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Abstract

Deciding how to optimally treat a patient, including how to select treatments over
time among the multiple available treatments, represents one of the most important
issues that need to be addressed in medicine today. A dynamic treatment regime
(DTR) is a sequence of treatment rules indicating how to individualize treatments
for a patient based on the previously assigned treatments and the evolving covariate
history. However, DTR evaluation and learning based on offline data remain
challenging problems due to the bias introduced by time-varying confounders
that affect treatment assignment over time; this may lead to suboptimal treatment
rules being used in practice. In this paper, we introduce Gradient Regularized
V -learning (GRV), a novel method for estimating the value function of a DTR.
GRV regularizes the underlying outcome and propensity score models with respect
to the optimality condition in semiparametric estimation theory. On the basis of
this design, we construct estimators that are efficient and stable in finite samples
regime. Using multiple simulation studies and one real-world medical dataset, we
demonstrate that our method is superior in DTR evaluation and learning, thereby
providing improved treatment options over time for patients.

1 Introduction

Clinical decision-makers regularly face the daunting challenge of choosing from multiple treatment
options and treatment timings. While clinical trials represent the gold standard for causal inference,
clinical trials for longitudinal studies are expensive to conduct. They have few patients and narrow
inclusion criteria, and usually do not follow patients for long periods of time. Leveraging increasingly
available observational data about patients, such as electronic health records, represents a more viable
alternative for developing individualized treatment plans over time. Across multiple communities,
including machine learning, statistics and economics, increasing attention has been paid to the need
to understand how decision-makers decide which treatments to give patients, and how to construct
treatment rules based on their static information [1, 2, 3, 4, 5, 6, 7].

Treatment individualization and adaptation over time are crucial for managing chronic diseases. For
example, the time-varying patient information, such as side-effect severity and treatment adherence,
drives the treatment for major depressive disorder [8]; clinicians routinely adjust therapy based
on the risk of toxicity and antibiotics resistance in treating cystic fibrosis [9]. Unlike in static
settings, developing time-varying treatment rules in longitudinal settings poses unique opportunities
to understand how diseases evolve under different treatment plans, how individual patients respond to
medication over time, and which timings are optimal for assigning treatments. Dynamic treatment
regimes (DTRs) [10, 11] offer an attractive causal inference framework that serves this purpose.
A DTR is a sequence of time-varying treatment rules that determine which treatment to provide
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at each time step, given the patient’s ongoing observation and evolving treatment history. These
time-varying treatment rules are also known as adaptive treatment strategies [12, 13, 14, 15, 16] or
treatment policies [17, 18, 19]. DTRs provide an effective vehicle for several application areas that
have recently been discussed in biomedical literature, including personalized management of chronic
conditions for cancer, diabetes, and mental illnesses [20]. Moreover, DTRs can be used to determine
when to use chemotherapy or radiotherapy on lung cancer patients for controlling the growth of
their tumour volume, when to stop using antibiotics treatment to decrease the white blood cell count
(indicative of severe illness and poor outcome) for ICU patients, and when to use ventilation on
patients with COVID-19 to maximize their survival outcomes.

To estimate the value function of a DTR, there are three classes of estimators to consider in the
literature. Each of these classes has limitations in practice. It is well known that under some
circumstances importance sampling-based estimators have high variance, while regression-based
estimators have large biases. Doubly robust (DR) estimators have desirable asymptotic properties,
but they can still suffer from high variance in finite samples, due to the unstable inverse propensity
score (IPS) product. More in-depth discussion of existing methods is provided in Section 3.

In this paper, we introduce Gradient Regularized V -learning (GRV) as a new method for estimating
the value function of a DTR. The GRV estimator is constructed to have stable finite sample behaviour
while achieving the asymptotic efficiency. GRV achieves this by regularizing the underlying machine
learning models to satisfy the estimating equation in semiparametric estimation theory. We prove
theoretically that the estimating equation is satisfied when our proposed regularizer is minimized.
Our work can be viewed as an extension of the targeted regularization (TR) method [21] to DTR
settings. TR is a debiased method for estimating the average treatment effect (ATE) in static settings.
Our regularizer is designed to solve the complex estimating equation for DTR evaluation, which
involves the outcome and propensity score models across different time steps. Our regularizer can
also be applied to estimate the average long-term effect of multiple treatments in longitudinal studies.
With experiments on multiple simulation studies, we demonstrate that our method is superior to
baseline methods in terms of accuracy in estimating value functions and learning better DTRs. We
also demonstrate the application of our method on a real-world dataset extracted from the Medical
Information Mart for Intensive Care (MIMIC) database [22].

