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5 Appendix

5.1 Details of the proof of Theorem [3.4]
In the first part of the proof of Theorem [3.4] we established that
logn .
g +AnCHBn _an”-

CQH/GTL - &nHU < 2¢;
n

Using Young’s inequality, we have

) 1 ( (cov)/” A v 20 v/(v=1)
_ < (A= _ Y
M Cl|Bn — dnl| < o ( 9 [Bn —éml | + (cov) /¥ An

v
2(v — Hcv/=h A/ (-1
v(eov)t/(v=1) '

C2 o
= —||Bn — anll” +
2
Combining the two estimates, we have

logn + 2(’/ - I)CV/(V_l)X//(Vfl).
Vn v(ecav)t/(v=1)

C2 A
2118, - dall” < 20

5.2 Proof of Corollary[3.5]

We note that ¢(5,,) € K. Thus,
Lnei}cl ||dn - O‘H < Hdn - ¢(5n)H < Hdn - Bn” + Hﬁn - ﬁb(ﬁn)H
< |lén = Ball + llvg, |
< lan = Bull + [[on]| + Clldn = Bl
and the bound can be obtained using the results of Theorem [3.4]

5.3 Probabilistic Lipschitzness of the empirical risk

Since both W and X are bounded and f,, is analytic, there exist C7, Cy > 0 such that
[Vafa(x)] <Cy  and  |fo(z)|<C: VaeW,z e X.
Therefore,
IR(@) ~ R(8)] = |E [V — fu(X)) — (¥ - fua(X))?]]
S E[(fa(X) = fo(X))(2Y = fo(X) = f5(X))]
< Cifla = B[ - E2Y — fo(X) = fa(X)]
< Cifla =Bl - RE[Y — for (X)| + E[fa(X) + f3(X) = 2fax (X))
< Ch|la — B (20 +4C5) .
Similarly,

[Ra(0) — Ru()] < Cilla— B (402 P2 fa*<Xi>|>
=1
= Cilla - B (

2 n
4 — il ]

Thus, for all Ms > 4CCs,

<1 Elal
— M
ﬁ—QCQ
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5.4 Proof of Lemma[3.3

The proof of this Lemma is similar to that of Lemma 4.2 in|Dinh and Ho [2020]. Since the network of
our framework is fixed, a standard generalization bound (with constants depending on the dimension

of the weight space V) can be obtained. For completeness, we include the proof of Lemma 4.2 in
Dinh and Ho|[2020] below.

Note that nR,, () /a2 follows a non-central chi-squared distribution with n degrees of freedom and
fa(X) is bounded. By applying Theorem 7 in Zhang and Zhou (2018)|*| we have

P[|Rn() = R()| > t/2]

Cyn2t2
< 2exp <_n+ 230 [fa(X) — fa*(X)]Q)
< 2exp(—Cant?),

for all
nt S alX) = far (XD

n

0<t<

We define the events

Al ) = {[Rn(@) = R(a)| > 1/2},
B(a,t) = {3a’ € W such that
/ t !/ /!
_ < _
o~ all < i and [ Rafe') = R(@)| > 1),
and
C ={|R.(a) — R,(a)] < Ms|la — &/ ||, Vo, &' € W}

Here, M; is defined in Lemma[3.5] By Lemma[3.5] B(«,t) NC C A(a,t) and P(C) > 1 — 4.
Let m = dim(W), there exist C5(m) > 1 and a finite set H C WV such that

Wc |JViae) and  [H[<Cy/em

aEH

where € = t/(4M5), V(a, €) denotes the open ball centered at « with radius €, and || denotes the
cardinality of /. By a union bound, we have

3(4Ms)™ 2
P[Ha e H : |Ry(a) — R(a)| > t/2] < 26"3(75%6702711‘/ .
Using the fact that B(«, t) N C C A(a, t), Yo € H, we deduce

P[{3a € W: [Ru(a) — R(a)| >t} NC] < Cyt e,

Hence, )
P[{Ja € W: |Ru(a) — R(a)| > t}] < Cyt~Me~ 2" 46,

To complete the proof, we chose ¢ in such a way that C’4t*me*02m2 < 4. This can be done by
choosing t = O(logn/y/n).

?Zhang, Anru and Yuchen Zhou. "On the non-asymptotic and sharp lower tail bounds of random variables."
arXiv preprint arXiv:1810.09006 (2018).
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