
A Results with Other Variational Distributions

A.1 Gaussian with Arbitrary Full-rank Covariance Variational Distribution
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Figure 6: VI using a Gaussian with a full-rank covariance. The first two columns show results for
two different step-sizes, and the third one using the best step-size chosen retrospectively. (Higher
ELBO is better.)
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Figure 7: VI using a Gaussian with a full-rank covariance. The plots show the final ELBO achieved
after training for 80000 steps vs. step size used. (Higher ELBO is better.)
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Figure 8: VI using a Gaussian with a full-rank covariance, with the best step-size chosen retrospec-
tively. (Higher ELBO is better.)
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A.2 Fully-factorized Gaussian Variational Distribution
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Figure 9: VI using a fully-factorized Gaussian. The first two columns show results for two different
step-sizes, and the third one using the best step-size chosen retrospectively. (Higher ELBO is better.)
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Figure 10: VI using a fully-factorized Gaussian. The plots show the final ELBO achieved after
training for 40000 steps vs. step size used. (Higher ELBO is better.)
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Figure 11: VI using a diagonal Gaussian, with the best step-size chosen retrospectively. (Higher
ELBO is better.)
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B Results for Other Ranks

Fig. 12 shows results obtained using different values for the control variate’s rank rv . For clarity, in
all cases we use M = 10 and we do not include results obtained using the Taylor expansion based
control variate. It can be observed that the control variate leads to improved performance for a wide
range of ranks. However, using a rank that is too low may hinder its benefits considerably (this can
be clearly seen for the logistic regression model).
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Figure 12: VI using a diagonal plus low rank Gaussian, using different ranks for our control variate.

C Models Used

Bayesian logistic regression: We use a subset of 700 rows of the a1a dataset. In this case the
posterior p(z|x) has dimensionality d = 120. Let {xi, yi}, where yi is binary, represent the i-th
sample in the dataset. The model is given by

wi ∼ N (0, 1),

pi = (1 + exp(w0 + w · xi))−1 ,
yi ∼ Bernoulli(pi).

Hierarchical Poisson model: By Gelman et al. [7]. The model measures the relative stop-and-frisk
events in different precincts in New York city, for different ethnicities. In this case the posterior
p(z|x) has dimensionality d = 37. The model is given by

µ ∼ N (0, 102)

log σα ∼ N (0, 102),

log σβ ∼ N (0, 102),

αe ∼ N (0, σ2
α),

βp ∼ N (0, σ2
β),

λep = exp(µ+ αe + βp + logNep),

Yep ∼ Poisson(λep).

Here, e stands for ethnicity, p for precinct, Yep for the number of stops in precinct p within ethnicity
group e (observed), and Nep for the total number of arrests in precinct p within ethnicity group e
(which is observed).
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Bayesian neural network: As done by Miller et al. [17] we use a subset of 100 rows from the
“Red-wine” dataset. We implement a neural network with one hidden layer with 50 units and Relu
activations. In this case the posterior p(z|x) has dimensionality d = 653. Let {xi, yi}, where yi is an
integer between one and ten, represent the i-th sample in the dataset. The model is given by

logα ∼ Gamma(1, 0.1),

log τ ∼ Gamma(1, 0.1),

wi ∼ N (0, 1/α), (weights and biases)
ŷi = FeedForward(xi,W ),

yi ∼ N (ŷi, 1/τ).

D Proof of Lemma

Lemma D.1. Let f̂(z) be defined as in Eq. 7. If qw(z) is a distribution with mean µw and covariance
matrix Σw, then

E
qw(z)

f̂v(z) = b>v (µw − z0) +
1

2
tr(BvΣw) +

1

2

(
µ>wBvµw − z>0 Bvµw −µ>wBvz0 + z>0 Bvz0

)
(15)

Proof. We have

f̂(z) = b>(z − z0) +
1

2
(z − z0)>B(z − z0).

