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10.1 Capability of each method to resolve the copycat problem
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Figure 7: Normalized reward scores vs. action predictability. Arrows for each method start at BC-OH
performance and end at the method’s performance.

In Figure 6, we showed that our method decreases action predictability, i.e. reduces the action repeat,
and increases reward across all environments, over BC-OH baseline. Here, we present this result
environment-wise, with additional arrows corresponding to baselines and ablations. The red arrow
corresponds to our full method.

In nearly all environments, our approach yields the highest reward of all offline methods, and also
achieves the lowest action predictability score. In three out of six environments, it approximately
matches the performance of the even the best online imitation approach (DAGGER 1000, cyan).

10.2 Network architecture
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Figure 8: The architecture of target-conditioned adversarial model.
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The network architecture of target-conditioned adversarial model is shown in Figure 8. We update
the parameters in the neural network by the process shown in Algorithm 1.

Algorithm 1 Minibatch stochastic gradient descent training of the objective function.

Require: learning rate schedule of E and F , lEF ; learning rate schedule of D, lD; embedding noise
std σ; batch size m; number of frames in the imitation learning H
for number of training iterations do
• Sample minibatch of m examples {S(1), . . . ,S(m)}, where each
S(i) = {(oti−H+1, ati−H+1), . . . , (oti , ati)} is a stack of H frames in the expert demonstra-

tion
• Update θE and θF by descending its gradient ∂V/∂θE and ∂V/∂θF , with learning rate lEF .
• Generate minibatch of m noise samples {ε(1), . . . , ε(m)}, where ε(i) ∼ N (0, σ2I).
• Add noise ε(i) to e(i) in the computation graph, i.e. e(i) = e(i) + ε(i) [3, 43]
• Update θD by ascending its gradient ∂V/∂θD, with learning rate lD.

end for
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Figure 9: The architecture of information bottleneck model. The E network is pretrained by the
target-conditioned adversarial model.

Our Information Bottleneck part, as shown in Figure 9, uses the encoder E pre-trained by the target-
conditioned adversarial (TCA) model to initialize its encoder E. We add a information bottleneck
module to the embedding generated by its encoder E and denote the combination of the bottleneck
and the original F network as IB-F , which is optimized by the supervised loss Loss(ât, at) and
KL(et, N(0, 1)).

10.3 Experiment Environments

Motivated by robotics applications, we compare our method with baselines and ablations on all six
MuJoCo [48] control environments from Open AI Gym. Snapshots of these six environments are
shown in Fig 10. The goal of Ant, Humanoid, Walker2d and HalfCheetah is to make the agent walk
or run as fast as possible while Hopper’s objective is to make the agent hop forward as fast as possible
and Reacher’s objective is to enable the robot reach a randomly located target.

10.4 Expert Data Collection

To collect expert demonstrations, we first train an expert with reinforcement learning, specifically
TRPO [41]. This expert policy is executed in the environment to collect demonstrations. Since the six
environments have very different observation dimensions, we collect 1k transitions for HalfCheetah,
Reacher and Ant, 20k transitions for Hopper and Walker2D, and 200k transitions for Humanoid. The
demonstration set size is roughly linear to the number of observation dimensions.

10.5 Implementation details

10.5.1 Experiment setting

We use the OpenAI gym package to construct the experiment environments and set the frame skip in
all environments to 1. We use Adam optimizer and mean squared error as our loss function. During
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Figure 10: Snapshots of the six MuJoCo environments used in our experiments, including Ant,
Hopper, Humanoid, Reacher, Walker2d and HalfCheetah (from left to right).

training, we set the number of training iterations to 300,000 and minibatch size to 64. And we decay
the learning rate by 0.1 three times during the course of training.

We evaluate each model in environments at five checkpoints (280k, 285k, 290k, 295k and 300k
iteration) and calculate their average rewards as the final reward.

10.5.2 Hyper-parameters

We set the learning rate of E and F network to 2× 10−4, the weight of adversarial loss α to 2 and
the weight of KL divergence λ to 1× 10−3 in all the environments. The hyper-parameters that differ
among different environments are shown in Table 6.

Table 6: Hyper-parameters used in each environment. The embedding noise is used in all environments
except Hopper and Walker2d to stablize training.

D learning rate D embedding noise std

Ant 5× 10−4 2.0
Hopper 4× 10−4 -

Humanoid 4× 10−4 1.5
Reacher 4× 10−4 2.0

Walker2d 2× 10−4 -
HalfCheetah 4× 10−4 2.0

10.6 Test Loss Comparison

As shown in Table 7, the BC-OH baseline has smaller test loss than BC-SO, indicating that there is no
over-fitting in training with observation histories. Thus the performance drop from BC-SO to BC-OH,
such as in Humanoid, is attributed to the copycat problem. And compared with BC-OH, our method
has higher test loss while producing higher reward when evaluated in the environment, showing that
we’re actually solving the copycat problem rather than only reducing overfitting to training data.

Table 7: The test loss of BC-SO, BC-OH and our method under the same settings as Table 2.
Ant Hopper Humanoid Reacher Walker2d HalfCheetah

BC-SO 0.1079 0.0077 0.5710 0.0008 0.0410 0.1225
BC-OH 0.0829 0.0049 0.5470 0.0007 0.0136 0.0309

Ours 0.0860 0.0087 0.5632 0.0010 0.0229 0.0321
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