
A Group Theory and Tensor Field Networks
Groups A group is an abstract mathematical concept. Formally a group (G, ◦) consists of a set G
and a binary composition operator ◦ : G×G→ G (typically we just use the symbol G to refer to
the group). All groups must adhere to the following 4 axioms

• Closure: g ◦ h ∈ G for all g, h ∈ G
• Associativity: f ◦ (g ◦ h) = (f ◦ g) ◦ h = f ◦ g ◦ h for all f, g, h ∈ G
• Identity: There exists an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G
• Inverses: For each g ∈ G there exists a g−1 ∈ G such that g−1 ◦ g = g ◦ g−1 = e

In practice, we omit writing the binary composition operator ◦, so would write gh instead of g ◦ h.
Groups can be finite or infinite, countable or uncountable, compact or non-compact. Note that they
are not necessarily commutative; that is, gh 6= hg in general.

Actions/Transformations Groups are useful concepts, because they allow us to describe the
structure of transformations, also sometimes called actions. A transformation (operator) Tg : X → X
is an injective map from a space into itself. It is parameterised by an element g of a group G.
Transformations obey two laws:

• Closure: Tg ◦ Th is a valid transformation for all g, h ∈ G
• Identity: There exists at least one element e ∈ G such that Te[x] = x for all x ∈ X ,

where ◦ denotes composition of transformations. For the expression Tg[x], we say that Tg acts on x.
It can also be shown that transformations are associative under composition. To codify the structure
of a transformation, we note that due to closure we can always write

Tg ◦ Th = Tgh, (15)
If for any x, y ∈ X we can always find a group element g, such that Tg[x] = y, then we call X a
homogeneous space. Homogeneous spaces are important concepts, because to each pair of points
x, y we can always associate at least one group element.

Equivariance and Intertwiners As written in the main body of the text, equivariance is a property
of functions f : X → Y . Just to recap, given a set of transformations Tg : X → X for g ∈ G,
where G is an abstract group, a function f : X → Y is called equivariant if for every g there exists a
transformation Sg : Y → Y such that

Sg[f(x)] = f(Tg[x]) for all g ∈ G, x ∈ X . (16)
If f is linear and equivariant, then it is called an intertwiner. Two important questions arise: 1) How
do we choose Sg? 2) once we have (Tg, Sg), how do we solve for f? To answer these questions, we
need to understand what kinds of Sg are possible. For this, we review representations.

Representations A group representation ρ : G → GL(N) is a map from a group G to the set
of N × N invertible matrices GL(N). Critically ρ is a group homomorphism; that is, it satisfies
the following property ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G. Representations can be used as
transformation operators, acting on N -dimensional vectors x ∈ RN . For instance, for the group of
3D rotations, known as SO(3), we have that 3D rotation matrices, ρ(g) = Rg act on (i.e., rotate) 3D
vectors, as

Tg[x] = ρ(g)x = Rgx, for all x ∈ X , g ∈ G. (17)
However, there are many more representations of SO(3) than just the 3D rotation matrices. Among
representations, two representations ρ and ρ′ of the same dimensionality are said to be equivalent if
they can be connected by a similarity transformation

ρ′(g) = Q−1ρ(g)Q, for all g ∈ G. (18)
We also say that a representation is reducible if is can be written as

ρ(g) = Q−1(ρ1(g)⊕ ρ2(g))Q = Q−1
[
ρ1(g)

ρ2(g)

]
Q, for all g ∈ G. (19)

If the representations ρ1 and ρ2 are not reducible, then they are called irreducible representations
of G, or irreps. In a sense, they are the atoms among representations, out of which all other
representations can be constructed. Note that each irrep acts on a separate subspace, mapping
vectors from that space back into it. We say that subspace X` ∈ X is invariant under irrep ρ`, if
{ρ`(g)x | x ∈ X`, g ∈ G} ⊆ X`.

13

Representation theory of SO(3) As it turns out, all linear representations of compact groups5

(such as SO(3)) can be decomposed into a direct sum of irreps, as

ρ(g) = Q>
[⊕

J

DJ(g)

]
Q, (20)

where Q is an orthogonal, N × N , change-of-basis matrix [5]; and each DJ for J = 0, 1, 2, ...
is a (2J + 1) × (2J + 1) matrix known as a Wigner-D matrix. The Wigner-D matrices are the
irreducible representations of SO(3). We also mentioned that vectors transforming according to DJ
(i.e. we set Q = I), are called type-J vectors. Type-0 vectors are invariant under rotations and type-1
vectors rotate according to 3D rotation matrices. Note, type-J vectors have length 2J + 1. In the
previous paragraph we mentioned that irreps act on orthogonal subspaces X0,X1, The orthogonal
subspaces corresponding to the Wigner-D matrices are the space of spherical harmonics.

The Spherical Harmonics The spherical harmonics YJ : S2 → C2J+1 for J ≥ 0 are square-
integrable complex-valued functions on the sphere S2. They have the satisfying property that they
are rotated directly by the Wigner-D matrices as

YJ(R−1g x) = D∗J(g)YJ(x), x ∈ S2, g ∈ G, (21)

where DJ is the J th Wigner-D matrix and D∗J is its complex conjugate. They form an orthonormal
basis for (the Hilbert space of) square-integrable functions on the sphere L2(S2), with inner product
given as

〈f, h〉S2 =

∫
S2

f(x)h∗(x) dx. (22)

So 〈YJm, YJ′m′〉S2 = δJJ ′δmm′ , where YJm is the mth element of YJ . We can express any function
in L2(S2) as a linear combination of spherical harmonics, where

f(x) =
∑
J≥0

f>J YJ(x), x ∈ S2, (23)

where each fJ is a vector of coefficients of length 2J + 1. And in the opposite direction, we can
retrieve the coefficients as

fJ =

∫
S2

f(x)Y∗J(x) dx (24)

following from the orthonormality of the spherical harmonics. This is in fact a Fourier transform on
the sphere and the the vectors fJ can be considered Fourier coefficients. Critically, we can represent
rotated functions as

f(R−1g x) =
∑
J≥0

f>J D∗J(g)YJ(x), x ∈ S2, g ∈ G. (25)

The Clebsch-Gordan Decomposition In the main text we introduced the Clebsch-Gordan coef-
ficients. These are used in the construction of the equivariant kernels. They arise in the situation
where we have a tensor product of Wigner-D matrices, which as we will see is part of the equiv-
ariance constraint on the form of the equivariant kernels. In representation theory a tensor product
of representations is also a representation, but since it is not an easy object to work with, we seek
to decompose it into a direct sum of irreps, which are easier. This decomposition is of the form of
Eq. (20), written

Dk(g)⊗ D`(g) = Q`k>

 k+⊕̀
J=|k−`|

DJ(g)

Q`k. (26)

In this specific instance, the change of basis matrices Q`k are given the special name of the Clebsch-
Gordan coefficients. These can be found in many mathematical physics libraries.

5Over a field of characteristic zero.

14

Tensor Field Layers In Tensor Field Networks [28] and 3D Steerable CNNs [37], the authors
solve for the intertwiners between SO(3) equivariant point clouds. Here we run through the derivation
again in our own notation.

We begin with a point cloud f(x) =
∑N
j=1 fjδ(x− xj), where fj is an equivariant point feature. Let’s

say that fj is a type-k feature, which we write as fkj to remind ourselves of the fact. Now say we
perform a convolution ∗ with kernel W`k : R3 → R(2`+1)×(2k+1), which maps from type-k features
to type-` features. Then

f`out,i = [W`k ∗ fkin](x) (27)

=

∫
R3

W`k(x′ − xi)fkin(x′) dx′ (28)

=

∫
R3

W`k(x′ − xi)
N∑
j=1

fkin,jδ(x′ − xj) dx′ (29)