Taking the expectation with respect to qw(z) gives

E
qw(z)

f̂(z) = b>(µw − z0) +
1

2
E

qw(z)
[(z − z0)>B(z − z0)︸ ︷︷ ︸

t(w)

] (16)

We now deal with the term in the second line of Eq. 16, t(w).

t(w) = E
qw(z)

[(z − z0)>B(z − z0)]

= E
qw(z)

[tr
(
(z − z0)>B(z − z0)

)
]

= E
qw(z)

[tr
(
B(z − z0)(z − z0)>

)
]

= tr

(
B E
qw(z)

[(z − z0)(z − z0)>]

)
= tr

(
B E
qw(z)

[zz> − zz>0 − z0z> + z0z
>
0 ]

)
= tr

(
B E
qw(z)

[zz> − zz>0 − z0z> + z0z
>
0 ]

)
= tr

(
B E[(z − µw + µw)(z − µw + µw)> − zz>0 − z0z> + z0z

>
0 ]
)

= tr
(
B
(
E[(z − µw)(z − µw)>] + µwµ

>
w − µwz>0 − z0µ>w + z0z

>
0

))
= tr

(
B
(
Σw + µwµ

>
w − µwz>0 − z0µ>w + z0z

>
0

))
= tr (BΣw) + µ>wBµ

>
w − z>0 Bµw − µ>wBz0 + z>0 Bz0.

Combining Eq. 16 with the expression for t(w) completes the proof.

15



E Details on Taylor-based Control Variates

There is closely related work exploring Taylor-expansion based control variates for reparameterization
gradients by Miller et al. [17]. They develop a control variate for the case where qw is a fully-
factorized Gaussian.

Note: In their paper, Miller et al. derived a control variate for the case where qw is a fully-factorized
Gaussian parameterized by its mean µ = [µ1, . . . , µd] and standard deviation σ = [σ1, . . . , σd]
(w = {µ, σ}). That is, qw(z) = N (z|µ,diag(σ2)). However, in their code (publicly available) they
use a different parameterization. Instead of using σ, they use a different set of parameters, ψ, to
represent the log of the standard deviation of qw. That is, qw(z) = N (z|µ,diag(e2ψ)). In order to
explain, replicate and compare against the method they use, we derive the details of their approach
for the latter case. (This derivation is not present in their paper, but follows all the steps closely.)

Miller et al. introduced a control variate to reduce the variance of the estimator of the gradient with
respect to the mean parameters µ and a control variate to reduce the variance of the estimator of the
gradient with respect to the log-scale parameters ψ. We will denote these control variates cµ(w, ε)
and cψ(w, ε), respectively. Their main idea is to use curvature information about the model (via its
Hessian) to construct both control variates. The control variate they propose for the mean parameters
cµ(w, ε) can be computed efficiently via Hessian-vector products. On the other hand, the original
proposal for cψ(w, ε) requires computing the (often) intractable Hessian∇2f(µ). To avoid this the
authors propose an alternative control variate c̃ψ(w, ε) based on some tractable approximations.

The authors noted that the use of these approximations lead to a significant deterioration of the control
variate’s variance reduction capability. However, no formal analysis that explained this was presented.
We study these approximations in detail and explain exactly why this quality reduction is observed.
Simply put, we observe that these approximations lead to a control variate that does not use curvature
information about the model at all.

The rest of this section is organized as follows. In E.1, we present the resulting control variates
obtained after applying the required approximations to deal with the intractable Hessian: cµ(w, ε)
and c̃ψ(w, ε). In E.2, we present Miller et al. original (intractable) control variate, cψ(w, ε), explain
the source of intractability, and explain how the approximation used leads to the "weaker" control
variate c̃µ(w, ε) presented in E.1. Finally, in E.3 we describe the drawbacks of the approach, and
extend the approach to the case where qw is a Gaussian with a full-rank or diagonal plus low rank
covariance matrix.

