
Appendix for: Model-based Policy Optimization with
Unsupervised Model Adaptation

A Omitted Proofs

Lemma 3.1. Assume the initial state distributions of the real dynamics T and the dynamics model T̂
are the same. For any state s′, assume there exists a witness function class Fs′ = {f : S ×A → R}
such that T̂ (s′ | ·, ·) : S ×A → R is in Fs′ . Then the following holds:

|νπDT (s′)− νπ
T̂

(s′)| ≤ γdFs′ (ρ
πD
T , ρπ

T̂
) + γE(s,a)∼ρπDT

∣∣∣T (s′ | s, a)− T̂ (s′ | s, a)
∣∣∣ . (4)

Proof. For the state visit distribution νπ
T̂

(s), we have

νπ
T̂

(s′) = (1− γ)ν0(s′) + γ

∫
ρπ
T̂

(s, a)T̂ (s′|s, a) dsda (11)

where ν0 denotes the probability of the initial state being the state s′. Then we have

|νπDT (s′)− νπ
T̂

(s′)|

= γ

∣∣∣∣∫
s,a

T (s′|s, a)ρπDT (s, a)− T̂ (s′|s, a)ρπ
T̂

(s, a) dsda

∣∣∣∣
= γ

∣∣∣E(s,a)∼ρπDT
[T (s′|s, a)]− E(s,a)∼ρπ

T̂
[T̂ (s′|s, a)]

∣∣∣
≤ γ

∣∣∣E(s,a)∼ρπDT
[T (s′|s, a)− T̂ (s′|s, a)]

∣∣∣+ γ
∣∣∣E(s,a)∼ρπDT

[T̂ (s′|s, a)]− E(s,a)∼ρπ
T̂

[T̂ (s′|s, a)]
∣∣∣

≤ γE(s,a)∼ρπDT

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣+ γdFs′ (ρ

πD
T , ρπ

T̂
),

(12)
which completes the proof. �

Theorem 3.1. Let R := sups,a r(s, a) < ∞, F := ∪s′∈SFs′ and define επ := 2dTV(νπT , ν
πD
T).

Under the assumption of Lemma 3.1, the expected return η[π] admits the following bound:

η[π] ≥ η̂[π]−R·επ−γR·dF (ρπDT , ρπ
T̂

)·Vol(S)−γR·E(s,a)∼ρπDT

√
2DKL(T (·|s, a) ‖ T̂ (·|s, a)), (5)

where Vol(S) is the volume of state space S.

Proof. The return discrepancy is bounded as follows

|η(π)− η̂(π)| =
∣∣∣∣∫
s,a

(
ρπT (s, a)− ρπ

T̂
(s, a)

)
r(s, a) dsda

∣∣∣∣
=

∣∣∣∣∫
s,a

(
νπT (s)π(a|s)− νπ

T̂
(s)π(a|s)

)
r(s, a) dsda

∣∣∣∣
≤ R ·

∫
s,a

∣∣νπT (s)π(a|s)− νπ
T̂

(s)π(a|s)
∣∣dsda

= R ·
∫
s

∣∣νπT (s)− νπ
T̂

(s)
∣∣ds

= R ·
∫
s

∣∣νπDT (s)− νπ
T̂

(s) + νπT (s)− νπDT (s)
∣∣ds

≤ R ·
∫
s

∣∣νπDT (s)− νπ
T̂

(s)
∣∣ds+R · επ

(13)

13

Replacing the above state s with the notation s′, then according to Lemma 3.1, we have

|η(π)− η̂(π)|

≤ R · επ + γR · E(s,a)∼ρπDT

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ds′ + γR ·

∫
s′
dFs′ (ν

πD
T , νπ

T̂
) ds′

≤ R · επ + γR · E(s,a)∼ρπDT

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ds′ + γR · dF (ρπDT , ρπ

T̂
) · Vol(S)

= R · επ + 2γR · E(s,a)∼ρπDT
dTV(T (·|s, a), T̂ (·|s, a)) + γR · dF (ρπDT , ρπ

T̂
) · Vol(S)

≤ R · επ + γR · E(s,a)∼ρπDT

√
2DKL(T (·|s, a), T̂ (·|s, a)) + γR · dF (ρπDT , ρπ

T̂
) · Vol(S) ,

(14)

where the last inequality holds due to Pinsker’s inequality, which completes the proof. �

B Hyperparameters Settings

Table 1: Hyperparameter settings for AMPO results. [a, b, x, y] denotes a thresholded linear function,
i.e. at epoch e, f(e) = min(max(x+ e−a

b−a · (x− y), x), y).

