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Abstract

We propose novel algorithms with first- and second-order regret bounds for adver-
sarial linear bandits. These regret bounds imply that our algorithms perform well
when there is an action achieving a small cumulative loss or the loss has a small
variance. In addition, we need only assumptions weaker than those of existing
algorithms; our algorithms work on discrete action sets as well as continuous
ones without a priori knowledge about losses, and they run efficiently if a linear
optimization oracle for the action set is available. These results are obtained by
combining optimistic online optimization, continuous multiplicative weight update
methods, and a novel technique that we refer to as distribution truncation. We
also show that the regret bounds of our algorithms are tight up to polylogarithmic
factors.

1 Introduction

The adversarial linear bandit problem models sequential decision making with limited information,
and it has been used in a wide range of applications, including combinatorial bandits [18; 22] and
the adaptive routing problem [12]. In this problem, a player is given a set A ⊆ Rd of actions
represented by d-dimensional feature vectors, and the player is to choose an action at ∈ A in each
round t = 1, . . . , T of the decision process. Just after choosing the action at, the player receives the
bandit feedback 〈`t, at〉 as the loss of the action, where `t ∈ Rd is the loss vector of the t-th round
chosen by an adversary.1 We should note here that the loss vector `t is not revealed to the player even
after choosing the action. The goal of the player is to minimize cumulative loss

∑T
t=1 〈`t, at〉. Player

performance of the player is evaluated by means of the regret RT (a∗) defined as

RT (a∗) =

T∑
t=1

〈`t, at〉 −
T∑
t=1

〈`t, a∗〉 (1)

for a∗ ∈ A. A plethora of algorithms have been proposed with the expected regret E[RT (a∗)] =

Õ(d
√
T ) for any a∗ ∈ A [18; 32; 40] under the assumption that | 〈`t, at〉 | = O(1), where Õ(·) hides

a logarithmic factor in d and T . These algorithms are worst-case optimal up to logarithmic factors:

∗This work was done while Shinji Ito was at the University of Tokyo.
1In this paper, we are concerned with adaptive adversaries, i.e., an adversary can choose loss `t based on

the past player’s actions a1, . . . , at−1. We note that `t cannot depend on the t-th action at since otherwise the
player would always suffer Ω(T ) regret.
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Table 1: Regret bounds for adversarial linear bandits. Here, we denote ¯̀= 1
T

∑T
t=1 `t. The results

with † require additional assumptions on the feasible set A and a priori knowledge of deviations.

Upper Bound Lower Bound

Worst case Õ(d
√
T ) [18; 32] Ω(d

√
T ) [25; 35]

First order Õ

(
d
√∑T

t=1 〈`t, a∗〉
)

[Theorem 3] Ω

(
d
√∑T

t=1 〈`t, a∗〉
)

Second order Õ

(
d
√
θ
∑T
t=1 ‖`t − ¯̀‖22

)
† [30] Ω

(
d
√∑T

t=1 ‖`t − ¯̀‖2∗
)

Õ

(
d
√∑T

t=1 ‖`t − ¯̀‖2∗
)

[Theorem 2]

Predictable Õ

(
d
√
θ
∑T
t=1 ‖`t −mt‖22

)
† [44] Ω

(
d
√∑T

t=1 ‖`t −mt‖2∗
)

sequence Õ

(
d
√∑T

t=1 (〈`t −mt, at〉)2

)
[Theorem 1]

Any algorithm suffers the expected regret of Ω(d
√
T ) in the worst case [25; 35]. These worst-case

bounds are, however, too pessimistic in practical situations since we rarely encounter truly adversarial
environments in real-world problems.

To get around the worst-case lower bound, algorithms with first-order and second-order regret
bounds have been developed for some adversarial bandit problems [6; 15; 30; 48]. First-order regret
bounds are those depending on the minimum cumulative loss L∗T = mina∗∈A

∑T
t=1 〈`t, a∗〉, rather

than on the number T of rounds. For example, Allenberg et al. [6] proposed an algorithm with a
first-order regret bound for the adversarial multi-armed bandit (MAB) problem, a special case of
the adversarial linear bandit problem in which the action set A is just a finite set of size K.2 For
MAB, their algorithm achieves regret of Õ(

√
KL∗T ), which improves over the worst-case optimal

bound of O(
√
KT ) [8; 11], especially when L∗T is much smaller than T , i.e., where there is an

action with a small cumulative loss. It is worth noting that their algorithm achieves a nearly optimal
worst-case bound, as well, since L∗T ≤ T follows from a standard assumption. For more general
linear bandits, however, such an algorithm was not known in the literature. In this paper, second-order
regret bounds refer to those depending on the second-order variation

∑T
t=1 ‖`t − ¯̀‖2 rather than

on T , where ‖ · ‖ is an arbitrary norm and ¯̀stands for the average of the loss vectors {`t}Tt=1.3 For

MAB, Bubeck et al. [15] have proposed an algorithm with a regret bound of Õ(
√∑T

t=1 ‖`t − ¯̀‖22).
This algorithm is nearly worst-case optimal since ‖`t − ¯̀‖22 ≤ KT , and it performs better when
losses {`t} have small variation. For linear bandits, Hazan and Kale [30] proposed an algorithm

achieving Õ(d
3
2

√∑T
t=1 ‖`t − ¯̀‖22) regret under certain assumptions. Though this bound is better

than the worst-case optimal bound of Õ(d
√
T ) when

∑T
t=1 ‖`t− ¯̀‖22 = O(T/d), it is not worst-case

optimal in general.

Another (and deeply relevant) line of work that tries to get around the worst-case lower bound is
a framework called predictable sequences [44; 45; 48]. This framework assumes that the player is
given predicted loss vector mt, which is produced by an arbitrary process, before choosing actions.
One would hope that the regret would get smaller when mt predicts `t well. In fact, as shown in [44],

we can achieve Õ(d
3
2

√∑T
t ‖`t −mt‖22) regret for linear bandits, which can be smaller than the

worst-case optimal bound if mt are sufficiently close to `t so that
∑T
t=1 ‖`t −mt‖22 = O(T/d).

2In fact, MAB is equivalent to the linear bandit problem with an action set being the standard basis of a
K-dimensional space A = {e1, . . . , eK} ⊆ {0, 1}K : Each element `ti of the loss vector `t ∈ [0, 1]K stands
for the loss incurred by choosing the i-th action ei.

3The term “second-order regret” has been used to mean various bounds in the literature. In this work, we
adopt the one stated here.
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Our contributions

In this paper, we present newly-devised, efficient algorithms with improved first- and second-order
regret bounds for the adversarial linear bandit problem. Our algorithms not only yield better regret
bounds but also make only fewer assumptions than have been seen in previous studies. Previous
results and our contributions are summarized in Table 1. In the table, ¯̀denotes the average of the
loss vectors, i.e., ¯̀= 1

T

∑T
t=1 `t. The bounds with † in Table 1 require additional prior knowledge

w.r.t. the loss vectors. For example, the results by [30] and [44] in Table 1 are based on the assumption
that, respectively, (approximated values of) the quantities

∑T
t=1 ‖`t − ¯̀‖2 and

∑T
t=1 ‖`t −mt‖22 are

given before the game starts. In addition, they assume the following conditions: (i) The action setA is
convex, (ii) maxa∈A ‖a‖2 = O(1), and (iii) A has a self-concordance barrier with parameter θ ≥ 1.
Note that the self-concordance parameter θ can be Ω(d), e.g., when A = {a ∈ Rd | ‖a‖∞ ≤ 1}.
We provide two algorithms with the guarantees described below:

1. The first one achieves E[RT (a∗)] = Õ

(
E

[
d
√∑T

t=1 (〈`t −mt, at〉)2

])
for predictable

sequences. If ‖at‖ = O(1) holds for a fixed norm ‖ · ‖, our bound implies a regret bound

of Õ
(
E

[
d
√∑T

t=1 ‖`t −mt‖2∗
])

, where ‖ · ‖∗ is the dual norm of ‖ · ‖. This result

encompasses the result by [44] in Table 1 since maxa∈A ‖a‖2 = O(1) is assumed in their
work and θ ≥ 1 in general. Further, this algorithm does not require the above-mentioned
assumptions. In particular, the action set can be discrete.