E.1 Final control variate after approximations

Let qw(z) be the variational distribution. The gradient that must be estimated is given by

∇w E
qw(z)

f(z) = ∇w E
q0(ε)

f(Tw(ε)) (17)

= E
q0(ε)

∇wf(Tw(ε)) (18)

= E
q0(ε)

(
d Tw(ε)

dw

)>
∇f(Tw(ε)), (19)

where∇f(Tw(ε)) is∇f(z) evaluated at z = Tw(ε). The gradient estimator obtained with a sample
ε ∼ q0 is given by

g(ε) =

(
d Tw(ε)

dw

)>
∇f(Tw(ε)). (20)

Miller et al. [17] propose to build a control variate using an approximation ∇f̂(z) of ∇f(z). The
control variate is given by the difference between the gradient estimator using this approximation and
its expectation,
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c(w, ε) =

(
d Tw(ε)

dw

)>
∇f̂(Tw(ε))− E

q0(ε)

(
d Tw(ε)

dw

)>
∇f̂(Tw(ε)). (21)

The quality of the control variate directly depends on the quality of the approximation∇f̂ . If∇f̂ is
very close to ∇f , the control variate is able to approximate and cancel the estimator’s noise. On the
other hand, bad approximations lead to a small (or none) reduction in variance.

This idea is applied to fully-factorized Gaussian with parameters ψ representing the log-scale. The
reparameterization transformation is given by

Tw(ε) = µ+ eψ � ε, (22)

where � is the element-wise product between vectors. The parameters are w = (µ, ψ). The control
variate is derived differently for µ and ψ. We discuss the two cases separately.

Control variate for µ. For µ, the authors set ∇f̂(z) to be a first order Taylor expansion of the true
gradient around µ. That is, ∇f̂(z) = ∇f(µ) +∇2f(µ)(z − µ), where∇2f(µ) is the Hessian of f
evaluated at z = µ. Then, it is not hard to show that the control variate becomes3

cµ(w, ε) = ∇2f(µ)(eψ � ε). (27)

This control variate can be computed efficiently using Hessian-vector products, and will be effective
when the approximation ∇f̂(z) is close to∇f(z) for z ∼ qw(z).

The following derivation for ψ is different from that given by Miller et al. We show that it is equivalent
in Sec. E.2.

Control variate for ψ. For ψ, it is necessary – in order to obtain a closed-form expectation – to use
a constant approximation of the form ∇f̂(z) = ∇f(µ) (using the first order Taylor expansion as for
cµ(w, ε) leads to intractable terms, see Section E.2). Then, it turns out that the expectation part of the
control variate is zero, and so the control variate becomes4

3To see this, observe that

∇f̂(Tw(ε)) = ∇f(µ) +∇2f(µ)(Tw(ε)− µ) = ∇f(µ) +∇2f(µ)(eψ � ε). (23)

The Jacobian of T with respect to µ is dTw(ε)
d µ

= I . Then, we can calculate that

cµ(w, ε) =

(
d Tw(ε)

dµ

)>
∇f̂(Tw(ε))− E

q0(ε)

(
d Tw(ε)

dµ

)>
∇f̂(Tw(ε)) (24)

= ∇f(µ) +∇2f(µ)(eψ � ε)− E
[
∇f(µ) +∇2f(µ)(eψ � ε)

]
(25)

= ∇2f(µ)(eψ � ε). (26)

4In this case the Jacobian of T with respect to ψ is dTw(ε)
dψ

= diag(eψ � ε). It follows that

c̃ψ(w, ε) =

(
d Tw(ε)

dψ

)>
∇f̂(Tw(ε))− E

q0(ε)

(
d Tw(ε)

dψ

)>
∇f̂(Tw(ε)) (28)

= diag(eψ � ε)∇f(µ)− E
q0(ε)

diag(eψ � ε)∇f(µ) (29)

= eψ � ε�∇f(µ)− E
q0(ε)

eψ � ε�∇f(µ) (30)

= eψ � ε�∇f(µ) (31)
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c̃ψ(w, ε) = eψ � ε�∇f(µ) (32)

It can be observed that c̃ψ(w, ε) does not use curvature information about the model. This control
variate will be effective only in cases where∇f(µ) is close to∇f(z) for z ∼ qw(z).

E.2 Original Derivation

Miller et al. [17] gave a more elaborate derivation of the above control variate for ψ. They start with
the same first-order Taylor expansion ∇f̂(z) = ∇f(µ) +∇2f(µ)(z − µ) as used for µ. Applied
directly, this suggests the control variate5

cψ(w, ε) =
(
∇f(µ) +∇2f(µ)(eψ � ε)

)
� ε� eψ − E

q0(ε)

(
∇f(µ) +∇2f(µ)(eψ � ε)

)
� ε� eψ︸ ︷︷ ︸

diag(∇2f(µ))�e2ψ

. (37)

The first term from Eq. 37 can be computed efficiently using Hessian-vector products. The second
term, however, is often intractable, since it requires the diagonal of the Hessian. In such cases, the
authors propose to apply a further estimation process to estimate it using a baseline [1, 19]. The idea
is that often gradients are estimated in a minibatch, based on a set of samples ε1, . . . , εN . Then, the
expectation can be estimated without bias using the other samples in the minibatch. This results in
the control variate for sample i of

cψ(w, εi) =
(
∇f(µ) +∇2f(µ)(eψ � εi)

)
� ε� eψ − 1

N − 1

N∑
j=1
j 6=i

(
∇2f(µ)(eψ � εj)

)
� εj � eψ

︸ ︷︷ ︸
baseline

. (38)

At a first glance it may appear that this control variate uses curvature information from the model
via the Hessian ∇2f(µ). However, a careful inspection shows that all these terms cancel out. The
control variate for the full minibatch is simply

cψ(w, ε1, · · · , εN ) =

N∑
i=1

cψ(w, εi) =

N∑
i=1

∇f(µ)� εi � eψ. (39)

This, of course, is exactly the same as taking a minibatch of the control variate derived in Eq. 32.
Thus, the ideas of minibatch and baseline may somewhat obscure what is happening. It is not
necessary to invoke the machinery of a baseline, nor to draw samples in a minibatch. A zero-th
order Taylor expansion is equivalent, and has the practical advantage of remaining valid with a single
sample. While some details of the baseline procedure were not available in the published paper, we
confirmed this is equivalent to the control variate used in the publicly available code.

5Again, dTw(ε)
dψ

= diag(eψ � ε) and∇f̂(Tw(ε)) = ∇f(µ) +∇2f(µ)(eψ � ε). We thus have that

cψ(w, ε) =

(
d Tw(ε)

dψ

)>
∇f̂(Tw(ε))− E

q0(ε)

(
d Tw(ε)

dψ

)>
∇f̂(Tw(ε)) (33)

= diag(eψ � ε)
(
∇f(µ) +∇2f(µ)(eψ � ε)

)
− E
q0(ε)

diag(eψ � ε)
(
∇f(µ) +∇2f(µ)(eψ � ε)

)
(34)

=
(
∇f(µ) +∇2f(µ)(eψ � ε)

)
� eψ � ε− E

q0(ε)

(
∇2f(µ)(eψ � ε)

)
� (eψ � ε) (35)

(36)

Finally, we can observe that E
[(
∇f(µ) +∇2f(µ)(eψ � ε)

)
� ε� es

]
= diag(∇2f(µ))� e2ψ .
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E.3 Limitations of the approach and extensions

One limitation of the above approach is that the control variate for ψ is not very effective. Unless
the diagonal of the Hessian is tractable, it uses a very crude approximation for ∇f(z). Thus, one
would naturally expect this control variate to perform worse when the diagonal of the Hessian is not
tractable. Indeed, this can be observed in the results obtained by Miller et al. [17]. Table 1 in their
paper shows that the tractable control variate (Eq. 32, tractable), leads to a variance reduction several
orders of magnitude worse than the one obtained using the control variate based on the true Hessian
(Eq. 37, often intractable to compute).