2 DTR Problem

Under the standard assumptions of sequential ignorability, consistency and overlap [10, 23, 24] in
the potential outcome framework for causal inference, we consider a dataset consisting of treatment
trajectories from a population of N units. For each i P rN s “ t1, . . . , Nu, unit i has a baseline
covariate vector in Zi P Z . At each time t P rT s “ t1, . . . , T u, unit i has a covariate vector
Xi,t P Xt, outcome variable Yi,t P Yt, and a one-hot treatment vector Ai,t P A “ t0, 1uK which
indicates which of the K treatment options is assigned to the unit i. In the case of two treatments, we
have four options: no treatments, treatment 1, treatment 2, and both treatments.

We collect all the observations about unit i by Oi “ pZi, Xi,rT s, Ai,rT s, Yi,rT sq. The vectors OrNs
are N i.i.d sampled copies of O P pZ, XrT s, ArT s, YrT sq „ P pOq “ P . We denote the history up to
time t by Ht “ pXrts, Arts, Zq P Ht, H̃t “ pXrts, Art´1s, Zq P H̃t and the baseline covariates Z by
H0. Then we can factorize the joint distribution P as

P pOq “ P pH0q
Tπ

t“1

P pXt | Ht´1qP pAt | H̃tqP pYt | Htq “ gpOqfpOqhpOq, (1)

where gpOq “ ±
T

t“1 P pAt | H̃tq is the intervention distribution, fpOq “ ±
T

t“1 P pYt | Htq is the
outcome distribution, and hpOq “ P pH0q ±

T

t“1 P pXt | Ht´1q is the covariate distribution.

We denote the time t treatment rule by dt : H̃t Ñ A, which assigns the treatment At as a function of
the history H̃t. A dynamical treatment regime (DTR), d :“ d1:T “ td1, . . . , dT u, is a set that collects
all the treatment rules over time. We let Pdt:T denote the joint distribution under the intervention
of dt:T , i.e., replacing P pAs | H̃sq in P pOq with the indicator function 1

`
As “ dspH̃sqq , for
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s “ t, . . . , T . The time t value function under dt:T is given as

Vtpdt:T q “ EPdt:T

«
Tÿ

r“t

Yr

�
“

ª Tÿ

r“t

Yr

dPdt:T

dP
dP “ EP

«
±T

s“t 1
`
As“dspH̃sqq

±T
s“t P pAs|H̃sq

Tÿ

r“t

Yr

�
. (2)

The optimal DTR is given as the optimizer d˚ “ arg max
d
V pdq where V pdq is the value function

over the entire treatment trajectory. To learn the optimal DTR d˚, one can first consider developing a
sample-efficient and low variance estimator to evaluate V pdq, as will be discussed in Section 3.

3 Related works

In the literature, DTR learning in causal inference and off policy evaluation (OPE) in batch reinforce-
ment learning (BRL) are the two branches of methods that attempt to solve the estimation problem of
V pdq. Here, we summarize the existing value function estimators in three classes.

Importance Sampling estimators. The importance sampling (IS) estimator of Vtpdt:T q is given by
the empirical version of the R.H.S of Equation (2), with P pAs | H̃sq in the denominator approximated
by a propensity score model ĝspAs, H̃sq. In the DTR literature, backward outcome weighted
learning (BOWL) [6] is a method that derives the treatment rule d̂t by optimizing the IS estimator of
Vtpdt, d̂t`1:T q backwardly through time given the previously optimized rules d̂t`1:T . Simultaneous
outcome weighted learning (SOWL) [6] optimizes the treatment rules in d jointly based on the IS
estimator of V pdq. In BRL, IS estimators [25, 26, 27] are used to evaluate the value function under a
target policy by reweighting the rewards in the historical data with the probability ratio of the target
policy and the policy that generates the data. IS estimators are known to be consistent and unbiased
but suffer high variance due to the inverse propensity score product.