2. The second achieves the following second-order regret bound: E[RT (a∗)] =

Õ

(
d
√∑T

t=1 ‖`t − ¯̀‖2∗
)

for arbitrary ¯̀, as shown in Theorem 2. This result encom-

passes the regret bound by [30] in Table 1, and again, as before, this algorithm does not
require the above-mentioned assumptions. When losses 〈`t, at〉 are non-negative, this

algorithm achieves the first-order regret bound of E[RT (a∗)] = Õ

(
d
√∑T

t=1 〈`t, a∗〉
)

simultaneously, as shown in Theorem 3.

Each regret bound shown in Theorems 1, 2 and 3 is of Õ(d
√
T ), and hence, enjoys worst-case

optimality up to logarithmic factors, in contrast to existing algorithms [30; 44]. We should note,
however, that our regret bounds are not tight for MAB since the worst-case optimal regret bound
is known to be Θ(

√
dT ) for this special case. Similarly, in the special case where the action set

is the unit ball, algorithms proposed in [30; 44] achieves regret bounds comparable to ours (up to
logarithmic factors), as there is a self-concordant barrier of parameter θ = O(1).

Our algorithms are based on the multiplicative weight update (MWU) method [7; 34] with an unbiased
estimator ˆ̀

t of the loss vector `t. As with existing algorithms [18; 30; 32] for the adversarial linear
bandit problem, we construct an unbiased estimator from a single observation 〈`t, at〉, where at
follows a distribution pt maintained by the MWU method. The regret strongly depends on the
stability of the unbiased estimators ˆ̀

t; we want the norm and variance of ˆ̀
t to be small enough. In

order to make an unbiased estimator stable, previous studies [18; 32] have mixed pt with another
probability distribution. This approach, however, requires the mixing rate of Ω(d/

√
T ), which

causes Ω(T · d/
√
T ) = Ω(d

√
T )-regret in general. To overcome this issue, we truncate (the support

of) the distribution pt instead. More specifically, we truncate the distribution to ensure that the
magnitude of chosen actions would be controlled with respect to an appropriately designed norm.
We will show here that this approach ensures the stability of ˆ̀

t with almost no degradation of the
expected performance, with the help of a concentration property of log-concave distributions [42].
We should note that similar techniques of truncating distributions can be found in the literature of
bandit optimization, such as combinatorial semi-bandits [43] and bandit convex optimization [14].
This paper, however, employs a different way of truncation and analyses as the problem settings are
different.

Another essential element in our algorithms is the technique called optimistic online optimization [44;
45]. Rakhlin and Sridharan [44; 45] introduced the framework of online optimization with predicted
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loss mt, and proposed algorithms referred to as optimistic online mirror descent and optimistic follow
the regularized leader that exploit the predicted loss mt to improve the regret. Our first algorithm
employs their techniques to achieve the regret in Theorem 1. The second appropriately chooses mt

on the basis of an online optimization method, and it achieves regret bounds noted in Theorems 2
and 3. A similar technique for computing mt can be found in the study by Cutkosky [23], though
this existing work uses a different loss as it is for the full-information setting.

2 Related Work

The linear bandit problem generalizes, as a special case, the well-studied multi-armed bandit (MAB)
problem [11], in which the action set A = [K] := {1, 2, . . . ,K} is just a finite set of actions. Other
important special cases are combinatorial bandits [13; 18], in which the action set A ⊆ 2[K] is a
family of subsets of a finite set, and the loss incurred by choosing an action a ∈ A is

∑
i∈a `ti. For

example, given a directed graphG = (V,A) and nodes s, t ∈ V , by settingA to be the family of edge
sets representing st-paths, one can model the bandit shortest path or adaptive routing problem [12]
as a combinatorial bandit. Further, online recommendation problems have been formulated as
linear bandits [41]. To solve linear bandits, many algorithms have been proposed for stochastic
settings [1; 10; 21], as well as for adversarial settings [2; 3; 12; 13; 18; 32]. It was shown that we can
achieve Õ(d

√
T ) regret [13; 20], which nearly matches the lower bound of Ω(d

√
T ) shown in [25].

The truncation technique in this paper has recently been applied to the delayed-feedback setting as
well [37].

A seminal work by Freund and Schapire [26] provided a first-order regret bound for the expert
problem, a full-information counterpart of MAB. For MAB, Allenberg et al. [6] proposed an
algorithm with a first-order bound. This result has been extended in two directions. First one
is the contextual bandit problem [11; 39], in which the player is given a context xt ∈ X before
choosing the action and the regret is measured by means of a hypothesis set Π ⊆ {π : X → [K]} as
RT =

∑T
t=1 `tat −minπ∗∈Π

∑T
t=1 `tπ∗(xt). Offering a first-order regret bound for the contextual

bandit was posed as an open problem [4], and Allen-Zhu et al. [5] solved it affirmatively. Another
direction is combinatorial semi bandits [9; 28; 47], a variant of combinatorial bandits with more
informative feedback, in which the player who chose at ∈ A ⊆ 2[d] can observe loss `ti for each
i ∈ at. For combinatorial semi bandits, Neu [43] proposed an algorithm with a first-order regret
bound. This algorithm, however, does not apply directly to the full-bandit setting in which only∑
i∈at `ti is observable.

The notion of second-order regret bound was introduced by Cesa-Bianchi et al. [19] for the
(full-information) expert problem, in which a regret bound of O(

√
logK ·Q∗) where Q∗ ≤

maxa∈[K]

∑T
t=1 `

2
ta is known beforehand. Hazan and Kale [29] improved this result by replac-

ing Q∗ with the variation V ∗ ≤ maxa∈[K]

∑T
t=1 (`ta − ¯̀

ta)
2 of the loss sequence.4 For MAB,

Hazan and Kale [30] proposed an algorithm achieving Õ(K2
√
V )-regret with V =

∑T
t=1 ‖`t − ¯̀‖22,

and they conjectured that there exists an efficient algorithm with an Õ(
√
V )-regret bound [31].

Bubeck et al. [15] proved this conjecture by providing such a regret upper bound, which almost
matches a lower bound of Ω(

√
V ) provided by Gerchinovitz and Lattimore [27]. Wei and Luo [48]

provided an MAB algorithm with Õ(
√
KS) regret, where we denote S =

∑T
t=1 (`ta∗ − ¯̀

ta∗)
2 for

a∗ ∈ argmina∈[K]

∑T
t=1 `ta, which is incomparable to Õ(

√
V ) in general. It is worth noting that

MAB algorithms mentioned here require a priori knowledge of parameters V and S, in contrast to
our algorithms. Our algorithms can be applied to MAB to achieve the regret bound (Theorem 2) of

Õ

(
K
√∑T

t=1 ‖`t − ¯̀
t‖2∞

)
for this special case, which is inferior to previous results of Õ(

√
V ) and

Õ(
√
KS) achieved by MAB-specialized algorithms. Algorithms based on continuous MWU, such

as the one by Hazan and Karnin [32] and ours, may achieve worst-case optimal regret for general
linear bandits, but, for MAB, they seem not competitive with MAB-specialized algorithms as they do
not exploit specific structures of the action set.