=

N∑
j=1

∫
R3

W`k(x′ − xi)fkin,jδ(x′ − xj) dx′ change of variables x′′ = x′ − xj (30)

=

N∑
j=1

∫
R3

W`k(x′′ + xj − xi)fkin,jδ(x′′) dx′′ sifting theorem (31)

=

N∑
j=1

W`k(xj − xi)fkin,j . (32)

Now let’s apply the equivariance condition to this expression, then

D`(g)f`out,i =

N∑
j=1

W`k(R−1g (xj − xi))Dk(g)fkin,j (33)

=⇒ f`out,i =

N∑
j=1

D`(g)−1W`k(R−1g (xj − xi))Dk(g)fkin,j (34)

Now we notice that this expression should also be equal to Eq. (32), which is the convolution with an
unrotated point cloud. Thus we end up at

W`k(R−1g x) = D`(g)W`k(x)Dk(g)−1, (35)

which is sometimes refered to as the kernel constraint. To solve the kernel constraint, we notice that
it is a linear equation and that we can rearrange it as

vec(W`k(R−1g x)) = (Dk(g)⊗ D`(g))vec(W`k(x)) (36)

where we used the identity vec(AXB) = (B> ⊗ A)vec(X) and the fact that the Wigner-D matrices
are orthogonal. Using the Clebsch-Gordan decomposition we rewrite this as

vec(W`k(R−1g x)) = Q`k>

 k+⊕̀
J=|k−`|

DJ(g)

Q`kvec(W`k(R−1g x)). (37)

Lastly, we can left multiply both sides by Q`k and denote η`k(x) , Q`kvec(W`k(x)), noting the the
Clebsch-Gordan matrices are orthogonal. At the same time we

η`k(R−1g x) =

 k+⊕̀
J=|k−`|

DJ(g)

η`k(x). (38)

Thus we have that η`kJ (R−1g x) the J th subvector of η`k(R−1g x) is subject to the constraint

η`kJ (R−1g x) = DJ(g)η`kJ (x), (39)

15

which is exactly the transformation law for the spherical harmonics from Eq. (21)! Thus one way
how W`k(x) can be constructed is

vec
(

W`k(x)
)

= Q`k>
k+⊕̀

J=|k−`|

YJ(x). (40)

B Recipe for Building an Equivariant Weight Matrix
One of the core operations in the SE(3)-Transformer is multiplying a feature vector f, which transforms
according to SO(3), with a matrix W while preserving equivariance:

Sg[W ∗ f](x) = [W ∗ Tg[f]](x), (41)

where Tg[f](x) = ρin(g)f(R−1g x) and Sg[f](x) = ρout(g)f(R−1g x). Here, as in the previous section
we showed how such a matrix W could be constructed when mapping between features of type-k
and type-`, where ρin(g) is a block diagonal matrix of type-k Wigner-D matrices and similarly ρin(g)
is made of type-` Wigner-D matrices. W is dependent on the relative position x and underlies the
linear equivariance constraints, but is also has learnable components, which we did not show in the
previous section. In this section, we show how such a matrix is constructed in practice.

Previously we showed that

vec
(

W`k(x)
)

= Q`k>
k+⊕̀

J=|k−`|

YJ(x), (42)

which is an equivariant mapping between vectors of types k and `. In practice, we have multiple
input vectors {fkc}c of type-k and multiple output vectors of type-`. For simplicity, however, we
ignore this and pretend we only have a single input and single output. Note that W`k has no learnable
components. Note that the kernel constraint only acts in the angular direction, but not in the radial
direction, so we can introduce scalar radial functions ϕ`kJ : R≥0 → R (one for each J), such that

vec
(

W`k(x)
)

= Q`k>
k+⊕̀

J=|k−`|

ϕ`kJ (‖x‖)YJ(x), (43)

The radial functions ϕ`kJ (‖x‖) act as an independent, learnable scalar factor for each degree J . The
vectorised matrix has dimensionality (2`+ 1)(2k + 1). We can unvectorise the above yielding

