialization with two phases
vanilla GD solution
rPGD solution
WN solution
minimum-norm solution

Figure 3: Fixed Orthogonal Matrix A. Comparison of the final solutions |ĝ| = ‖ĝŵ‖ = ||x̂||
provided by GD, WN and our proposed rPGD on an overparameterized linear regression problem
minx

1
2‖Ax− y‖

2
2. All algorithms start from the same initialization x0 = g0w0. Compared to GD,

WN and rPGD converge to the minimum `2-norm solution for a larger region of initialization. Top
plot is when we use the same stepsize for w and g: γt = ηt = 0.1. Bottom plot is when we use a
particularly small stepsize for g and optimal stepsize for w. This implies that a small stepsize for g
can arrive to a solution that is close to the minimum-norm solution for even wider range of g0.

e.g., Candès and Recht [2009], Donoho et al. [2013], Ge et al. [2016] and references therein). Let
X∗ = U∗U

∗T ∈ Rd×d (with U∗ ∈ Rd×r) be the ground-truth rank-r matrix. Let A1, .., Am ∈ Rd×d
be m random sensing matrices, with each entry sampled from a standard Gaussian distribution. We
are interested in the setting when r � d and m � d2. Given m linear measurements of the form
〈Ai, X∗〉, let U ∈ Rd×d be the variable matrix, we define the (over-parameterized) loss function as

f(U) =
1

2m

m∑
i=1

(
〈
Ai, UU

T
〉
− 〈Ai, X∗〉)2. (57)

It is proved in Li et al. [2018] that if m = Õ(dr2), then gradient descent on f(U), when initialized
very close to the origin, can recover the low-rank matrix X∗.

WN. To apply WN, we need to reparametrize U into a direction variable and a scale variable. We
consider two choices:

• Let UUT = gWWT

‖W‖2F
, where g ∈ R, and W ∈ Rd×d. In Figure 5, the green curve represents

this algorithm. We label it with WN.
• Let UUT = WDWT , where D ∈ Rd×d is a diagonal matrix, and all the column vectors of
W ∈ Rd×d have unit `2 norm. That is, for wi ∈ Rd, i = 1, 2, . . . , d

W =

[
w1

‖w1‖
;
w2

‖w2‖
; . . . ;

wd
‖wd‖

]
.

33



100 101 102

condition number κ

3.0

3.2

3.4

3.6

3.8

Fi
na

l S
ol

ut
io

n 
|

̂ g|

Final solution as a function of condition number two phases

vanilla GD
rPGD
WN 
minimum-norm

100 101 102

condition number κ

3.0

3.2

3.4

3.6

3.8

Fi
na

l S
ol

ut
io

n 
|

̂ g|

Final solution as a function of condition number two phases

Figure 4: Various General Matrix A. Fix g0 = 2.8 and increase the condition number κ. Top plot:
γt = ηt = 0.01. The `2-norm of the WN and rPGD solutions increases slowly as κ increases, but
their norm is smaller than when using Gradient Descent. Bottom plot: γt = 1, ηt = 0.1×1{t>5000}.
The `2-norm of WN and rPGD solutions are robust to condition number and close to the minimum
`2-norm for any κ. Note that green, orange and black curves of the bottom plot overlap.

In Figure 5, the purple curve represents the algorithm. We label it with WN-Diag where
“Diag" references the diagonal matrix.

rPGD. To apply rPGD , we need to reparametrize U into a direction variable and a scale variable.
We consider two choices:

• Let UUT = gWWT , where g ∈ R, and W ∈ Rd×d satisfies ‖W‖F = 1. See Algorithm 3.
In Figure 5, the orange curve represents the algorithm. We label it with rPGD.

• Let UUT = WDWT , where D ∈ Rd×d is a diagonal matrix, and all the column vectors of
W ∈ Rd×d are projected to have unit `2 norm. See Algorithm 4. In Figure 5, the red curve
represents the algorithm. We label it with rPGD-Diag.