4In literature [19; 29], values Q∗ and V ∗ were originally defined as Q∗ = maxτ∈[T ]

∑τ
t=1 `

2
ta∗τ

and

V ∗ = maxτ∈[T ]

∑τ
t=1 (`ta∗τ − ¯̀

τa∗τ )
2 with a∗τ ∈ argmina∈[K]

∑τ
t=1 `ta and ¯̀

τ = 1
τ

∑τ
t=1 `t.
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3 Preliminaries

Given a vector x ∈ Rd and a positive-semidefinite matrix M ∈ Rd×d, let ‖x‖M =
√
x>Mx. For

symmetric matrices A,B, we denote A � B if A−B is positive-semidefinite. We denote the convex
hull ofA byA′. Given a distribution p overA′, define a vector µ(p) ∈ Rd and a matrix S(p) ∈ Rd×d
by

µ(p) = E
x∼p

[x], S(p) = E
x∼p

[xx>]. (2)

For ease of exposition, we also use p to denote its density function simultaneously. If the density
function p : Rd → R≥0 of a probability distribution has a convex support and log(p(x)) is a concave
function (on the support), then we call the distribution log-concave. We will make use of the following
concentration property of log-concave distributions:
Lemma 1. If x follows a log-concave distribution p over Rd and S(p) � I , we have

Pr[‖x‖22 ≥ dα2] ≤ d exp(1− α) (3)
for arbitrary α ≥ 0.

This lemma follows from, e.g., Lemma 5.7 in [42]. A complete proof can be found in Appendix A.

3.1 Adversarial Linear Bandits

In the adversarial linear bandit problem, a player is given an action set A ⊆ Rd, which is assumed to
be a compact set in Rd, before the game starts. Without loss of generality, we assume that A is not
contained in any proper linear subspace. Note that the action set A can be discrete. In each round
t ∈ [T ], the player chooses an action at ∈ A, and then the environment reveals the loss 〈`t, at〉,
where the loss vector `t ∈ Rd is in the convex set L ⊆ Rd defined as

L = {` ∈ Rd | −1 ≤ 〈`, a〉 ≤ 1 for all a ∈ A}, (4)
and hence 〈`t, at〉 ∈ [−1, 1] holds.

In Section 4.1, we consider a problem setting with predicted loss vectors mt ∈ Rd. In this problem
setting, the player is given mt before choosing at. The predicted loss vectors (mt) are arbitrary
sequences over Rd, and each mt may be chosen depending on {(aj , `j)}j<t.
When we discuss first-order regret bounds, we assume that the loss 〈`t, a〉 is non-negative for any
a ∈ A. This assumption is a standard one when discussing first-order bounds (e.g., [6]) and is
indispensable for ensuring that

∑T
t=1 〈`t, a∗〉 ≥ 0. When we discuss second-order regret bounds, we

fix a norm ‖ · ‖ over Rd such that maxa∈A ‖a‖ ≤ 1. Let ‖ · ‖∗ denote the dual norm of ‖ · ‖, i.e.,
‖`‖∗ = max‖x‖≤1 〈`, x〉.
When we consider computational complexity, we assume that we can solve linear optimization overA,
i.e., there exists an oracle O with which given ` ∈ Rd, we can compute O(`) ∈ argmina∈A{〈`, a〉}.
Such an assumption is standard in the context of online optimization [24; 33; 38] as this is an almost
minimum assumption for developing computationally efficient online optimization algorithms with
sublinear regret bounds.

4 Algorithms and Regret Upper Bounds

In this section, we explain our algorithms and analyze their regret bounds. In Section 4.1, we provide
an algorithm (Algorithm 1) for a scenario in which predicted loss vectors mt are available, and we
analyze its regret bound, which holds for arbitrary mt. In Section 4.2, we show that Algorithm 1
enjoys a second-order regret bound when we choose mt in a sophisticated way on the basis of the
observed feedback. In Section 4.3, this algorithm with a second-order bound is shown to have a
first-order regret bound as well,

4.1 Algorithm with predicted loss vectors

Let us first consider here the case in which predicted loss vectors mt ∈ Rd for `t are available. In
this setting, the player is given mt before choosing at. We assume that 〈mt, a〉 ∈ [−1, 1] holds for
any a ∈ A.

5



Algorithm 1 An algorithm for adversarial linear bandits with predicted loss
1: for t = 1, 2, . . . , T do
2: repeat
3: Pick xt from the distribution pt, defined by (5).
4: until ‖xt‖2S(pt)

−1 ≤ dγ2
t

5: Choose at ∈ A so that E[at] = xt, play at, and receive a loss 〈`t, at〉 as feedback.
6: Compute an unbiased estimator ˆ̀

t of `t as ˆ̀
t = mt + 〈`t −mt, at〉 · S(p̃t)

−1
xt.

7: Update pt as in (5).
8: end for

Our algorithm maintains probability distributions over A′, the convex hull of A, following the
multiplicative weight update method [7].

wt(x) = exp

−ηt〈t−1∑
j=1

ˆ̀
j +mt, x

〉 , pt(x) =
wt(x)∫

y∈A′ wt(y)dy
(x ∈ A′), (5)

where ηj > 0 are parameters referred to as learning rates, which we will determine later, and each
ˆ̀
j ∈ Rd is an unbiased estimator of `j defined below. First, define the truncated distribution p̃t of pt

as

p̃t(x) =
pt(x)1{‖x‖2

S(pt)
−1 ≤ dγ2

t }
Pry∼pt [‖y‖2S(pt)

−1 ≤ dγ2
t ]
∝ pt(x)1{‖x‖2

S(pt)
−1 ≤ dγ2

t }, (6)

where γt > 1 is a parameter we will define later. In each round, the algorithm samples xt ∈ A′
according to p̃t, and then chooses at ∈ A so that E[at|xt] = xt. More precisely, we compute
λ1, . . . , λd+1 ≥ 0 and b1, . . . , bd+1 ∈ A such that

∑d+1
i=1 λi = 1 and

∑d+1
i=1 λibi = xt, and then

output at = bi with probability λi. Such {(λi, bi)}d+1
i=1 can be efficiently computed given a linear

optimization oracle for A, e.g., via the ellipsoid method as stated in Corollary 14.1g in [46]. After
taking the action at, the algorithm receives a loss 〈`t, at〉 as feedback, and it constructs an unbiased
estimator ˆ̀

t of `t as follows:

ˆ̀
t = mt + (〈`t, at〉 − 〈mt, at〉)S(p̃t)

−1
xt. (7)

We note that S(p̃t) is invertible. This follows from the assumption that A is not contained in any
proper linear subspace. Indeed, under this assumption, A′ is a full-dimensional convex set with
a positive Lebesgue measure. Combining this and Lemma 1, we can see that the domain of p̃t is
full-dimensional as well. Therefore, the distribution p̃t has a density function taking positive values
over a full-dimensional convex set, which implies that S(p̃t) is positive-definite. A similar argument
can be found, e.g., in [36] (between Eq. (4) and (5)).

Lemma 2. The vector ˆ̀
t is an unbiased estimator of `t, i.e., we have E[ˆ̀t|`t] = `t.

