
Deep Transformers with Latent Depth

Xian Li1, Asa Cooper Stickland2, Yuqing Tang1, and Xiang Kong1

1Facebook AI
{xianl, yuqtang, xiangk}@fb.com

2University of Edinburgh
{a.cooper.stickland}@ed.ac.uk

Abstract

The Transformer model has achieved state-of-the-art performance in many se-
quence modeling tasks. However, how to leverage model capacity with large or
variable depths is still an open challenge. We present a probabilistic framework
to automatically learn which layer(s) to use by learning the posterior distributions
of layer selection. As an extension of this framework, we propose a novel method
to train one shared Transformer network for multilingual machine translation
with different layer selection posteriors for each language pair. The proposed
method alleviates the vanishing gradient issue and enables stable training of deep
Transformers (e.g. 100 layers). We evaluate on WMT English-German machine
translation and masked language modeling tasks, where our method outperforms
existing approaches for training deeper Transformers. Experiments on multilin-
gual machine translation demonstrate that this approach can effectively leverage
increased model capacity and bring universal improvement for both many-to-one
and one-to-many translation with diverse language pairs.

1 Introduction

The Transformer model has achieved the state-of-the-art performance on various natural language
preprocessing (NLP) tasks, originally in neural machine translation [30], and recently in massive
multilingual machine translation [3, 37], crosslingual pretraining [8, 17], and many other tasks. There
has been a growing interest in increasing the model capacity of Transformers, which demonstrates
improved performance on various sequence modeling and generation tasks [35, 24, 1].

Training Transformers with increased or variable depth is still an open problem. Depending on the
position of layer norm sub-layer, backpropagating gradients through multiple layers may suffer from
gradient vanishing [19, 31, 5]. In addition, performance does not always improve by simply stacking
up layers [6, 31]. When used for multilingual or multi-task pretraining, such as multilingual machine
translation, crosslingual language modeling, etc., the simplicity of using one shared Transformer
network for all languages (and tasks) is appealing. However, how to share model capacity among
languages (and tasks) so as to facilitate positive transfer while mitigating negative transfer has not
been well explored.

In this work, we present a novel approach to train deep Transformers, in which the layers to be used
(and shared) and the effective depth are not static, but learnt based on the underlying task. Concretely,
we model the decision to use each layer as a latent variable, whose distribution is jointly learnt with
the rest of the Transformer parameters. At training time we approximate the discrete choice with
a Gumbel-Softmax [14] distribution. The ‘soft weights’ sampled from this distribution also act as
gradient normalization for each layer, and this allows us to train very deep Transformers (up to
100 layers) without using regular layer normalization layers. At inference time, the learnt discrete
choice can be used to directly derive a compact model by pruning layers with low probability, but we
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Figure 1: We learn the posterior distribution qφ to “select" or “skip" each layer in Transformers. In
multilingual setting, each language learns their own “views" of latent layers in a shared Transformer.

have the choice of leaving the learned layer selection probabilities as soft weights. By evaluating
on WMT’16 English-German machine translation (MT) and masked language modeling (MLM)
tasks (similar to the XLM-R model [8]), we show that we can successfully train deeper Transformer
(64-layer encoder/decoder model for MT, and 96-layer encoder for MLM) and outperform existing
approaches in terms of quality and training stability.

We show this approach can be extended to learn task-specific sub-networks by learning different
layer selection probabilities for each language pair in multilingual machine translation. This result
contributes to the growing interest of learning efficient architectures for multi-task and transfer
learning in natural language understanding and generation [28, 12, 7].

The main contributions of this paper are as follows. We present a probabilistic framework to learn
which layers to select in the Transformer architecture. Based on this framework, we propose a novel
method to train one shared Transformer network for multilingual machine translation with different
layer selection probabilities for each language pair. The proposed method alleviates the vanishing
gradient issue and enables stable training of deep Transformers. We conduct experiments on several
tasks to evaluate the proposed approach: WMT’16 English-German machine translation, masked
language modeling, and multilingual many-to-one as well as one-to-many machine translation with
diverse languages.

2 Method

Background In this section, we briefly describe the standard Transformer layer architecture [30].
For a hidden state xl of a single token at layer l, each Transformer layer is a function Fl(xl) that
transforms its input xl by sequentially applying several sub-layers. The sub-layer is as follows:

xl+1 = xl + SubLayerl(Norm(xl)), (1)

where SubLayerl(·) is either a Self Attention module, an Encoder Attention module (for a Trans-
former decoder in a sequence-to-sequence model), or a feed-forward network (FFN) module, and
Norm(·) is a normalisation layer, usually layer-norm [4]. This is the ‘pre-norm’ setting which is
now widely used [19], as opposed to ‘post-norm’ in which case Norm(·) would be applied after the
residual connection: xl+1 = Norm(xl + SubLayerl(xl)).
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2.1 Latent Layer Selection

For each Transformer layer l, we treat the selection of all sub-layers in non-residual block Fl(x) as a
latent variable zl from a parameterizable distribution p(z),

xl+1 = xl + zl × Fl(xl), zl ∼ p(z; l) (2)

where the standard Transformer [30] is a special case with zl = 1 for l = 0, ..., L− 1, where L is the
depth of the network, i.e. total number of layers.

For the sequence generation task p(y | x) parameterized by a Transformer network with the remaining
standard parameters Θ, we assume the following generative process:

y ∼ p(y | x; θ, z), p(y | x) =

∫
z

p(y | x; Θ, z)p(Θ, z) dΘdz (3)

Parameterization and inference of z. We model zl as discrete latent variable from a Bernoulli
distribution with zl ