
Appendix: Gradient Regularized V -Learning for

Dynamic Treatment Regimes

A Proof of Theorem 1

Theorem 1. Given some treatment rules d̂t:T “ td̂t, . . . , d̂T u, the nuisance models µ̂ and ĝ parame-

terized by M̂NN and ✏̂t satisfy the estimating equation when Rt is minimized such that
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The sample-average EIC, PND˚
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pP̂t:T ; d̂t:T q, takes the same form as Equations (7) to (9),
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When s “ t, . . . , r ´ 1, we know from Equation (8) that
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When s “ r, we know from Equation (9) that
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With the expressions above, we can rewrite Equation (15) explicitly as
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which equals to the R.H.S of Equation (14), which establishes the equality in Equation (12). Finally,
we note that even if we scale down ✏t by dividing it with a large constant in the fluctuated models in
Equation (13), the same proof still holds by multiplying Equation (14) by the large constant.

B Experiment details

In this section, we first introduce the model architecture and pseudo code of GRV-S and GRV-B in
DTR learning. Then we will provide the implementation and simulation details of our experiments.
We note that the model architectures and pseudo codes introduced later are generic and used for
the additional experiments in Appendix C. In the simulations of the main manuscript, we focus on
developing when-to-treat or when-to-stop DTR. In these simulations, we can only train the time t
treatment rule on the samples that are not treated before time t, because these simulations only allow
one treatment action to be made throughout a trajectory. The multi-step treatment decision problem
reduces to decide when to treat an individual or when to stop the treatment for an individual.
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B.1 GRV-S

Model architecture. In GRV-S, we optimize the treatment rules in a DTR d jointly. We use a shared
neural network model to parameterize the treatment rules dt, t P rT s, as shown in Figure 2. The
model Md is a sequence model, e.g. a vanilla RNN, concatenated with a shared multilayer perceptron
(MLP). The sequence model Md has the same input as the encoder Me in Figure 1 of the main
manuscript. The inputs X0 and A0 are zero vectors. At time t, the MLP takes the RNN hidden states
at time t ´ 1 and Xt as input, and use a softmax output layer to generate a K-dimensional probability
vector. The treatment option dtpH̃tq is a one-hot vector randomly sampled w.r.t the probability vector.

…… ……Md Md Md

MMLP MMLPMMLP

…… ……

X0, A0, Z XT�1, AT�1, ZXt�1, At�1, Z

X1 Xt XT

d1(H̃1) dt(H̃t) dT (H̃T )

Figure 2: The DTR network in GRV-S

Algorithm 1 GRV-S

Input: A observational dataset OrNs “
 
Oi “ pZi, Xi,rT s, Ai,rT s, Yi,rT sq, i P rN s

(
, and the

maximum number of iterations, Nopt
Initialization: Randomly initialize the DTR network in Figure 2, the value function network MNN
in Figure 1, and the fluctuation parameter ✏1
for n “ 1 to Nopt do

Sample the DTR decisions d̂i,1:T , for each unit i P rN s
Optimize ✏1 and the value function network MNN based on Equation (10) with t “ 1
Construct the empirical value function V̂ pdq with pM̂NN, ✏̂1q
Update the entire DTR d̂ by optimizing the empirical estimate V̂ pdq

end for

Output: DTR d̂ “ td̂1, . . . , d̂T u

B.2 GRV-B

Model architecture. We optimize the treatment rules backwardly through time. The optimized rule
d̂t will be used in the optimization of the rules in the earlier time steps, ds, s “ t ´ 1, . . . , 1. We let
an independent neural network model to parameterize each treatment rule. The treatment rule dt

is parameterized by the network in Figure 3. The architecture is almost the same as the one used
in GRV-S, but we only have one output at time t. The network is given as a sequence model Mdt ,
e.g. a vanilla RNN, concatenated with a multilayer perceptron (MLP). At time t, the MLP takes
the RNN hidden states at time t ´ 1 and Xt as input and uses a softmax output layer to generate a
K-dimensional probability vector. The treatment option dtpH̃tq is a one-hot vector randomly sampled
w.r.t the probability vector. If the dataset is low-dimensional, we can also parameterize each treatment
rule using a standard supervised learning model which takes all the time-varying covariates, treatment
variables and baseline covariates in the history as input.
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…………Mdt Mdt M
t