Proof. The expectation of ˆ̀
t is

E
xt,at

[ˆ̀t|`t] = mt + S(p̃t)
−1

E
xt,at

[xta
>
t ](`t −mt). (8)

Since E[at|xt] = xt, we have Ext,at [xta
>
t ] = Ext [xtx

>
t ] = S(p̃t). Combining this and (8), we

obtain E[ˆ̀t|`t] = `t.

Our algorithm can be summarized in Algorithm 1. Algorithm 1 enjoys the following regret bound:
Theorem 1. Suppose γt ≥ 4 log(10dt) and ηt ≤ 1√

800dγt
for all t. Then, for any a∗ ∈ A,

Algorithm 1 satisfies

E[RT (a∗)] ≤ d ·E

[
4

T∑
t=1

ηtγ
2
t (〈`t −mt, at〉)2

+
log T

ηT

]
+ 3. (9)
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Consequently, by setting γt = 4 log(10dt) and ηt =
(

800dγ2
t + 16

∑t−1
j=1 γ

2
j (〈`j −mj , aj〉)2

)− 1
2

,
we obtain

E[RT (a∗)] ≤ 32d log T · log(10dT ) ·E


√√√√ T∑

t=1

(〈`t −mt, at〉)2
+ 50d

 . (10)

This regret bound can be shown via analyses for the optimistic follow-the-regularized-leader algorithm
[45; 44] and the continuous multiplicative weight update method [7; 32], combined with Lemmas 1
and 2. A complete proof is given in Section B in the appendix.

4.2 Second-order regret bound

In this section, we show that we can obtain a second-order bound by appropriately choosing mt in
Algorithm 1, by means of an online learning technique. Consider mt defined by

mt ∈ argmin
m∈L

‖m‖2S +

t−1∑
j=1

(〈`j −m, aj〉)2

 , (11)

where L ⊆ Rd is defined as in (4) and S ∈ Rd×d is an arbitrary positive-definite matrix.
Lemma 3. If mt is given by (11), we have, for any m∗ ∈ L,

T∑
t=1

(〈`t −mt, at〉)2 ≤
T∑
t=1

(〈`t −m∗, at〉)2
+ ‖m∗‖2S + 16d log

(
1 +

T

d
max
a∈A
‖a‖2S−1

)
. (12)

This lemma can be shown by following the analysis of online ridge regression, e.g., see the proof of
Theorem 11.7 in [17]. To further bound the right-hand side of (12), we provide a specific example of
S. We first note that there exists a matrix S ∈ Rd×d such that

‖m‖2S ≤ d for any m ∈ L, ‖a‖2S−1 ≤ 4d for any a ∈ A, (13)

and given a linear optimization oracle overA, one can compute such an S efficiently, via a barycentric
spanner [12] forA. More precise method for constructing S is described in Section C in the appendix.

Combining Theorem 1, Lemma 3 and (13), we obtain the following regret bound:
Theorem 2. Suppose that γt, ηt, and mt are given by (32), (11) (with L as in (4)), and (34),
respectively. Then the actions at of Algorithm 1 satisfy

E[RT (a∗)] ≤ 32d log T · log(10dT ) ·E


√√√√ T∑

t=1

(〈`t −m∗, at〉)2
+ 51d+ 16d log(1 + 4T )


≤ 32d log T log(10dT ) ·E


√√√√ T∑

t=1

‖`t −m∗‖2∗ + 51d+ 16d log(1 + 4T )

 .
for arbitrary a∗ ∈ A and m∗ ∈ L.

4.3 First-order regret bound

In this section, we show that the bound in the Theorem 2 can be used to obtain a first-order regret
bound assuming that 0 ≤ 〈`t, at〉 ≤ 1.
Theorem 3. Suppose that the assumptions in Theorem 2 hold and that the observed losses are
non-negative. Then we have, for ξ = O(log d · log2 T ),

E[RT (a∗)] = O

ξd
√√√√E

[
T∑
t=1

〈`t, a∗〉

]
+ ξ2d2

 . (14)
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Proof. For notational simplicity, let C1 = 32d log T · log(10dT ) and C2 = 51d+ 16d log(1 + 4T ).
From the inequality in Theorem 2 with m∗ = 0, we have

E[RT (a∗)] ≤ C1 E


√√√√ T∑

t=1

(〈`t, at〉)2
+ C2

 ≤ C1 E


√√√√ T∑

t=1

〈`t, at〉+ C2


= C1 E


√√√√ T∑

t=1

〈`t, a∗〉+RT (a∗) + C2

 ≤ C1

√√√√E

[
T∑
t=1

〈`t, a∗〉

]
+ E[RT (a∗)] + C2,

where the second inequality follows from the assumption of 0 ≤ 〈`t, at〉 ≤ 1, the equality
follows from the definition (1) of RT , and the last inequality follows from Jensen’s inequal-
ity. By solving the quadratic inequality with respect to E[RT (a∗)], we obtain E[RT (a∗)] ≤

C1

(
C1

2 + 1
2

√
C2

1 + 4
(
C2 + E

[∑T
t=1 〈`t, a∗〉

]))
≤ C1

√
C2

1 + 2
(
C2 + E

[∑T
t=1 〈`t, a∗〉

])
,

where the last inequality follows from
√
x+
√
y

2 ≤
√

x+y
2 for x, y ≥ 0.

Remark 1. The regret bound in Theorem 3 holds even when mt is chosen to be mt = 0 for all t, as
can be seen in the proof. However, we would like to stress here that, by setting mt as in Theorem 2, a
single algorithm simultaneously enjoys two different regret bounds as in Theorems 2 and 3.

4.4 Computationally efficient implementation

Algorithm 1 can be implemented in a computationally efficient way, assuming that linear optimization
over A can be efficiently solved. As shown in [42], we can get a sample from a log-concave
distribution pt in a polynomial time in d, if we can compute wt(x) ∝ pt(x) and can access a
membership oracle for supp(pt) = A′, i.e., we can decide whether a given vector x ∈ Rd belongs to
A′. The membership problem can be reduced to linear optimization problems by ellipsoid methods,
as shown, e.g., in Corollary 14.1b in [46]. Consequently, we can get a sample from pt in polynomial
time. The matrix S(p̃t) (7) can be efficiently computed as well. Indeed, since p̃t is log-concave,
for any ε > 0, we can get an ε-approximation of S(p̃t) w.h.p. by generating (d/ε)O(1) samples
from p̃t, from Corollary 2.7 of [42]. Samples from p̃t can be generated with their polynomial-time
sampling algorithm as mentioned in Section 4.4 of our manuscript. A similar discussion can be found
in Lemma 5.17 of [14].

The vector mt defined in (11) can be computed efficiently as well. In fact, a linear optimization
oracle for A immediately leads to a separation oracle for L defined by (4). Hence, we can solve a
convex optimization over L such as (11), e.g., by using ellipsoid methods.

5 Lower Bound

In this section, we provide instance-dependent regret lower bounds. In what follows, we assume
d ≥ 2 and A ⊆ {−1, 1}d. Note that we then have ‖a‖∞ ≤ 1 for any a ∈ A.

Theorem 4. Let A = {−1, 1}d−1 × {1}. For any algorithm and for any L with d2 ≤ L ≤ T ,
there exists a sequence (`t)

T
t=1 of d-dimensional loss vectors such that the following hold: (i)

0 ≤ 〈`t, a〉 ≤ 1 for any a ∈ A, (ii) mina∗∈A
∑T
t=1 〈`t, a∗〉 ≤ L, (iii)

∑T
t=1 ‖`t‖21 ≤ L, and (iv) any

algorithm satisfies maxa∗∈AE[RT (a∗)] = Ω(d
√
L).