Regression-based estimators. Batch Q-learning (BQL) [28] is a classic machine learning method
that uses regression models to directly estimate the value function of a DTR. The term “batch” is
used to emphasize an important difference from standard Q-learning [29, 30], in which learning
occurs only after the collection of the training set. Alternatively, A-Learning [10, 31] models regret
functions which measure the loss incurred by not following the optimal DTR. More discussion on
the relationship between Q- and A-learning can be found in [32]. The variants of BQL in OPE are
known as directed methods (DM) [33, 34, 35]. Here, we briefly describe BQL and its limitations.

In BQL, we define the time T Q-function as QT paT , h̃T q “ E
“
YT | AT “ aT , H̃T “ h̃T

‰
. When

the underlying data generating distribution P is known, dynamic programming (DP) [36, 37] shows
that d˚

T
phT q P arg max

aT PA QT paT , h̃T q and recursively d˚
t

phtq P arg max
atPA Qtpat, h̃tq where

Qtpat, h̃tq “ E
“
Ytpatq ` maxat`1PA Qt`1pat`1, H̃t`1q | At “ at, H̃t “ h̃t

‰
. BQL approximates

each Qt using some machine learning models Q̂t, and updates them backwards through time t “
T, T ´ 1, . . . , 1 by solving the optimization problem:

Q̂t P arg min
QtPF

1

N

Nÿ

i“1

„
Yi,t ` max

at`1PA
Q̂t`1pat`1, H̃i,t`1q ´ QtpAi,t, H̃i,tq

⇢2

. (3)

The optimal time t treatment rule is derived as d̂tpH̃tq “ arg max
atPA Q̂tpat, H̃tq. Despite BQL

being able to produce low-variance estimators, the bias in these estimators is hard to quantify.
Learning the Q-functions with Equation (3) implicitly restricts the solution to be in a postulated
function class F̃ and induces a corresponding class of DTRs given by the arg max of the postulated
Q-functions. The work [38] shows that even when the optimal DTR resides in the class of induced
DTRs, Q-learning can still fail to be consistent when F̃ is misspecified. Hence, in Q-learning, the
quality of DTR optimization will rely on the correctness of postulated regression models which we
can not quantify easily. This limitation of Q-learning shows the advantage of simultaneous learning
of V pdq in some importance sampling based methods.

Doubly robust estimators. Developing doubly robust (DR) estimators is a well-studied extension in
the literature [39, 40, 41, 42, 43] to improve value function estimation in terms of sample efficiency
and robustness to model misspecification. These DR estimators have a similar expression as the
well-known augmented inverse probability weighted (AIPW) estimator [44, 45] for the average
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treatment effect (ATE) estimation in static settings. Despite their asymptotic optimality, they can be
unstable in finite samples due to the IPS product. For example, the AIPW estimator in [42] is given as

V̂AIPWpdq “ 1

N

Nÿ

i“1

#
C�

ĝi,1:T

´ Tÿ

t“1

Yi,t

¯
`

Tÿ

t“1

C�,t

ĝi,1:t
Q̂tpAi,t, H̃i,tq

+
, (4)

where C� and C�,t are some indicator functions of whether DTR treatments align with observed data,
and ĝi,1:t is a function of

±
t

s“1 ĝtpAi,s, H̃i,sq. By adaptively using a DR estimator for the value
function in part of a trajectory and then using a regression-based estimator for the remainder, the
weighted doubly-robust (WDR) and MAGIC estimator in [40] offer more accurate evaluation than
the standard DR estimators. This result sheds the light on the need for an estimator that has a stable
expression against high variance due to the IPS products while achieving the asymptotic optimality.
Next, we introduce our method, Gradient Regularized V -Learning (GRV), that fills this need.

4 Gradient Regularized V -Learning

This section is organized as follows: (1) we first introduce a set of the outcome and propensity models,
Mt:T , required for estimating the value function Vtpdt:T q; (2) we discuss under what condition M̂t:T

can construct an efficient estimator of Vtpdt:T q in semiparametric theory; (3) we describe our neural
network architecture that parameterizes the models in M̂t:T , and a theory that demonstrates that
our proposed regularizer can encourage the models to satisfy the optimality condition of efficient
estimators; and (4) we briefly discuss the two GRV based DTR learning algorithms.