MLP

X1, A1, Z Xt�1, At�1, Z Xt

dt(H̃t)

Figure 3: The network of the treatment rule dt in GRV-B

Algorithm 2 GRV-B

Input: A observational dataset OrNs “
 
Oi “ pZi, Xi,rT s, Ai,rT s, Yi,rT sq, i P rN s

(
, and the

maximum number of iterations, Nopt
Initialization: Randomly initialize the DTR network in Figure 3, the value function network MNN
in Figure 1, and the fluctuation parameters ✏t, t P rT s
for n “ 1 to Nopt do

Sample the DTR decisions d̂i,T , for each unit i P rN s
Optimize ✏T and the value function network MNN based on Equation (10) with time step T
Construct the empirical value function V̂T pdT q with pM̂NN, ✏̂T q
Update the treatment rule d̂T by optimizing the empirical estimate V̂T pdT q

end for

for t “ T ´ 1 to 1 do

Reinitialized the value function network MNN
for n “ 1 to Nopt do

Sample the DTR decisions d̂i,t:T , for each unit i P rN s
Optimize ✏t and the value function network MNN based on Equation (10) with time step t
Construct the empirical value function V̂t:T pdt, d̂t`1:T q with pM̂NN, ✏̂tq
Update the treatment rule d̂t by optimizing the empirical estimate V̂t:T pdt, d̂t`1:T q

end for

end for

Output: DTR d̂ “ td̂1, . . . , d̂T u

B.3 Implementation

We use GRU cells for all our RNN models. The MLP models concatenated with the RNNs and the
propensity score network are two-layer SELU networks. Because our dataset is not high-dimensional,
we set the number of units in the hidden layers to 32 for all the models and regularize the RNN
models by setting the dropout rate to 0.5. We warm start the training by minimizing the first term
LpMNN; OrNsq in Equation (10) which does not depend on the DTR. In training, the learning rate is
0.001, and the maximum number of iterations Nopt is 100. At each iteration, we train the treatment
rule in GRV-B or the entire DTR in GRV-S for one epoch, then we retrain the network MNN and the
fluctuation parameter ✏t for five epochs. One epoch means one loop over all the batch samples in the
training set. We implement the benchmarks following the code provided in the R package2 of [43].

B.4 Simulation

We introduce the data generating processes in the two simulation studies [43] that we use in the
experiment section. For each study, we show how each variable is generated in the environments,
how the treatment and covariates influence the outcomes directly or indirectly, which variables we
observe, and why the environment is non-Markovian.

Treatment Cost Trade-off. We consider a setting where we track a health metric and get a reward
if the health metric is above a threshold at T “ 10. The treatment provides a positive nudge to the
health metric at a cost. We start with treatment on, and need to choose when to stop to minimize cost

2https://github.com/xnie/adr
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while trying to keep the health metric stay above the threshold. The data is generated as follows,

X1 „ Np0, 1q, Xt`1 | Xt, At „ 1Xt•´0.5N
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,

1
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with the stopping action,

At | Xt „ Bern
`
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“
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In this simulation, we want to stop the treatment optimally to maximize the treatment cost trade-off,
Tÿ

t“1

Yt “ 1
X̃T `1°0 ´ 1

T

Tÿ
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At.

From the equations above, we can see if the treatment is on pAt “ 0q, we would get a cost ´1{T on
the outcome Yt. However, in the generating process of Xt`1 from Xt and At, At “ 0 can help to
increase the value of Xt`1. However, this increase is small when Xt is large. If X̃T `1 is larger than
zero, we would bet a reward in YT . Roughly speaking, the optimal strategy is to stop the treatment at
some points because the treatment cost is the same while the treatment influence on Xt`1 and X̃T `1

decreases over time. Finally, we note that we do not assume Markovian structure in the simulation
and only get to observe a noisy version X̃t of the true covariate vector Xt at time t. The action
generation is also time-dependent and non-stationary over time.