This theorem complements Theorems 1, 2 and 3 by providing almost matching lower bounds.
Indeed, for any problem instances satisfying (iii) with L ≥ d2, both Theorem 1 (with mt = 0)
and Theorem 2 imply maxa∗∈AE[RT (a∗)] = Õ(d

√
L), which matches the lower bound of (iv) in

Theorem 4. Similarly, for any problem instances satisfying (i) and (ii) with L ≥ d2, Theorem 3
implies maxa∗∈AE[RT (a∗)] = Õ(d

√
L).

Theorem 4 can be shown by adopting the hard instances used to show the worst-case lower bound of
Ω(d
√
T ), e.g., by Dani et al. [25]. The proof of Theorem 4 is given in Appendix D.
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6 Conclusion

In this paper, we provided algorithms with nearly tight first- and second-order regret bounds for
adversarial linear bandit problems, with the aid of techniques such as optimistic online optimization
and properties of log-concave distributions. A future research direction is to obtain improved path-
length regret bounds, as discussed, e.g., in [16; 48]. Another direction would be to improve practical
computational efficiency. Our proposed algorithms require large computational time due to the
complexity of continuous multiplicative weight update, though it is of polynomial in dimensions.
Hence, algorithms by Hazan and Kale [30]; Rakhlin and Sridharan [44] have smaller runtime if the
action set admits a self-concordant barrier that can be computed efficiently.
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A Proof of Lemma 1

Proof. Since a linear transformation of a log-concave random variable follows a log-concave distribu-
tion as well (Theorem 5.1 in [42]), each xi follows a log-concave distribution and we have E[x2

i ] ≤ 1
from the assumption of S(p) � I . Then, we have

Pr[‖x‖22 ≥ dα2] ≤ Pr[∃i ∈ [d], x2
i ≥ α2] ≤

d∑
i=1

Pr[|xi| ≥ α] ≤ d exp(1− α), (15)

where the last inequality follows from Lemma 5.7 in [42].

B Proof of Theorem 1

Here, we provide a proof of this Theorem 1, and hereafter, we assume that γt and `t satisfy the
assumptions in Theorem 1.

Since we have E[at|p̃t] = E[xt|p̃t] = µ(p̃t), the expected regret can be expressed as

E[RT (a∗)] = E

[
T∑
t=1

〈`t, at − a∗〉

]
= E

[
T∑
t=1

〈`t, µ(p̃t)− a∗〉

]

= E

[
T∑
t=1

〈`t, µ(p̃t)− µ(pt)〉

]
+ E

[
T∑
t=1

〈
ˆ̀
t, µ(pt)− a∗

〉]
(16)

where the last equality follows from Lemma 2. The first term in (16) can be bounded by using
Lemma 1. Indeed, we can show that p̃t is close to pt using the following lemma:

Lemma 4. For any function f : A′ → [−1, 1] we have∣∣∣∣ E
x∼pt

[f(x)]− E
x∼p̃t

[f(x)]

∣∣∣∣ ≤ 10d exp (−γt) ≤
1

2t2
. (17)

Further, we have

3

4
S(pt) � S(p̃t) �

4

3
S(pt) (18)

Proof. From the definition (6) of p̃t, we have

E
x∼p̃t

[f(x)] =
1

Prx∼pt [‖x‖2S(pt)
−1 ≤ dγ2

t ]

∫
x∈A′

f(x)1{‖x‖2
S(pt)

−1 ≤ dγ2
t }pt(x)dx

=
1

1− δ

∫
x∈A′

f(x)1{‖x‖2
S(pt)

−1 ≤ dγ2
t }pt(x)dx

=
1

1− δ

(
E

x∼pt
[f(x)]−

∫
x∈A′

f(x)1{‖x‖2
S(pt)

−1 > dγ2
t }pt(x)dx

)
,

where we denote δ = Prx∼pt [‖x‖2S(pt)
−1 > dγ2

t ]. From this expression, we have∣∣∣∣ E
x∼pt

[f(x)]− E
x∼p̃t

[f(x)]

∣∣∣∣ =
1

1− δ

∣∣∣∣δ E
x∼pt

[f(x)] +

∫
x∈A′

f(x)1{‖x‖2
S(pt)

−1 > dγ2
t }pt(x)dx

∣∣∣∣
≤ 1

1− δ

(
δ E
x∼pt

[1] +

∫
x∈A′

1{‖x‖2
S(pt)

−1 > dγ2
t }pt(x)dx

)
=

2δ

1− δ
,

(19)

where the inequality follows from the assumption that f(x) ∈ [−1, 1]. Since pt is a log-concave
distribution, we can apply Lemma 1 to x = S(pt)

−1/2y with y ∼ pt. In fact, assumptions in Lemma 1
hold since we have E[xx>] = S(pt)

−1/2 E[yy>]S(pt)
−1/2 = S(pt)

−1/2S(pt)S(pt)
−1/2 = I and
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since log-concavity is preserved under any liner transformation. Using Lemma 1 for x = S(pt)
−1/2y,

we have

δ = Pr
x∼pt

[‖x‖2
S(pt)

−1 > dγ2
t ] ≤ d exp(1− γt) ≤ 3d exp(−γt) ≤

1

6t2
, (20)

where the last inequality follows from γt ≥ 4 log(10dt). Combining (19) and (20), we obtain (17).
We next show (18). For any y ∈ Rd, we have

y>S(p̃t)y = E
x∼p̃t

[
(y>x)

2
]

=
1

1− δ
E

x∼pt

[
(y>x)

2
1{‖x‖2

S(pt)
−1 ≤ dγ2

t }
]

≤ 1

1− δ
E

x∼pt

[
(y>x)

2
]

=
1

1− δ
y>S(p)y.

Since this holds for all y ∈ Rd and 1
1−δ ≤ 4/3, the second inequality in (18) holds. Furthermore, we

have

y>S(pt)y − y>S(p̃t)y = E
x∼pt

[
(y>x)

2
]
− 1

1− δ
E

x∼pt

[
(y>x)

2
1{‖x‖2

S(pt)
−1 ≤ dγ2

t }
]

≤ E
x∼pt

[
(y>x)

2
1{‖x‖2

S(pt)
−1 > dγ2

t }
]

≤ y>S(pt)y E
x∼pt

[
‖x‖2

S(pt)
−11{‖x‖2S(pt)

−1 > dγ2
t }
]
, (21)

where the last inequality follows from the Cauchy–Schwarz inequality:

(y>x)
2

=
(〈
S(pt)

1
2 y, S(pt)

− 1
2x
〉)2

≤ ‖S(pt)
1
2 y‖22 · ‖S(pt)

− 1
2x‖22 = y>S(pt)y · ‖x‖2S(pt)

−1 .

The right-hand side of (21) can be bounded by using Lemma 1 as follows:

E
x∼pt

[
‖x‖2

S(pt)
−11{‖x‖2S(pt)

−1 > dγ2
t }
]

≤
∞∑
n=1

(n+ 1)
2
dγ2
t Pr
x∼pt

[
n2dγ2

t ≤ ‖x‖2S(p)−1 ≤ (n+ 1)
2
dγ2
t

]
≤
∞∑
n=1

(n+ 1)
2
dγ2
t · d exp(1− nγt)

≤ d2γ2
t

∞∑
n=1

exp(2 + n− nγt) = d2γ2
t

exp(3− γt)
1− exp(1− γt)

≤ 1

4
(22)

where the second inequality follows from Lemma 1, the second inequality comes from y2 ≤ exp(y)
for y ≤ 0, and the last inequality follows from the assumption of γt ≥ 4 log(10dt). Combin-
ing (21), (22) and the assumption of γt ≥ 4 log(10dt), we obtain the first inequality of (18).