4.1 Set up

The time t value function Vtpdt:T q “ EPdt:T

“ ∞
T

r“t
Yr

‰
is defined as the sum of the mean outcomes

after time t ´ 1 under the intervention of dt:T , in which

Yr “ Yrpdt:rq “
ÿ

at:rPAr´t

rπ

s“t

1pdspH̃sq “ asqYrpat:rq,

for r “ t, . . . , T . To model these intervened outcomes using the data generated by the distribution
P pOq defined in Equation (1), we make no parametric assumptions on the joint covariate distribution
hpOq, but make parametric assumptions on the joint outcome distribution fpOq and intervention
distribution gpOq. We let µt,tpAt, H̃tq denote the mean of Yt under the distribution P pYt | Htq,
and gtpAt, H̃tq denote the propensity score P pAt | H̃tq. We let µt,rpdt:r, H̃tq denote the mean of
Yr given the intervention of dt:r and the history H̃t. In our notation of µt,r, “t” indicates the given
history is up to time t and “r” is the time of the future outcome Yr. This long-term expectation
can be computed via sequential regression. Starting backward from time r, given µr,r

`
Ar, H̃r

˘
, we

can compute µr,rpdr, H̃rq as µr,rpdrpH̃rq, H̃rq “ E
“
Yr | Ar “ drpH̃rq, H̃r

‰
. Then by the law of

iterated expectations, for s “ t, . . . , r ´ 1, we can compute

µs,rpds`1:r, Hsq “ E
“
µs`1,rpds`1:r, H̃s`1q | Hs

‰
. (5)

In practice, µs,rpds`1:r, Hsq is computed by regressing µs`1,rpds`1:r, H̃s`1q onto Hs. After r ´ t
regressions, we obtain the wanted expectation µt,rpdt:r, H̃tq. We let Mt:T collect all the mean
outcome and propensity score models that we need to compute in this sequential procedure for
estimating the time t value function Vtpdt:T q. It is worth noting that the simplest treatment rules
are the ones that assign the same treatment to all the units. The method we propose later also
works for estimating the average long-term outcome E

“
Yrpat:rq

‰
given some specific treatment plan

At:r “ at:r. We can estimate the effect of a target treatment plan by contrasting its outcome Yr with
the one under some simple treatment plans, such as the plan that never assigns any treatments.

4.2 Efficiency

We now turn to discuss how to construct a consistent and efficient estimator of Vtpdt:T q based on
semiparametric theory. For a complete textbook presentation of the theory, we refer the reader to
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[46, 47, 48, 49, 50]. We let Pt:T denote the space of the data distribution Pt:T of H̃t, Xt`1:T , At:T

and Yt:T , and P̂t:T denote a estimate of Pt:T with a set of nuisance models M̂t:T . We define the
target parameter mapping as  t : Pt:T Ñ R such that  tpPt:T ; dt:T q “ Vtpdt:T q.

For parametric models with finite-dimensional parameters, we can define the nuisance tangent space
as the subspace spanned by the nuisance score vector which is the gradient of log Pt:T w.r.t the
parameters of the nuisance models. Similarly, we can define the target score vector for the target
parameters. The efficient influence curve (EIC) is a scaled residual obtained by projecting the target
score vector onto the nuisance tangent space. The EIC is the influence curve with the smallest variance
equal to the inverse of the Fisher Information, which is well-known to be the Cramer-Rao lower
bound on the variance of unbiased estimators of the target parameters and attainable via maximum
likelihood estimation (MLE) under regularity assumptions.

In semiparametric models, we cannot define scores for the infinite-dimensional nuisance parameters.
However, if we assume that the target parameter mapping  t is a pathwise differentiable functional
at each distribution in Pt:T , the EIC is given as the canonical gradient of  t, D˚

t
pP̂t:T ; dt:T q. This

defines an estimator that is asymptotically efficient and linear with the EIC. To see this, we use the
fact that the pathwise differentiable  tpP̂t:T ; dt:T q “ V̂tpdt:T q admits a von Mises Expansion [47]:

V̂tpdt:T q ´ Vtpdt:T q “ pP̂t:T ´ Pt:T qD˚
t

pP̂t:T ; dt:T q ` R2pP̂t:T , Pt:T q,
where R2pP̂t:T , Pt:T q is the second-order remainder. Using the fact that EIC has zero mean such that
P̂t:T D˚

t
pP̂t:T ; dt:T q “ 0, we can decompose the first-order bias ´Pt:T D˚

t
pP̂t:T ; dt:T q as

pPN ´Pt:T q
“
D˚

t
pP̂t:T ; dt:T q´D˚

t
pPt:T ; dt:T q

‰
`pPN ´Pt:T qD˚

t
pPt:T ; dt:T q´PND˚

t
pP̂t:T ; dt:T q.

