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Encoder Gap and Further Numerical Evidence (R1, R2 and R3) The encoder gap can be viewed simply as a measure2

of maximal energy along any dictionary atom that is not in the support of an input vector. For example, if we assume that3

the dictionary forms an orthogonal basis for principal subspace of the data, and the encoder is linear (e.g., as in PCA),4

then the expected encoder gap would be λ − (s + 1)th largest eigenvalue of the covariance matrix Cxx = E[xx>]5

(assuming zero-mean data). More generally, it is the (s+1)th entry of the vector λ1− |〈D,x−DϕD(x)〉| (ordered in6

increasing manner) as we state on line 123. The formal max-min definition follows the previous work of Mehta and7

Gray (2013), and may look a bit too complicated. We will add a remark in line with our comment above.8

Note that the assumption on encoder gap is very mild. Intuitively, if a dictionary D provides quickly decaying9

approximation error as a function of the cardinality, then a positive encoder gap exists for some s. Importantly, the10

cardinality s provides a knob for our results as one can always consider larger s to guarantee that τs(x) > 0, at the11

expense of the scaling of our generalization bound (through ηs). Moreover, one can still induce a larger encoder gap by12

increasing the regularization parameter λ, as demonstrated in Fig. 1 in the paper (and the figures in this document),13

which will come at the expense of accuracy (as demonstrated in Fig. 2c and 2d in the manuscript). In this way, our14

results guarantee that if one can achieve good accuracy with large encoder gap, then one can generalize robustly. This is15

reminiscent of generalization bounds for any margin based predictor (e.g., SVM): If the empirical margin loss is small16

and the margin achieved is large, then the hypothesis generalizes well.17
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Lastly, while our contribution is mostly the-18

oretical, we also provide further numerical19

evidence for the encoder gap in real scenar-20

ios. We trained two models, on SVHN (with21

256 atoms) and CIFAR (with 1024 atoms),22

with the training procedure described in our23

paper, and depict the value of τs (obtained24

over a collection of samples), for different25

values of λ. As you can see, one can easily26

obtain τs > 0 for quite small values of s.27

R2: It is not clear that sparsity-promoting encoders are the right models to be studying. Deploying sparse priors in28

the learned representations is a first-take at the analysis of non-linear and data-dependent mappings for supervised29

models. Ours is the first work to address this. Moreover, parsimony (e.g., sparse feature learning) plays an important30

role throughout data science and machine learning. Sparsity of learned representation can be ensured by sparsity on the31

weight vectors in the second layer of a neural network (the dense first layer can be viewed as learning a dictionary), and32

it is indeed common in practice to have an `1 penalty on weight matrices. Convolutional structures further promote33

sparsity. The challenge in analyzing a two hidden layer neural network (as described above) is that it is unclear what a34

good distributional property would be (akin to encoder gap) that will allow a trade-off between robustness and accuracy.35

R2: For Theorem 4.1, it would be good to explain how your result compares to prior theoretical bounds on adver-36

sarially robust generalization. There is no direct analytical comparison since the nature of work here is quite different:37

none of the prior works study the role of margin and stability of the learned representation in enabling a trade-off38

between robustness and accuracy. We will add a qualitative comparison and discussion on these in the revised version.39

R3: It seems that the method is limited to the linear case as well as the incoherent assumption. It is possible that40

the data does not satisfy the incoherent assumption or the data could not be represented by linear combinations of41

columns in D? Note that the end-to-end map f(x) is non-linear in x, as it is the composition of a linear function and a42

non-linear representation map. Next, the only assumption we need on the incoherence of the dictionary is that ηs < 1,43

which is mild. The fact that image data can be sparsified by incoherent dictionaries is well-known (e.g. the cornerstone44

of JPEG-2000). In practice, this is ensured during training via regularization as described in Equation (7). If you look45

at the statement of Theorem 4.1, there is no assumption on ηs, instead our bounds are in terms of ηs, so the sample46

complexity is expressed directly in terms of this quantity.47

R3: It is weird that in Figure 2(b), the accuracy is not monotonically decreasing with regard to the adversarial48

budget. Computing adversarial perturbations requires solving a non-convex optimization problem. Since this is49

infeasible in general (for non-linear models), one resorts to approximations (such as those based on projected gradient50

descent [Madry 2018]). These approximations are not guaranteed to recover the perturbations that maximize the51

error, and as a result, the empirical reported accuracy is not necessarily monotonically decreasing. Note though that52

fluctuations are very small and within the margin of approximation.53

Experimental details: We are committed to the reproducibility of our results. All code to reproduce experiments will54

be shared and openly available.55