W`k(x) = unvec

Q`k>
k+⊕̀

J=|k−`|

ϕ`kJ (‖x‖)YJ(x)

 (44)

=

k+∑̀
J=|k−`|

ϕ`kJ (‖x‖)unvec
(

Q`k>
J YJ(x)

)
(45)

where Q`k
J is a (2`+ 1)(2k + 1)× (2J + 1) slice from Q`k, corresponding to spherical harmonic

YJ . As we showed in the main text, we can also rewrite the unvectorised Clebsch-Gordan–spherical
harmonic matrix-vector product as

unvec
(

Q`k>
J YJ(x)

)
=

J∑
m=−J

Q`k>
Jm YJm(x). (46)

In contrast to Weiler et al. [37], we do not voxelise space and therefore x will be different for each pair
of points in each point cloud. However, the same YJ (x) will be used multiple times in the network
and even multiple times in the same layer. Hence, precomputing them at the beginning of each
forward pass for the entire network can significantly speed up the computation. The Clebsch-Gordan
coefficients do not depend on the relative positions and can therefore be precomputed once and stored
on disk. Multiple libraries exist which approximate those coefficients numerically.

16

100 101 102 103 104 105 106

Num. elements

10 2

10 1

100

101

SE
(3

)-t
ra

ns
fo

rm
er

 /
lie

_le
ar

n
tim

e

Speed comparison: CPU
J=0
J=1
J=2
J=3
J=4
J=5
J=6
J=7
J=8
J=9

(a) Speed comparison on the CPU.

100 101 102 103 104 105 106

Num. elements

10 3

10 2

10 1

100

SE
(3

)-t
ra

ns
fo

rm
er

 /
lie

_le
ar

n
tim

e

Speed comparison: GPU

J=0
J=1
J=2
J=3
J=4
J=5
J=6
J=7
J=8
J=9

(b) Speed comparison on the GPU.

Figure 5: Spherical harmonics computation of our own implementation compared to the lie-learn
library. We found that speeding up the computation of spherical harmonics is critical to scale up both
Tensor Field Networks [28] and SE(3)-Transformers to solve real-world machine learning tasks.

C Accelerated Computation of Spherical Harmonics
The spherical harmonics (SH) typically have to be computed on the fly for point cloud methods
based on irreducible computations, a bottleneck of TFNs [28]. Thomas et al. [28] ameliorate this by
restricting the maximum type of feature to type-2, trading expressivity for speed. Weiler et al. [37]
circumvent this challenge by voxelising the input, allowing them to pre-compute spherical harmonics
for fixed relative positions. This is at the cost of detail as well as exact rotation and translation
equivariance.

The number of spherical harmonic lookups in a network based on irreducible representations can
quickly become large (number of layers × number of points × number of neighbours × number of
channels × number of degrees needed). This motivates parallelised computation on the GPU - a
feature not supported by common libraries. To that end, we wrote our own spherical harmonics library
in Pytorch, which can generate spherical harmonics on the GPU. We found this critical to being able
to run the SE(3)-Transformer and Tensor Field network baselines in a reasonable time. This library
is accurate to within machine precision against the scipy counterpart scipy.special.sph_harm
and is significantly faster. E.g., for a ScanObjectNN model, we achieve ∼ 22× speed up of the
forward pass compared to a network built with SH from the lielearn library. A speed comparison
isolating the computation of the spherical harmonics is shown in Fig. 5. Code is available at https:
//github.com/FabianFuchsML/se3-transformer-public. In the following, we outline our
method to generate them.

The tesseral/real spherical harmonics are given as

YJm(θ, φ) =

√
2J + 1

4π

(J −m)!

(J +m)!
P
|m|
J (cos θ) ·

{
sin(|m|φ) m < 0,
1 m = 0,
cos(mφ) m > 0,

(47)

where P |m|J is the associated Legendre polynomial (ALP), θ ∈ [0, 2π) is azimuth, and φ ∈ [0, π] is a
polar angle. The term P

|m|
J is by far the most expensive component to compute and can be computed

recursively. To speed up the computation, we use dynamic programming storing intermediate results
in a memoization.