In the decomposition, the first term will be OPt:T p1{
?

Nq under empirical process conditions, e.g.,
if the nuisance models in M̂t:T are regular enough so that D˚

t
pP̂t:T ; dt:T q lies in a Donsker class

of functions, or if sample splitting is used so that the nuisance models are constructed on separate
data. The second term is a sample-average of a fixed function D˚

t
pPt:T ; dt:T q, and thus converges to

a normal distribution after
?

N -scaling, by the central limit theorem. The remainder R2pP̂t:T , Pt:T q
can be OPt:T p1{

?
Nq even when nuisance models converge at slower rates. Overall, we can have

V̂tpdt:T q ´ Vtpdt:T q “ ´PND˚
t

pP̂t:T ; dt:T q ` OPt:T p1{
?

Nq, (6)

which implies that V̂tpdt:T q is a
?

N -consistent estimator of Vtpdt:T q if we can set the sample-average
EIC PND˚

t
pP̂t:T ; dt:T q to zero. The variance of the EIC gives the generalized Cramer-Rao lower

bound of the estimator variance [50]. The estimator V̂tpdt:T q reaches this lower bound asymptotically
and hence efficient. A general introduction of deriving the EIC for large models can be found in [51].
In our case, the EIC takes the form

D˚
t

pPt:T ; dt:T q “
Tÿ

r“t

´
E

“
Yrpdt:rq | H̃t

‰
´ E

“
Yrpdt:rq

‰¯
`

Tÿ

r“t

rÿ

s“t

D˚
s,r

pPt:T ; dt:T q. (7)

Let �t:k{gt:k denote the IPS product
±

k

m“t
1pAm “ dmpH̃mqq{ ±

k

m“t
P pAm | H̃mq. In the second

term of Equation (7), as s “ t, . . . , r ´ 1,

D˚
s,r

pPt:T ; dt:T q “ �t:s

gt:s

´
E

“
Yrpds`1:rq | H̃s`1

‰
´ E

“
Yrpds:rq | H̃s

‰¯
, (8)

and as s “ r,

D˚
r,r

pPt:T ; dt:T q “ �t:r

gt:r

´
Yr ´ E

“
Yrpdrq | H̃r

‰¯
. (9)

Suppose we define a fluctuated estimate P̂t:T,✏ of Pt:T so that a small change in ✏ corresponds with a
maximal small change in the estimator  tpP̂t:T,✏; dt:T q on the data, the local maximum ✏˚ is given
by solving the estimating equation: PND˚

t
pP̂t:T,✏˚ ; dt:T q « 0. Targeted minimum loss estimation

(TMLE) [52, 53, 54, 55] is an estimation procedure that relies on an extra model parameter ✏ to
fine-tune the initial nuisance models µ and g for solving the estimating equation. For a long EIC
expression in Equations (7) to (9), TMLE would need to be applied to the models at each time step
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separately. It has been found even in the simple static setting of the average treatment effect (ATE)
estimation (with only one µ and g model) [21] that the performance of TMLE is dependent on the
quality of the initial models, and tuning the initial models and ✏ jointly can lead to more robust
performance. To improve the quality of the initial models, one can also consider using cross-validation
based methods such as super learning [50] that constructs an initial model by combining multiple
machine learning models. However, the problem of TMLE is more severe in DTR settings which
involves a relatively large number of initial models over time. Also, it is computationally prohibitive
to use cross-validation repeatedly when we are optimizing a DTR.

4.3 Model

Next, we present our method, GRV, that regularizes all the nuisance models with a fluctuation
parameter ✏t to solve the estimating equation defined by the sophisticated EIC in Equations (7) to (9)
in the training time of the nuisance models. We prove theoretically that the equation is solved when
the regularizer is minimized. Such a strategy simplifies the process of solving multiple estimating
equations and avoids using bad initial nuisance models to construct the value function estimator.