Survival Rate Maximization. In the second setup, we consider multiple treatment choices. Our
design here is motivated by a healthcare setting where once a doctor starts treatment, they can choose
between a more effective but more invasive treatment with strong side effects, or a less effective but
less invasive treatment. More specifically, imagine a cancer patient’s state at time t is modelled by
X1,t, X2,t and Z where X1,t is the general health state, X2,t is the state of a tumour, and Z is not
time-dependent but models the category of the patients for which lifespan differs. In particular, if
Z “ 0, a patient always dies immediately; if Z “ 1, a patient always survives until the end of a trial;
if Z “ 2, the patient’s lifespan has a strong dependency on X2,t which we detail below. There are
two treatment choices, one non-invasive (At “ 1) and one invasive (At “ 2). In the main manuscript,
we say At is a one-hot vector. Here, we redefine it as the corresponding categorical variable. The
non-invasive option lessens the severity of the tumour, and the invasive option completely removes
the tumour but exacerbates a patient’s general health conditions. At every time step t, we receive a
binary survival outcome Yt of each patient. The DTR objective is to maximize the patients’ lifetime∞

T

t“1 Yt. We consider horizon T “ 10. The data generating process is given as follows,

X1,1 „ expp1q, X2,1 „ 0.5 expp3q, Y1 “ 1,

Z „ Multinomialp0.3, 0.3, 0.4q,

X1,t`1 “
"|X1,t ` ut| , if At P t0, 1u

| maxpX2
1,t

, 1.5X1,tq ` ut ´ X1,t| ` X1,t , if At “ 2

X2,t`1 “

$
&

%

|X2,t ` 0.5X1,t ` ut| , if At “ 0
|0.5X2,t ` ut| , if At “ 1
0 , if At “ 2

where ut „ Np0, 0.25q. The survival outcomes over time are generated as,

Yt`1 “

$
&

%

0 , if Z “ 1
1 , if Z “ 2
Bern

`
1X2,t§5 expp´0.02X2,tq ` 15†X2,t§14 expp´0.06X2,tq

˘
, if Z “ 3

From the equation of X1,t`1, we can see At “ 0 (no treatment) and At “ 1 (non-invasive treatment)
gives the same generating process of X1,t`1. On the contrary, when At “ 2 (invasive treatment),
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X1,t`1 will increase from X1,t, which means the patient’s general health conditions get worse. From
the equation of Yt`1 above, we can see increasing X2,t tends to decrease the probability of survival
for the patient. If the tumour state X2,t is larger than 14, the probability of survival is zero. The
invasive treatment pAt “ 2q sets X2,t`1 to zero. Then the patient will definitely survive at time
t ` 2. The non-invase treatment pAt “ 1q can decrease X2,t`1 to roughly a half of X2,t, which also
increases the chance of survival for the patient.

We only get to observe the covariates corrupted by noise at each time step,

X̃1,t “ maxp0, minpX1,max, X1 ` ⌫qq,
X̃2,t “ maxp0, minpX2,max, X2 ` ⌫qq.

where ⌫ „ Np0, 1q, X1,max “ 10 and X2,max “ 16. In this setting, the treatment assignment
mechanism is based on sequential randomization in the data such that there are roughly equal number
of trajectories that start treating at each time with either treatment option. This second study helps to
capture settings motivated by clinical trials for longitudinal studies.

C Additional Experiments

C.1 Other simulation studies

As suggested by one of the reviewers, one of our DTR learning algorithms follows the same procedure
as the DTR learning algorithm backward outcome weighted learning (BOWL) [6]. In this section, we
replicate the three simulation studies termed as Scenario 1,2 and 3 in [6]. In all the scenarios, the
treatment variable is binary and randomized with equal probability at each time step. Despite the
trajectories in these scenarios are relatively short, the scenarios do capture the challenges in DTR
learning, such as the 50-dimensional covariate vector in Scenario 1 and 2, and the treatment assigned
in the history can influence the future outcome in all the scenarios. We refer to the original paper for
the simulation details. We compare GRV-S and GRV-B against four benchmark algorithms, including
Q-learning (QL), L2 regularized Q-learning (RQL), A-learning (AL), backward outcome weighted
learning (BOWL). In Table 2, we report the mean and standard deviation of the value of the learned
DTR over 500 runs in each scenario. We repeat the same experiment with 100, 200 and 400 training
samples. The same sample sizes are used in the original paper.