Since 〈`t, x〉 ∈ [−1, 1] for all x ∈ A′, (17) implies | 〈`t, µ(p̃t)− µ(pt)〉 | ≤ 1/(2t2).

The second term in (16) can be bounded by following the analysis of optimistic mirror descent [45]:
Lemma 5. For any a∗ ∈ A, we have
T∑
t=1

〈
ˆ̀
t, µ(pt)− a∗

〉
≤

T∑
t=1

(
1

ηt
E

x∼pt

[
ψ
(
−ηt

〈
ˆ̀
t −mt, x

〉)])
+
d log T

ηT
+

1

T

T∑
t=1

〈
ˆ̀
t, ā− a∗

〉
,

where

ψ(y) = exp(y)− y − 1, ā = µ(p0). (23)

Proof. Define vt : A′ → R and ut : A′ → R by

ut(x) = exp

−ηt〈 t∑
j=1

ˆ̀
j , x

〉 , vt(x) = exp

−ηt+1

〈
t∑

j=1

ˆ̀
j , x

〉 , (24)
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and define

Ut =

∫
x∈A′

ut(x)dx, Vt =

∫
x∈A′

vt(x)dx, Wt =

∫
x∈A′

wt(x)dx. (25)

Since ut can be expressed as ut(x) = wt(x) exp
(
−ηt

〈
ˆ̀
t −mt, x

〉)
from the definitions (5)

and (24) of wt and ut, respectively, we have

Ut =

∫
x∈A′

wt(x) exp
(
−ηt

〈
ˆ̀
t −mt, x

〉)
dx = Wt · E

x∼pt

[
exp

(
−ηt

〈
ˆ̀
t −mt, x

〉)]
= Wt ·

(
1− ηt

〈
ˆ̀
t −mt, µ(pt)

〉
+ E
x∼pt

[
ψ
(
−ηt

〈
ˆ̀
t −mt, x

〉)])
.

By taking the logarithms of both sides, we obtain

logUt = logWt + log

(
1− ηt

〈
ˆ̀
t −mt, µ(pt)

〉
+ E
x∼pt

[
ψ
(
−ηt

〈
ˆ̀
t −mt, x

〉)])
≤ logWt − ηt

〈
ˆ̀
t −mt, µ(pt)

〉
+ E
x∼pt

[
ψ
(
−ηt

〈
ˆ̀
t −mt, x

〉)]
,

where we used the inequality log(1 + x) ≤ x for x > −1. The condition x > −1 indeed holds since
x here corresponds to x = −1 + E[exp(−ηt〈ˆ̀t −mt, x〉)]. Hence, we have〈

ˆ̀
t −mt, µ(pt)

〉
≤ 1

ηt

(
log

Wt

Ut
+ E
x∼pt

[
ψ
(
−ηt

〈
ˆ̀
t −mt, x

〉)])
. (26)

Similarly, since we have

Vt−1 =

∫
x∈A′

wt(x) exp (ηt 〈mt, x〉) dx = Wt · E
x∼pt

[exp (ηt 〈mt, x〉)] ≥Wt · exp(ηt 〈mt, µ(pt)〉),

where we applied Jensen’s inequality, it holds that

〈mt, µ(pt)〉 ≤
1

ηt
log

Vt−1

Wt
. (27)

Combining (26) and (27) and taking the sum over t = 1, . . . , T , we obtain
T∑
t=1

〈
ˆ̀
t, µ(pt)

〉
≤

T∑
t=1

1

ηt

(
log

Vt−1

Ut
+ E
x∼pt

[
ψ
(
−ηt

〈
ˆ̀
t −mt, x

〉)])
. (28)

Furthermore, noting that V0 = U0 = vol(A′), we have
T∑
t=1

1

ηt
log

Vt−1

Ut
=

T∑
t=1

1

ηt

(
log

Vt−1

V0
− log

Ut
U0

)

=

T−1∑
t=1

(
1

ηt+1
log

Vt
V0
− 1

ηt
log

Ut
U0

)
− 1

ηT
log

UT
U0
≤ − 1

ηT
log

UT
U0

, (29)

where the inequality follows from the assumption of ηt+1 ≤ ηt and Jensen’s inequality, as follows:

1

ηt+1
log

Vt
V0

=
1

ηt+1
log E

x∼p0

exp

−ηt+1

〈
t∑

j=1

ˆ̀
j , x

〉
=

1

ηt+1
log E

x∼p0

exp

−ηt〈 t∑
j=1

ˆ̀
j , x

〉
ηt+1
ηt


≤ 1

ηt+1
log E

x∼p0

exp

−ηt〈 t∑
j=1

ˆ̀
j , x

〉
ηt+1
ηt

=
1

ηt
log E

x∼p0

exp

−ηt〈 t∑
j=1

ˆ̀
j , x

〉 =
1

ηt
log

Ut
U0
,
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where the first and the last equalities follow from the definitions (24) and (25) of Ut and Vt, and
the inequality holds since the function x 7→ x

ηt+1
ηt (x > 0) is a concave function. Set Aa∗ :=

{(1− 1
T )a∗ + 1

T y | y ∈ A} ⊆ A
′ and let p∗ denote a uniform distribution over Aa∗ . We then have

UT ≥
∫
x∈Aa∗

exp

(
−ηT

〈
T∑
t=1

ˆ̀
t, x

〉)
dx

= T−d
∫
y∈A′

exp

(
−ηT

〈
T∑
t=1

ˆ̀
t,

(
1− 1

T

)
a∗ +

1

T
y

〉)
dy

≥ T−dU0 exp

(
−ηT

〈
T∑
t=1

ˆ̀
t,

(
1− 1

T

)
a∗ +

1

T
ā

〉)
,

where ā = µ(p0) and the last inequality follows from Jensen’s inequality. Taking the logarithms of
both sides, we have

− 1

ηT
log

UT
U0
≤

〈
T∑
t=1

ˆ̀
t,

(
1− 1

T

)
a∗ +

1

T
ā

〉
+
d log T

ηT
=

〈
T∑
t=1

ˆ̀
t, a
∗ +

1

T
(ā− a∗)

〉
+
d log T

ηT
.

Combining this, (28), and (29), we obtain the desired inequality in the statement of Lemma 5.