We make use of the following recursion relations in the computation of the ALPs:

P
|J|
J (x) = (−1)|J| · (1− x2)|J|/2 · (2|J | − 1)!! boundary: J = m (48)

P−mJ (x) = (−1)J
(`−m)!

(`+m)!
PmJ (x) negate m (49)

P
|m|
J (x) =

2J − 1

J − |m|
xPmJ−1(x) + I[J − |m| > 1]

J + |m| − 1

J − |m|
PmJ−2(x) recurse (50)

where the semifactorial is defined as x!! = x(x−2)(x−4) · · · , and I is the indicator function. These
relations are helpful because they define a recursion.

17

https://github.com/FabianFuchsML/se3-transformer-public
https://github.com/FabianFuchsML/se3-transformer-public

0

1

2

3

4

40 1 32-1-2-3-4
m

J

Figure 6: Subproblem graph for the computatin of the associated Legendre polynomials. To compute
P−13 (x), we compute P 1

3 (x), for which we need P 1
2 (x) and P 1

1 (x). We store each intermediate
computation, speeding up average computation time by a factor of ∼ 10 on CPU.

To understand how we recurse, we consider an example. Fig. 6 shows the space of J and m. The
black vertices represent a particular ALP, for instance, we have highlighted P−13 (x). When m < 0,
we can use Eq. (49) to compute P−13 (x) from P 1

3 (x). We can then use Eq. (50) to compute P 1
3 (x)

from P 1
2 (x) and P 1

1 (x). P 1
2 (x) can also be computed from Eq. (50) and the boundary value P 1

1 (x)
can be computed directly using Eq. (48). Crucially, all intermediate ALPs are stored for reuse. Say
we wanted to compute P−14 (x), then we could use Eq. (49) to find it from P−14 (x), which can be
recursed from the stored values P 1

3 (x) and P 1
2 (x), without needing to recurse down to the boundary.

D Experimental Details
D.1 ScanObjectNN
D.1.1 SE(3)-Transformer and Tensor Field Network
A particularity of object classification from point clouds is the large number of points the algorithm
needs to handle. We use up to 200 points out of the available 2024 points per sample and create
neighbourhoods with up to 40 nearest neighbours. It is worth pointing out that especially in this
setting, adding self-attention (i.e. when comparing the SE(3) Transformer to Tensor Field Networks)
significantly increased the stability. As a result, whenever we swapped out the attention mechanism
for a convolution to retrieve the Tensor Field network baseline, we had to decrease the model size to
obtain stable training. However, we would like to stress that all the Tensor Field networks we trained
were significantly bigger than in the original paper [28], mostly enabled by the faster computation of
the spherical harmonics.

For the ablation study in Fig. 4, we trained networks with 4 hidden equivariant layers with 5 channels
each, and up to representation degree 2. This results in a hidden feature size per point of

5 ·
2∑
`=0

(2`+ 1) = 45 (51)

We used 200 points of the point cloud and neighbourhood size 40. For the Tensor Field network
baseline, in order to achieve stable training, we used a smaller model with 3 instead of 5 channels,
100 input points and neighbourhood size 10, but with representation degrees up to 3.

We used 1 head per attention mechanism yielding one attention weight for each pair of points but
across all channels and degrees (for an implementation of multi-head attention, see Appendix D.3).
For the query embedding, we used the identity matrix. For the key embedding, we used a square
equivariant matrix preserving the number of degrees and channels per degree.

For the quantitative comparison to the start-of-the-art in Table 2, we used 128 input points and
neighbourhood size 10 for both the Tensor Field network baseline and the SE(3)-Transformer. We
used farthest point sampling with a random starting point to retrieve the 128 points from the overall

18

point cloud. We used degrees up to 3 and 5 channels per degree, which we again had to reduce to 3
channels for the Tensor Field network to obtain stable training. We used a norm based non-linearity
for the Tensor Field network (as in [28]) and no extra non-linearity (beyond the softmax in the
self-attention algorithm) for the SE(3) Transformer.