Table 2: Performance of benchmark algorithms GRV-S and GRV-B in Scenario 1,2 and 3. The mean
and standard deviation are computed average 500 runs.

Algorithms QL RQL AL BOWL GRV-S GRV-B

Samples Scenario 1

100 0.583 ˘ 1.476 1.928 ˘ 1.533 -0.650 ˘ 0.991 3.849 ˘ 0.918 6.619 ˘ 0.135 6.680 ˘ 0.186

200 0.692 ˘ 0.972 2.831 ˘ 0.972 -0.298 ˘ 0.984 4.502 ˘ 0.768 6.684 ˘ 0.112 6.714 ˘ 0.155

400 3.766 ˘ 0.896 3.859 ˘ 0.897 1.973 ˘ 1.072 5.811 ˘ 0.331 6.721 ˘ 0.129 6.741 ˘ 0.120

Algorithms QL RQL AL BOWL GRV-S GRV-B

Samples Scenario 2

100 1.122 ˘ 0.679 2.650 ˘ 0.547 0.369 ˘0.318 2.709 ˘ 0.340 2.415 ˘ 0.494 2.852 ˘ 0.097

200 1.462 ˘ 0.361 2.857 ˘ 0.248 0.631 ˘ 0.322 2.847 ˘ 0.269 3.191 ˘ 0.139 3.269 ˘ 0.083

400 3.395 ˘ 0.042 3.418 ˘ 0.056 2.549 ˘ 0.394 3.105 ˘ 0.131 3.454 ˘ 0.057 3.499 ˘ 0.056

Algorithms QL RQL AL BOWL GRV-S GRV-B

Samples Scenario 3

100 7.633 ˘ 2.953 7.765 ˘ 2.669 2.184 ˘ 6.377 10.231 ˘ 2.563 5.899 ˘ 3.318 10.082 ˘ 3.215
200 10.762 ˘ 1.846 10.860 ˘ 1.676 7.454 ˘ 4.083 13.139 ˘ 1.952 6.945 ˘ 3.727 12.793 ˘ 2.413
400 12.105 ˘ 1.605 12.204 ˘ 1.419 10.495 ˘ 1.882 14.617 ˘ 1.299 9.469 ˘ 3.432 14.467 ˘ 1.785

The GRV based algorithms outperform the benchmarks significantly in Scenario 1 and 2. However,
in Scenario 3, BOWL achieves better performance than GRV-S and GRV-B. In this scenario, GRV-S
performs poorly, which indicates that learning all the treatment rules jointly could be difficult when
the sample size is small. The failure mode of GRV-S only appears in Scenario 3 where the only
nonzero outcome is observed at the end of the trajectory. This unique characteristic may increase the
difficulty of DTR optimization in GRV-S. GRV-B does not have this problem because it optimizes the
treatment rules sequentially. GRV-S and GRV-B perform similarly in Scenario 1 and 2, and GRV-B
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performs significantly better than GRV-S in Scenario 3. When the outcomes in the future time steps
have a strong dependence on the treatments in the history, we should consider using GRV-B even
though it is computationally more expensive than GRV-S because the optimization of GRV-S may be
unstable when the treatment rules can influence on the outcomes at multiple time steps.

C.2 Ablation study

In the previous experiments, the loss term and the regularizer are weighted equally in the objective
function in Equation (10). Here, we provide an ablation study based on Scenario 2 above. In Table 3,
we compare the performance of our method with and without the regularizer. We found that the
performances of GRV-S and GRV-B drop if we remove the regularizer from the objective function,
which shows that the regularizer is an important part of our method.

Table 3: Ablation study of the GRV regularizer in Scenario 2.