We next evaluate the term Ex∼pt

[
ψ
(
−ηt

〈
ˆ̀
t −mt, x

〉)]
in Lemma 5. From the definition of ψ,

ψ(y) ≤ y2 for |y| ≤ 1, and hence E[ψ(y)] can be well approximated with E[y2] if y follows a
log-concave distribution and E[y2] is small enough:

Lemma 6. If y follows a log-concave distribution over R and if E[y2] ≤ 1/100, we have

E[ψ(y)] ≤ E[y2] + 30 exp

(
− 1√

E[y2]

)
≤ 2E[y2] where ψ(x) = exp(x)− x− 1. (30)

Proof. Let s =
√
E[x2]. We have s ≤ 1/10 from the assumption. We can bound E[ψ(x)] as follows:

E[ψ(x)] = E[ψ(x)1{x ≤ 1}] + E[ψ(x)1{x > 1}] ≤ E[x21{x ≤ 1}] + E[exp(x)1{x > 1}]

≤ s2 +

∞∑
n=1

exp(n+ 1) Pr[n < x ≤ n+ 1] ≤ s2 +

∞∑
n=1

exp(n+ 1) Pr
[n
s
<
x

s

]
≤ s2 +

∞∑
n=1

exp(n+ 1) exp
(

1− n

s

)
= s2 +

exp(3− s−1)

1− exp(1− s−1)
≤ s2 + 30 exp(−s−1),

where the first inequality follows from ψ(x) ≤ x2 for x ≤ 1 and ψ(x) ≤ exp(x) for x > 1, the forth
inequality follows from Lemma 1, and the last inequality follows from s ≤ 1/10. By combining this
and the fact that 30 exp(−s−1) ≤ s2 for 0 < s ≤ 1/10, we obtain Lemma 6.

We give a bound for Ex∼pt

[
ψ
(
−ηt

〈
ˆ̀
t −mt, x

〉)]
by applying Lemma 6 with y =

−ηt
〈

ˆ̀
t −mt, x

〉
. We can confirm that y satisfies the assumption of Lemma 6 thanks to the truncated

distribution that ensures ‖xt‖2S(pt)−1 ≤ dγ2
t . In fact, we have

E
x∼pt

[(
−ηt

〈
ˆ̀
t −mt, x

〉)2
]

= η2
t (ˆ̀

t −mt)
>
S(pt)(ˆ̀

t −mt)

= η2
t (〈`t −mt, at〉)2

x>t S(p̃t)
−1
S(pt)S(p̃t)

−1
xt ≤

4

3
η2
t (〈`t −mt, at〉)2

x>t S(p̃t)
−1
S(p̃t)S(p̃t)

−1
xt

=
4

3
η2
t (〈`t −mt, at〉)2‖xt‖2S(p̃t)

−1 ≤ 2η2
t (〈`t −mt, at〉)2‖xt‖2S(pt)

−1 ≤ 2dγ2
t η

2
t (〈`t −mt, at〉)2 ≤ 1/100,
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where the first and second inequalities follow from (18), the third inequality follows from xt being
sampled from p̃t and the definition (6) of p̃t, and the last inequality follows from the assumption of
ηt ≤ 1√

800dγt
. Hence, by Lemma 6, we have

E
x∼pt

[
ψ
(
−ηt

〈
ˆ̀
t −mt, x

〉)]
≤ 4dγ2

t η
2
t (〈`t −mt, at〉)2

. (31)

Combining this, (16), (17) and Lemma 5, we obtain

E[RT (a∗)] ≤
T∑
t=1

1

2t2
+ E

[
T∑
t=1

4dγ2
t ηt(〈`t −mt, at〉)2

+
d log T

ηT
+

1

T

T∑
t=1

〈
ˆ̀
t, ā− a∗

〉]
.

Since we have
∑T
t=1

1
t2 ≤ 2 and since Lemma 2 implies that E

[〈
ˆ̀
t, ā− a∗

〉]
= 〈`t, ā− a∗〉 ≤ 2,

we obtain (9).

We can now show (10) on the basis of (9). Suppose that γt and ηt are defined as

γt = 4 log(10dt), ηt =
1√

800dγ2
t + 16

∑t−1
j=1 γ

2
j (〈`j −mj , aj〉)2

. (32)

Denote βt = 16γ2
t (〈`t −mt, at〉)2 and η′t = 1√

800dγ2
t−1+16

∑t−1
j=1 γ

2
j (〈`j−mj ,aj〉)2

. We then have

1

ηt+1
− 1

ηt
≥ 1

η′t+1

− 1

ηt
=

√√√√800dγ2
t +

t∑
j=1

βj −

√√√√800dγ2
t +

t−1∑
j=1

βj

≥ βt
2

800dγ2
t +

t∑
j=1

βj

−1/2

≥ βt
4

800dγ2
t +

t−1∑
j=1

βj

−1/2

=
1

4
βtηt, (33)

where the first inequality follows from γt+1 ≥ γt, the second inequality follows from
√
y−
√
y − x ≥

x
2
√
y for 0 ≤ x < y, and the last inequality follows from βt ≤ 800dγ2

t . We now have

E[RT (a∗)] ≤ d ·E

[
1

4

T∑
t=1

ηtβt +
log T

ηT

]
+ 3

≤ d ·E

[
T−1∑
t=1

(
1

ηt+1
− 1

ηt

)
+

1

η′T+1

− 1

ηT
+

log T

ηT

]
+ 3

= d ·E
[

1

ηT+1
− 1

η1
+

log T

ηT

]
+ 3

≤ 2d log T ·E
[

1

η′T+1

]
= 2d log T ·E


√√√√800dγ2

T +

T∑
t=1

βt


≤ 32d log T · log(10dT ) ·E


√√√√ T∑

t=1

(〈`t −mt, at〉)2
+ 50d

 ,
where the first inequality follows from (9) and the definition of βt, the second inequality follows
from (33), and the last inequality follows from (32) and the definition of βt.

C Construction of a Matrix Satisfying (13)

Here for C > 1, a subset X = {x1, . . . , xd} ⊆ A is said to be a C-barycentric spanner for A if
every a ∈ A can be expressed as a linear combination of elements in X with coefficients in [−C,C].

Theorem 5 (Proposition 2.4 in [12]). Suppose A ⊆ Rd is a full-dimensional compact set. Given
C > 1 and an algorithm for linear optimization over A, we can compute a C-barycentric spanner
for A in polynomial time, making O(d2 logC d) calls to the linear optimization oracle.
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Given a 2-barycentric spanner X = {x1, . . . , xd}, define S by

M = (x1 x2 · · · xd), S = MM> =

d∑
i=1

xix
>
i . (34)

Recalling that xi ∈ A andm ∈ L, we have ‖m‖2S = m>
(∑d

i=1 xix
>
i

)
m =

∑d
i=1 (〈xi,m〉)2 ≤ d.

Further, from the definition of a 2-barycentric spanner, for any a ∈ A, there exists u ∈ [−2, 2]
d such

that a = Mu and hence we have ‖a‖2S−1 = a>(M−1)
>
M−1a = u>u ≤ 4d. Consequently, the

matrix S defined by (34) satisfies (13).
Remark 2. Given a d-optimal design for A, one can construct a matrix S such that

‖m‖2S ≤ d for all m ∈ L, ‖a‖2S−1 ≤ 1 for all a ∈ A, (35)
which helps improve the regret bound by reducing the term log(1 + 4T ) in Theorem 2 into log(1 +
T/d). Computing d-optimal design is, however, harder than computing barycentric spanners for
many examples of A.

D Proof of Theorem 4

To show Theorem 4, we use the following lower bound:
Theorem 6. Theorem 4.3. in [25], Lemmas 3. and 4. in [35] Suppose that `t is generated as follows:
Let ε = min{ 1

6 ,
d√
8T
} be a fixed parameter. Pick a∗ ∈ {−1, 1}d from a uniform distribution over

{−1, 1}d. For t = 1, . . . , T , i(t) is chosen from a uniform distribution over [d] independently. Then

`ti(t) follows a Bernoulli distribution, where Pr[`ti(t) = 1] =
1−εa∗i(t)

2 and Pr[`i(t) = −1] =
1+εa∗i(t)

2 .
For i 6= i(t), `ti = 0. Then any algorithm for A = {−1, 1}d suffers regret of

E

[
max
a∗∈A

RT (a∗)

]
≥ εT

2
= min

{
d
√
T√

32
,
T

12

}
, (36)

where the expectation is taken over the choice of `t and the randomness of the algorithm.