In their simulations, this relatively poor performance for ψ does not represent a big inconvenience.
That is because of the following empirical observation: when using a fully-factorized Gaussian as
variational distribution most of the gradient variance comes from mean parameters µ, where a much
better approximation of ∇f can be used. However, our results in this paper show that with non
fully-factorized distributions most of the variance is often contributed by the scale parameters (see
Fig. 1).

A second limitation is that their approach requires manual distribution-specific derivations. More
specifically, in order to use the control variate with another distribution the expectation

E
d Tw(ε)

dw

>
∇f̂(Tw(ε))

must be computed. In order to do so, a closed form expression for the Jacobian of Tw(ε) is required.
(One cannot use automatic differentiation for this since a mathematical expression for the Jacobian
is needed in order to derive the expectation). Thus, extending the approach to other variational
distributions is not trivial, and the difficulty depends on the variational distribution chosen. We now
present three cases, two for which the extension can be done without much work (full-rank and
diagonal plus low rank Gaussians), and other for which the extension requires extensive calculations
(Householder flows [32]).

Full-rank Gaussian: In this case we have qw(z) = N (z|µ,Σ). The parameters are w = (µ, S),
where S parameterizes the covariance matrix as SS> = Σ, and reparameterization is given by
z = µ+ Sε. If we let vec(S) be a vector that contains all rows of S in order, we get that the required
Jacobians are given by

d Tw(ε)

dµ
= I and

d Tw(ε)

d vec(S)
=

 ε> 0>d . . . 0>d
0>d ε> . . . 0>d

. . .
0>d 0>d . . . ε>

 , (40)

where ε> is a row vector of dimension d and 0>d is the zero row vector of dimension d. The Jacobian
d Tw(ε)
d vec(S) has dimension d × d2. Following section E.1 and using the above expressions for the
Jacobians we get

cµ(w, ε) = ∇2f(µ)Sε and c̃S(w, ε) = ∇f(µ)ε>. (41)

Both cµ(w, ε) and c̃S(w, ε) can be computed efficiently.

Diagonal plus low rank Gaussian: In this case we have qw(z) = N (z|µ,Σ). The parameters
are w = (µ, ψ, U), where µ and ψ are vectors of dimension d, and U is a matrix of size d × r.
The covariance is parameterized as Σ = diag(e2ψ) + UU>. Reparameterization is given by z =
µ+ eψ � εd + Uεr, where εd and εr are independent samples of standard Normal distributions of
dimension d and r, respectively. In this case the required Jacobians are given by

d Tw(εd, εr)

dµ
= I ,

d Tw(εd, εr)

dψ
= diag(eψ�εd) and

d Tw(εd, εr)

d vec(U)
=


ε>r 0>r . . . 0>r
0>r ε>r . . . 0>r

. . .
0>r 0>r . . . ε>r

 . (42)

19



Following section E.1 and using the above expressions for the Jacobians we get

cµ(w, εd, εr) = ∇2f(µ)(eψ � εd + Uεr) (43)

c̃ψ(w, εd, εr) = ∇f(µ)� eψ � εd (44)

c̃U (w, εd, εr) = ∇f(µ)ε>r . (45)

Householder flows: In this case we have a Gaussian distribution with reparameterization given by
z = µ +

∏M
i=1H(vi)Dε, where M is the number of flow steps used, D = diag(σ) is a diagonal

matrix, and Hi is a matrix parameterized by vector vi as Hi(vi) =
(
I − 2

viv
>
i

‖vi‖2

)
. The parameter set

is given by w = {µ, σ, v1, . . . , vM}. In this case, computing the Jacobians required to apply Miller
et al. approach is quite complex, because of the complex dependency of Tw on the parameters vi.
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