Algorithms GRV-S GRV-B

Samples w/o w w/o w

100 2.207 ˘ 0.652 2.415 ˘ 0.494 2.732 ˘ 0.117 2.852 ˘ 0.097

200 3.026 ˘ 0.217 3.191 ˘ 0.139 3.155 ˘ 0.103 3.269 ˘ 0.083

400 3.366 ˘ 0.094 3.454 ˘ 0.057 3.362 ˘ 0.058 3.499 ˘ 0.056

D Experiments on MIMIC III

The Medical Information Mart for Intensive Care (MIMIC III) [22] database consists of electronic
health records from patients in the ICU. We extracted a dataset with 1753 patients on antibiotics from
MIMIC III. The patients’ trajectories have 8 steps. For each patient, we have 26 patient covariates
including lab tests and vital signs measured over time, as well as static patient features such as age
and gender. The patient covariates change over time and are affected by the previous administration
of antibiotics. Moreover, the treatment assignment mechanism is affected by the patient’s covariates
history and the previous administration of antibiotics [59, 60].

At each time step, we consider a binary treatment assignment problem, whether the patient should be
administered antibiotics or not. Because the antibiotic treatment is decided daily for the patients, we
use aggregate value for the time-varying covariates on each day since the ICU admission. We split
the dataset into a training set (1000 patients) and a testing set (753 patients). We reuse the neural
network hyperparameters and architecture that in the synthetic data experiments.

(a) White blood cell counts (b) Treated v.s. Non-treated

Figure 4: Time-varying statistics of the training set.

A high white blood cell count is associated with severe illness and poor outcome for ICU patients
[61]. Antibiotic administration in the ICU aims to reduce the white blood cell count. However, the
effectiveness of the antibiotics treatment in reducing the white blood cell count is highly dependent
on the time of antibiotic administration in a patient’s covariates history. In Figure 4a, we report the
mean and standard deviation of the white blood cell count over the patients in the training set. The
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mean decreases in the first 4 time steps while it increases in the last 4 time steps. This shift happens
even when the numbers of treated and non-treated patients have no significant change over the time
steps, as shown in Figure 4b. This may be because antibiotics treatment become less effective if it is
has been used in the previous time steps.

By DTR learning, we try to answer the question if using antibiotics treatment repeatedly is the
appropriate treatment plan for decreasing the white blood cell count. We use our GRV-B algorithm
to learn a DTR based on the training set. Because we cannot simulate the transition dynamics in
this real-world dataset, we let the time t treatment rule d̂t in the learned DTR to make a treatment
recommendation for patients in the testing set given their covariates and treatment history H̃t. The
testing set consists of the treatment trajectories of 753 patients. In Figure 5a, the majority of the
patients would receive the treatments before the time step t “ 5 in both the testing set (i.e. the
observed DTR) and our DTR. This corresponds to the observation in Figure 4a that the average white
blood cell count goes down in the first 4 time steps. The antibiotics treatment taken by the patients is
probably the driving force for the decrease.

(a) Number of patients who receive treat-
ments before the t “ 5

(b) Number of treatments that the patients
receive between t “ 5 and t “ 8

(c) Time gap of treatment assignment in the
observed DTR and our DTR

Figure 5: Comparison of the observed treatments assigned in the testing set (observed DTR) and the
treatments recommended by our DTR.

The treatment assignment of our DTR is different from the observed DTR from the time step t “ 5 to
t “ 8. In Figure 5b, the number of patients who receive no treatments during this period of time is
similar for the two DTRs. However, the observed DTR assigns almost 400 patients with a treatment
at every time step between t “ 5 and t “ 8, while our DTR suggests most of the patients should
receive 1 or 2 treatment over these time steps and there should be fewer patients who receive a larger
number of treatments. The most striking observation from our DTR is that there is only a very small
fraction of patients who need to receive four treatments in a row. In Figure 5c, the observed DTR
assigns treatment much more frequently than our DTR. In Figure 4a, the white blood cell count goes
up between t “ 5 and t “ 8, the treatment loses its effectiveness after being used many times. Our
DTR suggests that we should decrease the number of treatments and enlarge the time gap between
two subsequent antibiotics treatments, which aligns with the understanding in the clinical literature
that the antibiotics treatment becomes less effective when it is used repeatedly.
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