……

Propensity Score Model

MeMe

Mg

Mµ
MµMµ

Encoder Model
…… ……

Outcome  Models

X1, A1, Z Xt�1, At�1, Z gt(At, H̃t)

Xt, At, Z Xt, Ar, Z Xt, AT , Z

µt,t(At, H̃t) µt,r(At:r, H̃t) µt,T (At:T , H̃t)

Figure 1: The network architecture of outcome and propensity score models

We start by introducing the network architecture that parameterizes the nuisance models. Our network
is given as a composition of standard RNN models and feedforward neural network (i.e. multilayer
perceptron) models. We opt for neural network models because they enable end-to-end training
of the nuisance models. Figure 1 gives a pictorial description of the network architecture. We
use a sequence encoder model Me to extract information from the history Ht´1. At each time
step s, the encoder Me takes the covariates Xs, treatment variables As, and baseline covariates Z
concatenated together as its input. We feed in the baseline covariates repeatedly for learning its
interaction with the covariate and treatment variables at each time step. At time t, we use a sequence
decoder model Mµ to parametrize the outcome models µt,rpAt:r, H̃tq, r “ t, . . . , T . The decoder
Mµ takes the hidden states of Me at time t ´ 1 as its initial state. The time r input of Mµ consists
of Xt, Ar and Z. The propensity score models gspAs, H̃sq, s “ t, . . . , T , are parameterized by a
shared multilayer perceptron. The model gtpAt, H̃tq takes the hidden states of Me at time t ´ 1, Xt

and Z as input, and use a softmax output layer to estimate the probability of At. We note that using
a shared encoder is a common strategy in the recent neural network literature for treatment effect
estimation. However, such a strategy is only beneficial when the outcomes and propensity scores
are some similar functions, e.g., functions with the same dependence on the input covariates. On
the contrary, if the outcomes and propensity scores are some different functions, we should model
them with two separate encoders. For example, the treatment assignment is randomized while the
outcomes have some complex dependence on the input covariates.

Objective function. To simplify the notation in our objective function, we define �̂i,s:r “±
r

m“s
1

`
Ai,m “ d̂mpH̃i,mq

˘
, gi,s:r “ ±

r

m“s
gmpAi,m, H̃i,mq, and d̂i,s:r “

“
d̂mpH̃i,mq

‰r

m“s
.

Given the treatment rules d̂t:T , we optimize MNN “ tMe, Mµ, Mgu with the objective function

M̂NN, ✏̂t “ arg min
MNN,✏t

!
Lt

`
MNN; OrNs

˘
` Rt

`
MNN, ✏t; d̂t:T , OrNs

˘)
, (10)
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where Lt

`
MNN; OrNs

˘
is given as

Lt

`
MNN; OrNs

˘
“

Tÿ

s“t

˜
1

N

Nÿ

i“1

“
µs,spAi,s, H̃i,sq ´ Yi,s

‰2 ` 1

N

Nÿ

i“1

CrossEntropy
“
gi,s, Ai,s

‰
¸

,

where the first term is the loss for the outcome models, and the second term is the loss
for the propensity score models. The regularizer Rt

`
MNN, ✏t; d̂t:T , OrNs

˘
is factorized as

Rt

`
MNN, ✏t; d̂t:T , OrNs

˘
“ ∞

T

r“t

∞
r

s“t
⇣t

s,r
, where each factor ⇣t

s,r
is defined as

⇣t

s,r
“ 1

N

Nÿ

i“1

”
µ✏t

s`1:r

`
d̂i,s`1:r, H̃i,s`1

˘
´ µ✏t

s:r

`
d̂i,s:r, H̃i,s

˘ı2
, as s “ t, . . . , r ´ 1,

and ⇣t

r,r
“ 1

N

∞
N

i“1

“
Yi,r ´ µ✏t

r,r
pd̂i,r, H̃i,rq

‰2, where µ✏t
k,r

is a fluctuated outcome model,

µ✏t
k,r

`
d̂i,k:r, H̃i,k

˘
“ µk,r

`
d̂i,k:r, H̃i,k

˘
` ✏t

rÿ

m“k

�̂i,t:m

gi,t:m
, for r “ t, . . . , T, k “ t, .., r.