In
ve

rt
ed

Pe
nd

ul
um

Sw
im

m
er

H
op

pe
r

W
al

ke
r2

d

An
t

H
al

f
Ch

ee
ta

h

network architecture MLP with four hidden layers of size 200
feature extractor: four hidden layers; decoder: one output layer

real samples for 300 2000 5000model pretraining
real steps 250 1000per epoch

model adaptation 64 256batch size

E
real steps between 125 250model training

F
model rollout 100000batch size

B ensemble size 7

G3
policy updates 30 20 40per real step

k rollout length 1 1 [5,45,1,20] 1 [10,50,1,20] [1,30,1,5]

G2
model adaptation 6 40 400 1000 3000 [1,30,100,1000]updates
model adaptation 6 6 40 80 60 30early stop epoch

C MMD Variant of AMPO

Besides Wasserstein distance, we can use other distribution divergence metrics to align the features.
MMD is another instance of IPM when the witness function class is the unit ball in a reproducing
kernel Hilbert space (RKHS). Let k be the kernel of the RKHS Hk of functions on X . Then the
squared MMD inHk between two feature distributions Phe and Phm is [Gretton et al., 2012]:

MMD2
k(Phe ,Phm) := Ehe,h′

e
[k(he, h

′
e)] + Ehm,h′

m
[k(hm, h

′
m)]− 2Ehe,hm [k(he, hm)], (15)

which is a non-parametric measurement based on kernel mappings. In practice, given finite feature
samples from distributions {h1e, · · · , hNee } ∼ Phe and {h1m, · · · , hNmm } ∼ Phm , where Ne and Nm
are the number of real samples and simulated ones, one unbiased estimator of MMD2

k(Phe ,Phm) can

14

0 20K 40K 60K 80K 100K
steps

0

1000

2000

3000

4000

av
er

ag
e

re
tu

rn

Hopper
MBPO
AMPO-MMD

0 50K 100K 150K 200K 250K 300K
steps

0

1000

2000

3000

4000

5000

av
er

ag
e

re
tu

rn

Walker2d

0 50K 100K 150K 200K 250K 300K
steps

0

1000

2000

3000

4000

5000

6000

av
er

ag
e

re
tu

rn

Ant

Figure 5: Performance curves of MBPO and MMD variant of AMPO.

be written as follows:

LMMD(θg) =
1

Ne(Ne − 1)

∑
i6=i′

k(hie, h
i′

e)+
1

Nm(Nm − 1)

∑
j 6=j′

k(hjm, h
j′

m)− 2

NeNm

Ne∑
i=1

Nm∑
j=1

k(hie, h
j
m).

(16)
To achieve model adaptation through MMD, we optimize the feature extractor to minimize the above
adaptation loss LMMD with real (s, a) data and simulated one as input.

When implementing the MMD variant, choosing optimal kernels remains an open problem and we use
a linear combination of eight RBF kernels with bandwidths {0.001, 0.005, 0.01, 0.05, 0.1, 1, 5, 10}.
The results on three environments are shown in Figure 5. We observe that using MMD as the
distribution divergence measure is also effective in the AMPO framework.

D More Experiment Results

D.1 One-step Model Losses

We show the one-step model losses during the experiments in the other four environments in Fig-
ure D.5. We find that the conclusion in Section 5.2 still holds in these four environments. In
InvertedPendulum and Swimmer, the standard deviation is a little larger since the number of real
samples for pre-training the model is less.

D.2 Hyperparameter: Policy Updates

In MBRL, since we can generate simulated data using the dynamics model, we can take more gradient
updates of policy optimization with the simulated data per environment step to accelerate policy
learning. However, too many gradient updates for the policy may cause the current model to be
inaccurate for the updated policy. Thus the number of policy gradient updates is a quite important
hyperparameter in MBRL. We conduct environments with different policy updates, and show the
results in Figure 7(a). We find that when we increase the number of policy updates, the performance of
MBPO decreases a little while it doesn’t influence AMPO much. It demonstrates that the robustness
of AMPO to this hyperparameter.

D.3 Model Adaptation Early Stopping

According to the model losses in Figure 3(a) and Figure D.5, we find that after certain number of
environment steps, the model loss difference between AMPO and MBPO becomes small. So in
AMPO we early stop the model adaptation procedure after collecting a certain number of real data,
such as 40K in the Hopper environment. We then conduct experiments without early stopping model
adaptation and the results are demonstrated in Figure 7(b). We find that keeping adapting the dynamics
model throughout the whole learning process does not bring performance improvement. This indicates
that model adaptation makes a difference only when the model training data is insufficient. So we set
a model adaptation early stopping epoch for each environment (see Table 1 for detail) to improve the
computation efficiency.

15

0.5K 1K 1.5K 2K
steps

0.00

0.01

0.02

0.03

lo
ss

InvertedPendulum

2K 5K 10K 15K
steps

0.000

0.005

0.010

0.015

0.020

lo
ss

Swimmer

6K 25K 50K 75K
steps

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

Ant
MBPO-train
MBPO-validation
AMPO-train
AMPO-validation

6K 25K 50K 75K 100K
steps

0.1
0.2
0.3
0.4
0.5
0.6
0.7

lo
ss

HalfCheetah

Figure 6: One-step model losses in other four environments.