Let us prove Theorem 4. Note that A is given by A = {−1, 1}d−1 × {1}. Let `t be a random vector
defined as follows: for t ≤ L, (`t1, . . . , `t,d−1) are generated in a similar way as in Theorem 6 with
T and d replaced by bLc and d− 1, respectively, multiplied by 1/2, and we set `td = 1/2. For t > L
we set `t = 0. We then have ‖`t‖1 ≤ 1 and 0 ≤ 〈`t, a〉 ≤ 1 for any a ∈ A and for t ≤ L. Combining
this and `t = 0 for t > L, we can confirm that (i), (ii), and (iii) in Theorem 4 hold. From Theorem 6,
we have

E

[
max
a∗∈A

RT (a∗)

]
= Ω

(
min{(d− 1)

√
bLc, bLc}

)
= Ω(d

√
L), (37)

where the last equality follows from the assumptions of L = Ω(d2) and d ≥ 1, and the expectation
is taken over the choice of (`t)

T
t=1 and the randomness of the algorithm. Since (37) holds for the

expectation, there is a (fixed) realization of (`t)
T
t for which (37) holds. If we fix (`t)

T
t to them,

argmaxa∗∈ART (a∗) has no randomness, and hence we can exchange maxa∗∈A and E, i.e., we have
E[maxa∗∈ART (a∗)] = maxa∗∈AE[RT (a∗)], which implies that (iv) in Theorem 4 holds.

E Proof of Lemma 3

For t = 0, 1, . . . , T , define convex functions ft : L → R and Ft : L → R as follows:

f0(m) =
1

2
‖m‖2S ,

ft(m) =
1

2
(〈`t −m, at〉)2 (t ∈ [T ]),

Ft(m) =

t∑
j=0

fj(m) (t ∈ {0, 1, . . . , T}).
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Then, the definition (11) of mt can be rewritten as

mt ∈ argmin
m∈L

Ft−1(m). (38)

Using this fact recursively, we have

FT (m∗) ≥ FT (mT+1) = FT−1(mT+1) + fT (mT+1) ≥ FT−1(mT ) + fT (mT+1)

= fT−2(mT ) + fT−1(mT ) + fT (mT+1) ≥ · · · ≥ f0(m1) +

T∑
t=1

ft(mt+1)

≥
T∑
t=1

ft(mt+1)

for arbitrary m∗ ∈ L. From this, we have
T∑
t=1

(〈`t −mt, at〉)2 −
T∑
t=1

(〈`t −m∗, at〉)2 = 2

T∑
t=1

ft(mt)− 2

T∑
t=1

ft(m
∗)

= 2

T∑
t=1

ft(mt)− 2(FT (m∗)− f0(m∗)) ≤ 2f0(m∗) + 2
T∑
t=1

(ft(mt)− ft(mt+1))

= ‖m∗‖2S + 2

T∑
t=1

(ft(mt)− ft(mt+1)). (39)

We next show

ft(mt)− ft(mt+1) ≤ 4‖at‖2A−1
t

(40)

where we define positive semi-definite matrices At ∈ Rd×d by

At = S +

t∑
j=1

aja
>
j (41)

for t = 0, 1, . . . , T . To show (40), we use the fact that Ft is At-strongly convex, i.e., it holds for any
m,m′ ∈ L that

Ft(m
′) ≥ Ft(m) + 〈∇Ft(m),m′ −m〉+ ‖m′ −m‖2At . (42)

Further, (38) implies that

〈∇Ft−1(mt),m−mt〉 ≥ 0 (43)

for any m ∈ L and t ∈ [T ]. From (42) and (43), we can show (40) as follows:

ft(mt)− ft(mt+1) = Ft(mt)− Ft(mt+1)− Ft−1(mt) + Ft−1(mt+1)

≤ 〈∇Ft(mt),mt −mt+1〉 − ‖mt −mt+1‖2At + 〈∇Ft−1(mt+1),mt+1 −mt〉
≤ 〈∇Ft(mt)−∇Ft−1(mt),mt −mt+1〉+ 〈∇Ft−1(mt+1)−∇Ft(mt+1),mt+1 −mt〉
− ‖mt −mt+1‖2At

= 〈∇ft(mt),mt −mt+1〉 − ‖mt −mt+1‖2At − 〈∇ft(mt+1),mt+1 −mt〉
= 〈∇ft(mt) +∇ft(mt+1),mt −mt+1〉 − ‖mt −mt+1‖2At
≤ ‖∇ft(mt) +∇ft(mt+1)‖A−1

t
‖mt −mt+1‖At − ‖mt −mt+1‖2At

≤ 1

4
‖∇ft(mt) +∇ft(mt+1)‖2

A−1
t

=
1

4
‖(〈mt − `t, at〉+ 〈mt+1 − `t, at〉)at‖2A−1

t
≤ 4‖at‖2A−1

t
,

where the first and second inequalities follow from (42) and (43) respectively, the third inequality
follows from Cauchy–Schwarz inequatlity, the forth inequality follows from the fact that a2 − ab+
b2/4 = (a− b/2)2 ≥ 0 for a, b ∈ R. Combining (39) and (40), we obtain

T∑
t=1

(〈`t −mt, at〉)2 −
T∑
t=1

(〈`t −m∗, at〉)2 ≤ ‖m∗‖2S + 8

T∑
t=1

‖at‖2A−1
t
. (44)
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We next show
T∑
t=1

‖at‖2A−1
t
≤ d log

(
1 +

T

d
max
a∈A
‖a‖2S−1

)
. (45)

Each ‖at‖2A−1
t

can be bounded by log detAt − log detAt−1. In fact, we have

log detAt − log detAt−1 = −(log det(At − ata>t )− log detAt)

= − log det(A
− 1

2
t (At − ata>t )A

− 1
2

t ) = − log det(I −A−
1
2

t ata
>
t A
− 1

2
t )

= − log(1− ‖A−
1
2

t at‖22) ≥ ‖A−
1
2

t at‖22 = ‖at‖2A−1
t
,

where the forth equality holds since the matrix (I − A−
1
2

t ata
>
t A
− 1

2
t ) has eigenvalues λ′1 = 1 −

‖A−
1
2

t at‖22 and λ′2 = λ′3 = · · · = λ′d = 1, and the inequality follows from log(1 + y) ≤ y for
y > −1. From this, we have

T∑
t=1

‖at‖2A−1
t
≤ log detAT − log detA0 = log det

(
I +

T∑
t=1

S−
1
2 ata

>
t S
− 1

2

)
=

d∑
i=1

log(1 + λi),

(46)

where λ1, λ2, . . . , λd ≥ 0 are eigenvalues of
∑T
t=1 S

− 1
2 ata

>
t S
− 1

2 . Since we have

d∑
i=1

λi = tr

(
T∑
t=1

S−
1
2 ata

>
t S
− 1

2

)
=

T∑
t=1

‖at‖2S−1 ≤ T max
a∈A
‖a‖2S−1 ,

the right-hand side of (46) can be bounded as

d∑
i=1

log(1 + λi) ≤ d log

(
1 +

T

d
max
a∈A
‖a‖2S−1

)
(47)

which implies that (45) holds. Combining (44) and (45), we obtain the inequality in Lemma 3.
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