For all experiments, the final layer of the equivariant encoder maps to 64 channels of degree 0
representations. This yields a 64-dimensional SE(3) invariant representation per point. Next, we pool
over the point dimension followed by an MLP with one hidden layer of dimension 64, a ReLU and a
15 dimensional output with a cross entropy loss. We trained for 60000 steps with batch size 10. We
used the Adam optimizer [13] with a start learning of 1e-2 and a reduction of the learning rate by
70% every 15000 steps. Training took up to 2 days on a system with 4 CPU cores, 30 GB of RAM,
and an NVIDIA GeForce GTX 1080 Ti GPU.

The input to the Tensorfield network and the Se(3) Transformer are relative x-y-z positions of each
point w.r.t. their neighbours. To guarantee equivariance, these inputs are provided as fields of degree 1.
For the ‘+z‘ versions, however, we deliberately break the SE(3) equivariance by providing additional
and relative z-position as two additional scalar fields (i.e. degree 0), as well as relative x-y positions
as a degree 1 field (where the z-component is set to 0).

D.1.2 Number of Input Points
Limiting the input to 128/200 points in our experiments on ScanObjectNN was not primarily due to
computational limitations: we conducted experiments with up to 2048 points, but without performance
improvements. We suspect this is due to the global pooling. Examining cascaded pooling via attention
is a future research direction. Interestingly, when limiting other methods to using 128 points, the SE(3)-
Transformer outperforms the baselines (PointCNN: 80.3± 0.8%, PointGLR: 81.5± 1.0%, DGCNN:
82.2 ± 0.8%, ours: 85.0 ± 0.7%). It is worth noting that these methods were explicitly designed
for the well-studied task of point classification whereas the SE(3)-Transformer was applied as is.
Combining different elements from the current state-of-the-art methods with the geometrical inductive
bias of the SE(3)-Transformer could potentially yield additional performance gains, especially with
respect to leveraging inputs with more points. It is also worth noting that the SE(3)-Transformer was
remarkably stable with respect to lowering the number of input points in an ablation study (16 points:
79.2%, 32 points: 81.4%, 64 points: 82.5%, 128 points: 85.0%, 256 points: 82.6%).

D.1.3 Sample Complexity
Equivariance is known to often lead to smaller sample complexity, meaning that less training data
is needed (Fig. 10 in Worrall et al. [40], Fig. 4 in Winkels and Cohen [38], Fig. 4 in Weiler et al.
[37]). We conducted experiments with different amounts of training samples Nsamples from the
ScanObjectNN dataset. The results showed that for all Nsamples, the SE(3)-Transformer outperformed
the Set Transformer, a non-equivariant network based on attention. The performance delta was also
slightly higher for the smallest Nsamples we tested (3.1% of the samples available in the training split
of ScanObjectNN) than when using all the data indicating that the SE(3)-Transformer performs
particularly well on small amounts of training data. However, performance differences can be due to
multiple reasons. Especially for small datasets, such as ScanObjectNN, where the performance does
not saturate with respect to amount of data available, it is difficult to draw conclusions about sample
complexity of one model versus another. In summary, we found that our experimental results are in
line with the claim that equivariance decreases sample complexity in this specific case but do not
give definitive support.

D.1.4 Baselines
DeepSet Baseline We originally replicated the implementation proposed in [46] for their object
classification experiment on ModelNet40 [41]. However, most likely due to the relatively small
number of objects in the ScanObjectNN dataset, we found that reducing the model size helped the
performance significantly. The reported model had 128 units per hidden layer (instead of 256) and no
dropout but the same number of layers and type of non-linearity as in [46].

Set Transformer Baseline We used the same architecture as [16] in their object classification
experiment on ModelNet40 [41] with an ISAB (induced set attention block)-based encoder followed
by PMA (pooling by multihead attention) and an MLP.