The following theorem shows that minimizing Rt

`
MNN, ✏t; d̂t:T , OrNs

˘
in Equation (10) encourages

these fluctuated outcome models to solve the estimating equation, hence the resulting estimator is
tailored to be efficient for estimating the value function Vtpd̂t:T q as discussed in Section 4.2. Since
we already adapt all the nuisance models to solve the estimating equation, we have the freedom to
scale or penalize the magnitude of ✏t to be small in training, which can partially relieve the high
variance issue caused by the unstable IPS product. We note that minimizing Lt

`
MNN; OrNs

˘
is still

important for the convergence of the remainder in Equation (6).

Theorem 1. Given some treatment rules d̂t:T “ td̂t, . . . , d̂T u, the nuisance models µ̂ and ĝ parame-

terized by M̂NN and ✏̂t satisfy the estimating equation when Rt is minimized such that

0 “ B✏t

”
Rt

`
M̂NN, ✏t; d̂t:T , OrNs

˘ıˇ̌
ˇ
✏t“✏̂t

“ PND˚
t

pP̂t:T ; d̂t:T q. (11)

Proof. Appendix A.

Recall that µ̂✏̂t
t,r

`
dt:r, H̃t

˘
estimates E

“
Yrpdt:rq | H̃t

‰
, the mean of Yr given the intervention of dt:r

and the history H̃t. We can construct an empirical estimate V̂tpdt:T q of the time t value function
V̂tpdt:T q by summing up the estimated outcomes over time. We can learn each dt backwardly in a
dynamic programming fashion, by optimizing the estimator of V̂tpdt, d̂t`1:T q given the previously
optimized rules d̂t`1:T . We also attempt to optimize all the treatment rules in d jointly. We denote
the former DTR optimization algorithm as GRV-B and the latter as GRV-S. Both algorithms are
computationally expensive because we need to update the nuisance models after each update of the
DTR. Our hope is that training the DTR for one epoch would not change the DTR dramatically, then
we only need to retrain the nuisance models for a few epochs. GRV-S is cheaper than GRV-B but
unstable in practice. Finally, we note that optimizing efficient value function estimates is a popular
strategy for learning treatment rules in the literature. However, even if the estimates are efficient, it
does not imply that we have an efficient learning algorithm of the optimal DTR. It has been found
recently that efficient gradient estimation is crucial for achieving efficient DTR learning [56, 57, 58].

5 Experiments

We evaluate the performance of GRV1 in DTR evaluation and optimization. The first set of our
experiments is based on two non-Markovian simulation studies adapted from [43]. We call them
treatment cost trade-off and survival rate maximization respectively. In the first simulation, the DTR
objective is to minimize the total treatment cost in the treatment trajectory while keeping the health
metric above the threshold at the end of the trajectory. In the second simulation, the DTR objective
is to maximize the survival rate of cancer patients using an invasive and non-invasive treatment in

1The code is provided at: https://bitbucket.org/mvdschaar/mlforhealthlabpub.
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Table 1: Performance of benchmarks, our estimator and algorithms: the MSEs of the value function
estimators (lower is better) and the value of the learned DTRs (higher is better). The mean and
standard deviation are averaged across 20 independent runs on a testing set with 20,000 individuals.

Metrics MSE Value

Dataset Treatment cost trade-off

Samples IPW BQL AIPW GRV IPW BQL GRV-S GRV-B

1000 .375 ˘ .018 .362 ˘ .003 .139 ˘ .006 .134 ˘ .004 .741 ˘ .002 .748 ˘ .002 .753 ˘ .004 .761 ˘ .003

5000 .223 ˘ .011 .348 ˘ .003 .035 ˘ .004 .031 ˘ .003 .760 ˘ .002 .752 ˘ .001 .759 ˘ .003 .767 ˘ .002

10000 .132 ˘ .013 .291 ˘ .002 .023 ˘ .003 .022 ˘ .002 .765 ˘ .001 .754 ˘ .001 .762 ˘ .002 .768 ˘ .002