5K 25K 50K 75K 100K
steps

0

1000

2000

3000

4000

av
er

ag
e

re
tu

rn

Hopper

AMPO-20
AMPO-40
MBPO-20
MBPO-40

(a) Policy updates.

5K 25K 50K 75K 100K
steps

0

1000

2000

3000

4000

av
er

ag
e

re
tu

rn
Hopper

AMPO
AMPO-NOSTOP

(b) Early stopping.

Inv Swi Hop Wal Ant Hal
environments

0.8

0.9

1.0

1.1

1.2

1.3

1.4

co
m

pu
ta

tio
n

tim
e

Time Comparison

(c) Computation time.

5K 50K 100K 150K 200K 250K 300K
steps

0

1000

2000

3000

4000

5000

6000

av
er

ag
e

re
tu

rn

Walker2d

AMPO-SW
AMPO-ADDA
AMPO

(d) Adaptation strategy.

Figure 7: More empirical analysis. (a) AMPO-20 means we use AMPO and the number of policy
updates is 20. (b) AMPO-NOSTOP denotes the AMPO variant without early stopping the model
adaptation procedure. (c) The ratio of computation time of AMPO to that of MBPO. (d) AMPO-
SW denotes the AMPO variant of sharing the feature extractor weights for two data distributions.
AMPO-ADDA denotes the AMPO variant of fixing the feature extractor of real data.

D.4 Computation Time

Since AMPO adds the model adaptation procedure based on MBPO, we would like to see its
computation time compared with MBPO. We show in Figure 7(c) the computation time ratio of
AMPO against MBPO using the same device. We find that in most environments AMPO needs slightly
more computation time than MBPO, and the extra overhead is not much. In InvertedPendulum,
however, the computational overhead of AMPO is less than MBPO, of which the reason may be that
the next model training in AMPO needs less computation after one model adaptation.

D.5 Adaptation Strategy

In AMPO, we untie the feature extractor weights for two data distributions and learn the two feature
extractors simultaneously, which is a variant of the adaptation strategy in Adversarial Discriminative
Domain Adaptation (ADDA) [Tzeng et al., 2017]. Differently in ADDA the feature mapping for
source domain (i.e.real data) is fixed. Another alternative is to share the feature extractor weights
between the two data distributions. From the comparison in Figure 7(d), we observe that the
performance of these three adaptation strategies differs not much but AMPO performs slightly better.

E A Different View of Analysis

In this section, we provide an alternative perspective on the expected return lower bound derivation.

Lemma E.1. ([Luo et al., 2018], Lemma 4.3; [Yu et al., 2020], Lemma 4.1) Let T be the real dy-
namics and T̂ be the dynamics model. Let Gπ

T̂
(s, a) := Es′∼T̂ (·|s,a)[V

π
T (s′)]− Es′∼T (·|s,a)[V

π
T (s′)].

Then,

η̂[π]− η[π] = γE(s,a)∼ρπ
T̂

[Gπ
T̂

(s, a)].

16

Let F1 be a collection of functions from S ×A to R and F2 be a collection of functions from S to R.
With Lemma E.1, under the assumption that Gπ

T̂
(s, a) ∈ F1 and V πT (s′) ∈ F2, we have

η̂[π]− η[π] = γE(s,a)∼ρπ
T̂

[Gπ
T̂

(s, a)]− γE(s,a)∼ρπDT
[Gπ

T̂
(s, a)] + γE(s,a)∼ρπDT

[Gπ
T̂

(s, a)]

≤ γ sup
f∈F1

∣∣∣E(s,a)∼ρπDT
[f(s, a)]− E(s,a)∼ρπ

T̂
[f(s, a)]

∣∣∣
+ γE(s,a)∼ρπDT

[
sup
g∈F2

∣∣∣Es′∼T̂ (·|s,a)[g(s′)]− Es′∼T (·|s,a)[g(s′)]
∣∣∣]

= γdF1
(ρπDT , ρπ

T̂
) + γE(s,a)∼ρπDT

[dF2
(T̂ (·|s, a), T (·|s, a))].

(17)

By rewriting it as a lower bound form, we have

η[π] ≥ η̂[π]− γdF1
(ρπDT , ρπ

T̂
)− γE(s,a)∼ρπDT

[dF2
(T̂ (·|s, a), T (·|s, a))].

Similarly, if we assume the reward function is bounded, dF2(T̂ , T) can also be a total variation
distance since ‖V πT ‖∞ is bounded. By comparing this lower bound to the one in Theorem 3.1,
it seems this one might be tighter and there is no extra επ term. But we should notice that the
assumptions made here are stronger. To be more specific, we assume Gπ

T̂
satisfies the constraint

while in Theorem 3.1 we only assume the model T̂ to satisfy the constraint, which is easier to hold.

17