19

D.2 Relational Inference
Following Kipf et al. [14], we simulated trajectories for 5 charged, interacting particles. Instead of a
2d simulation setup, we considered a 3d setup. Positive and negative charges were drawn as Bernoulli
trials (p = 0.5). We used the provided code base https://github.com/ethanfetaya/nri with
the following modifications: While we randomly sampled initial positions inside a [−5, 5]3 box, we
removed the bounding-boxes during the simulation. We generated 5k simulation samples for training
and 1k for testing. Instead of phrasing it as a time-series task, we posed it as a regression task: The
input data is positions and velocities at a random time step as well as the signs of the charges. The
labels (which the algorithm is learning to predict) are the positions and velocities 500 simulation time
steps into the future.

Training Details We trained each model for 100,000 steps with batch size 128 using an Adam
optimizer [13]. We used a fixed learning rate throughout training and conducted a separate hyper
parameter search for each model to find a suitable learning rate.

SE(3)-Transformer Architecture We trained an SE(3)-Transformer with 4 equivariant layers,
where the hidden layers had representation degrees {0, 1, 2, 3} and 3 channels per degree. The input
is handled as two type-1 fields (for positions and velocities) and one type-0 field (for charges). The
learning rate was set to 3e-3. Each layer included attentive self-interaction.

We used 1 head per attention mechanism yielding one attention weight for each pair of points but
across all channels and degrees (for an implementation of multi-head attention, see Appendix D.3).
For the query embedding, we used the identity matrix. For the key embedding, we used a square
equivariant matrix preserving the number of degrees and channels per degree.

Baseline Architectures All our baselines fulfill permutation invariance (ordering of input points),
but only the Tensor Field network and the linear baseline are SE(3) equivariant. For the Tensor Field
Network[28] baseline, we used the same hyper parameters as for the SE(3) Transformer but with a
linear self-interaction and an additional norm-based nonlinearity in each layer as in Thomas et al.
[28]. For the DeepSet[46] baseline, we used 3 fully connected layers, a pooling layer, and two more
fully connected layers with 64 units each. All fully connected layers act pointwise. The pooling
layer uses max pooling to aggregate information from all points, but concatenates this with a skip
connection for each point. Each hidden layer was followed by a LeakyReLU. The learning rate was
set to 1e-3. For the Set Transformer[16], we used 4 self-attention blocks with 64 hidden units and 4
heads each. For each point this was then followed by a fully connected layer (64 units), a LeakyReLU
and another fully connected layer. The learning rate was set to 3e-4.

For the linear baseline, we simply propagated the particles linearly according to the simulation
hyperparamaters. The linear baseline can be seen as removing the interactions between particles from
the prediction. Any performance improvement beyond the linear baseline can therefore be interpreted
as an indication for relational reasoning being performed.

D.3 QM9
The QM9 regression dataset [21] is a publicly available chemical property prediction task consisting
of 134k small drug-like organic molecules with up to 29 atoms per molecule. There are 5 atomic
species (Hydrogen, Carbon, Oxygen, Nitrogen, and Flourine) in a molecular graph connected by
chemical bonds of 4 types (single, double, triple, and aromatic bonds). ‘Positions’ of each atom,
measured in ångtröms, are provided. We used the exact same train/validation/test splits as Anderson
et al. [1] of sizes 100k/18k/13k.

The architecture we used is shown in Table 4. It consists of 7 multihead attention layers interspersed
with norm nonlinearities, followed by a TFN layer, max pooling, and two linear layers separated by a
ReLU. For each attention layer, shown in Fig. 7, we embed the input to half the number of feature
channels before applying multiheaded attention [31]. Multiheaded attention is a variation of attention,
where we partition the queries, keys, and values into H attention heads. So if our embeddings have
dimensionality (4, 16) (denoting 4 feature types with 16 channels each) and we use H = 8 attention
heads, then we partition the embeddings to shape (4, 2). We then combine each of the 8 sets of shape
(4, 2) queries, keys, and values individually and then concatenate the results into a single vector of the
original shape (4, 16). The keys and queries are edge embeddings, and thus the embedding matrices
are of TFN type (c.f. Eq. (8)). For TFN type layers, the radial functions are learnable maps. For these
we used neural networks with architecture shown in Table 5.