Dataset Survival rate maximization

Samples IPW BQL AIPW GRV IPW BQL GRV-S GRV-B

1000 .332 ˘ .035 .034 ˘ .001 .047 ˘ .005 .032 ˘ .002 .154 ˘ .009 .137 ˘ .006 .146 ˘ .005 .182 ˘ .004

5000 .065 ˘ .003 .017 ˘ .001 .006 ˘ .002 .005 ˘ .001 .175 ˘ .008 .198 ˘ .003 .201 ˘ .002 .224 ˘ .002

10000 .031 ˘ .004 .011 ˘ .001 .003 ˘ .001 .003 ˘ .001 .188 ˘ .006 .215 ˘ .002 .213 ˘ .002 .226 ˘ .002

the treatment trajectories. We benchmark GRV against three methods that cover the three estimator
classes summarized in Section 3, including IPW/IS estimator [26, 27], batch Q-learning (BQL)
[28, 33], and AIPW estimator [40, 42]. The simulation and implementation details of GRV and
benchmark methods can be found in Appendix B.

Given some offline data from a simulation environment and a target DTR, we want to test how
accurate the methods can estimate the value of the target DTR. We compare the methods in terms of
their mean squared errors (MSEs) in estimating the value of the optimal DTR. For DTR learning, we
compare GRV-S and GRV-B against the benchmarks in terms of the value achieved by their learned
DTRs. The DTR value is defined as the cumulative outcome under the learned DTR. Specifically,
we generate a large testing dataset with 20,000 individuals. For each learned DTR, we let each
individual in the testing set follow the treatments recommended by the DTR. At the end of the
treatment trajectory, we obtain the cumulative outcome for each individual. We then compute the
value of the DTR by averaging the cumulative outcome over all the individuals.

In Table 1, we report the MSEs of the value function estimators and the value of the learned DTRs.
We repeat the same experiments with training sample size at 1000, 5000 and 10000. When the
sample size is 1000 or 5000, our GRV estimator outperforms the competing estimators in estimating
the value of the optimal DTR. When the sample size is 10000, AIPW and GRV achieve similar
MSE performance. Additionally, the DTRs learned by GRV-B achieve larger value than the DTRs
learned by the other methods. GRV-S performs relatively poorly because optimizing all the treatment
rules together is unstable when the trajectory is long. Overall, the performance gain highlights the
effectiveness of our regularizer, which constructs an efficient value function estimator by adapting the
nuisance models to solve the estimating equation during the training process of the nuisance models.

In Appendix C, we show our method performs well on three additional simulation studies from
[6] where the covariate vector is relatively high-dimensional while the training set is small with
hundreds of samples. We also provide an ablation study which shows that ablating the regularizer
leads to worse performance in our method. In Appendix D, we demonstrate the application of our
method to antibiotics administration on a real-world dataset extracted from the MIMIC database [22].
We note that this experiment is only used to illustrate that the learned DTR will lead to gradually
decrease the usage of the antibiotics treatment, which corresponds to the clinical literature. The real
DTR application can only be demonstrated well through real-world experiments and simulation. For
example, in a real-world test-bed, the clinician can check if his/her treatment decision is correct or
not by comparing it with the DTR recommendation before prescribing it.

6 Conclusion

We have introduced Gradient Regularized V -Learning (GRV), a novel regularization method that
enables recurrent neural network models to estimate the value function of a target DTR accurately and
learn better DTRs. We prove theoretically that the nuisance models satisfy the estimating equation in
semiparametric estimation theory when the proposed regularizer is minimized. We hope that GRV
will become a useful regularization method when RNNs are deployed to tackle the challenges of
treatment effect estimation and decision making in machine learning.
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Broader Impact

Our work can help to develop accurate and individualized decision-making system in many real-world
applications, such as treatment recommendation. Our method is easy to use for machine learning
practitioners since it simply relies on regularization of the underlying recurrent network models.
However, Offline DTR or policy evaluation is still a challenging problem because we often do not
have sufficient samples to estimate the outcomes for all the possible treatment plans over time.
Given some datasets that are high-dimensional or have long treatment trajectories, we would need to
combine methods that solve different challenges of DTR evaluation, such as putting constraints on
treatment assignment mechanisms over time or selecting variables that are most likely to affect the
treatment decisions. Our work focuses on a particular aspect of DTR evaluation and does not cover
other aspects that are also important for the real-world applications of DTRs.
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