
5 Appendix376

5.1 Details of the proof of Theorem 3.4377

In the first part of the proof of Theorem 3.4, we established that378
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Using Young’s inequality, we have379

�nCk�n � ↵̂nk  1

⌫

✓
(c2⌫)1/⌫

2
k�n � ↵̂nk

◆⌫

+
⌫ � 1

⌫

✓
2C

(c2⌫)1/⌫
�n

◆⌫/(⌫�1)

=
c2

2
k�n � ↵̂nk⌫ +

2(⌫ � 1)C⌫/(⌫�1)

⌫(c2⌫)1/(⌫�1)
�
⌫/(⌫�1)

.

Combining the two estimates, we have380
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5.2 Proof of Corollary 3.5381

We note that �(�n) 2 K. Thus,382

min
↵2K

k↵̂n � ↵k  k↵̂n � �(�n)k  k↵̂n � �nk+ k�n � �(�n)k

 k↵̂n � �nk+ kv�nk
 k↵̂n � �nk+ kv̂nk+ Ck↵̂n � �nk

and the bound can be obtained using the results of Theorem 3.4.383

5.3 Probabilistic Lipschitzness of the empirical risk384

Since both W and X are bounded and f↵ is analytic, there exist C1, C2 > 0 such that385

|r↵f↵(x)|  C1 and |f↵(x)|  C2 8↵ 2 W, x 2 X .

Therefore,386
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Similarly,387
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Thus, for all M� > 4C1C2,388
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5.4 Proof of Lemma 3.3389

The proof of this Lemma is similar to that of Lemma 4.2 in Dinh and Ho [2020]. Since the network of390

our framework is fixed, a standard generalization bound (with constants depending on the dimension391

of the weight space W) can be obtained. For completeness, we include the proof of Lemma 4.2 in392

Dinh and Ho [2020] below.393

Note that nRn(↵)/�2
e follows a non-central chi-squared distribution with n degrees of freedom and394

f↵(X) is bounded. By applying Theorem 7 in Zhang and Zhou (2018) 2, we have395
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n
.

We define the events397

A(↵, t) = {|Rn(↵)�R(↵)| > t/2},
398

B(↵, t) = {9↵0 2 W such that
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and399
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0)|  M�k↵� ↵

0k, 8↵,↵0 2 W}.
Here, M� is defined in Lemma 3.5. By Lemma 3.5, B(↵, t) \ C ⇢ A(↵, t) and P (C) � 1� �.400

Let m = dim(W), there exist C3(m) � 1 and a finite set H ⇢ W such that401

W ⇢
[

↵2H

V(↵, ✏) and |H|  C3/✏
m

where ✏ = t/(4M�), V(↵, ✏) denotes the open ball centered at ↵ with radius ✏, and |H| denotes the402

cardinality of H. By a union bound, we have403
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.

Using the fact that B(↵, t) \ C ⇢ A(↵, t), 8↵ 2 H, we deduce404
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�m

e
�C2nt

2

.

Hence,405
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To complete the proof, we chose t in such a way that C4t
�m

e
�C2nt

2  �. This can be done by406

choosing t = O(log n/
p
n).407

2Zhang, Anru and Yuchen Zhou. "On the non-asymptotic and sharp lower tail bounds of random variables."
arXiv preprint arXiv:1810.09006 (2018).

13


	Introduction
	Feature selection with analytic deep neural networks
	Consistent feature selection via GroupLasso+AdaptiveGroupLasso
	Characterizing the set of risk minimizers
	Convergence of Group Lasso
	Feature selection consistency of GroupLasso + AdaptiveGroupLasso
	Simulations

	Conclusions, Discussions and Future works
	Appendix
	Details of the proof of Theorem 3.4
	Proof of Corollary 3.5
	Probabilistic Lipschitzness of the empirical risk
	Proof of Lemma 3.3