20

For the norm nonlinearities [40], we use

Norm ReLU(f`) = ReLU(LN
(
‖f`‖

)
) · f`

‖f`‖
, where ‖f`‖ =

√√√√ ∑̀
m=−`

(f `m)2, (52)

where LN is layer norm [2] applied across all features within a feature type. For the TFN baseline,
we used the exact same architecture but we replaced each of the multiheaded attention blocks with a
TFN layer with the same output shape.

The input to the network is a sparse molecular graph, with edges represented by the molecular bonds.
The node embeedings are a 6 dimensional vector composed of a 5 dimensional one-hot embedding of
the 5 atomic species and a 1 dimension integer node embedding for number of protons per atom. The
edges embeddings are a 5 dimensional vector consisting of a 4 dimensional one-hot embedding of
bond type and a positive scalar for the Euclidean distance between the two atoms at the ends of the
bond. For each regression target, we normalised the values by mean and dividing by the standard
deviation of the training set.

We trained for 50 epochs using Adam [13] at initial learning rate 1e-3 and a single-cycle cosine
rate-decay to learning rate 1e-4. The batch size was 32, but for the TFN baseline we used batch
size 16, to fit the model in memory. We show results on the 6 regression tasks not requiring
thermochemical energy subtraction in Table 3. As is common practice, we optimised architectures
and hyperparameters on εHOMO and retrained each network on the other tasks. Training took about
2.5 days on an NVIDIA GeForce GTX 1080 Ti GPU with 4 CPU cores and 15 GB of RAM.

Table 4: QM9 Network architecture: dout is the number of feature types of degrees 0, 1, ..., dout − 1 at
the output of the corresponding layer and C is the number of multiplicities/channels per feature type.
For the norm nonlinearity we use ReLUs, preceded by equivariant layer norm [37] with learnable
affine transform.

NO. REPEATS LAYER TYPE dout C
1x Input 1 6

1x Attention: 8 heads 4 16
Norm Nonlinearity 4 16

6x Attention: 8 heads 4 16
Norm Nonlinearity 4 16

1x TFN layer 1 128

1x Max pool 1 128
1x Linear 1 128
1x ReLU 1 128
1x Linear 1 1

Table 5: QM9 Radial Function Architecture. C is the number of output channels at each layer. Layer
norm [2] is computed per pair of input and output feature types, which have Cin and Cout channels
each.

LAYER TYPE C

Input 6

Linear 32
Layer Norm 32
ReLU 32

Linear 32
Layer Norm 32
ReLU 32

Linear dout ∗ Cin ∗ Cout

21

Input: (d
in
,C

in
)

V: (d
out
,C/2) K: (d

in
,C/2) Q: (d

in
,C/2)

Attention: (d
out
,C/2), H heads

Linear Projection: (d
out
,C)

Attention Block

Figure 7: Attention block for the QM9 dataset. Each component is listed with a tuple of numbers
representing the output feature types and multiplicities, so (4, 32) means feature types 0, 1, 2, 3 (with
dimensionalities 1, 3, 5, 7), with 32 channels per type.

D.4 General Remark
Across experiments on different datasets with the SE(3)-Transformer, we made the observation that
the number of representation degrees have a significant but saturating impact on performance. A
big improvement was observed when switching from degrees {0, 1} to {0, 1, 2}. Adding type-3
latent representations gave small improvements, further representation degrees did not change the
performance of the model. However, higher representation degrees have a significant impact on
memory usage and computation time. We therefore recommend representation degrees up to 2, when
computation time and memory usage is a concern, and 3 otherwise.

22