Algorithm 3 rPGD for matrix sensing loss f(W, g)

Input: initialization W0 and g0, number of iterations T , step-sizes γt and ηt.
for t = 0, 1, 2, · · · , T − 1 do
Vt = Wt − ηt∇W f(Wt, gt)
Wt+1 = Vt

‖Vt‖F
gt+1 = gt − γt∇gf(Wt, gt)

end for

Denote the corresponding loss functions for rPGD as f(W, g) and f(W,D). Let Z0 = Z/‖Z‖F
where Z is a matrix with i.i.d. Gaussian entries, after which all column vectors have been normalized.
We set the experiments with the following initialization:

34



Algorithm 4 rPGD-Diag for matrix sensing loss f(W,D)

Input: initialization W0 and D0, number of iterations T , step-sizes γt and ηt.
for t = 0, 1, 2, · · · , T − 1 do
Vt = Wt − ηt∇W f(Wt, Dt)
Wt+1 = Vt with all column vectors normalized.
diag(Dt+1) = diag(Dt) −γt diag(∇Df(Wt, Dt))

end for

10 3 10 2 10 1 100

 at Intialization
100

101

Fi
na

l S
ol

ut
io

n 
Nu

cle
ar

 N
or

m Final solution as a function of intialization with =
vanilla GD
rPGD
WN
rPGD-Diag
WN-Diag
minimum-norm

10 3 10 2 10 1 100

 at Intialization

100

101

102

Fi
na

l S
ol

ut
io

n 
Nu

cle
ar

 N
or

m Final solution as a function of intialization with two phases
vanilla GD
rPGD
WN
rPGD-Diag
WN-Diag
minimum-norm

Figure 5: Comparison of the final solutions ‖X̂‖∗ provided by GD, WN, and rPGD on an overparam-
eterized matrix sensing problem ((57)). All algorithms start from the same initialization with the scale
α =

√
‖UU>‖F . Compared to GD, WN and rPGD converge close to the minimum nuclear-norm

solution for a broader region of initialization. The left plot is when we use the same stepsize for W
and g: γt = ηt = c. The right plot is when we use ηt = c and γt = c1{t>1000}. This suggests that
Two-phase algorithm can arrive to a solution closer to the nuclear-norm solution for a broader range
of g0. The blue, green, and black curves of the top plot overlap when 0 < α < 0.1. The blue, orange,
green, purple, and black curves of the bottom plot overlap when 0 < α < 0.1.

• For vanilla GD on f(U), let U0 = αZ0;
• For WN and rPGD, let W0 = Z0, and g0 = α2 ;
• For WN-Diag and rPGD-Diag, let W0 = Z0 and D0 = α2I .

We set d = 30, r = 4, and m = 60. We simulate yi = 〈Ai, Û Û〉 with Û ∈ Rd×r generated as a
random matrix.8

We compare the performance of gradient descent, and our algorithms for several initializations scales
g. We run each algorithm until convergence (i.e., when the squared loss is less than 10−6).

Similar to Figure 3, we use different learning rate schemes to get the final solution. We use grid
search to find appropriate constant learning rate c.9 The top plot in Figure 5 uses the following
learning rate: constant c for gradient descent; ηt = γt = c for rPGD (Algorithm 3 and 4); and
set ηt = γt = c‖W‖F for WN. The bottom plot in Figure 5 uses the two phase learning rates:
constant for gradient descent; ηt = c and γt = c1{t>1000} for rPGD (Algorithm 3 and 4); and set
ηt = γt = c‖W‖F and γt = c1{t>1000} for WN. Compared to GD, WN and rPGD converge close
to the minimum nuclear-norm solution for a larger region of initialization. Moreover, these results
also suggest that with the two-phase algorithm, one can arrive to a solution close to the nuclear-norm
solution for a wider range of g0.

8Code: Û = numpy.random.randn(d, r). Note that this is not necessary the minimum nuclear solution. We
use the python package “cvxpy" to solve for the minimum nuclear solution for (57).

9Note c varies for different g0 and different algorithms. Here we start with 0.5 and then decay by a factor of
2 until we get a step-size that can converge to the solution.

35


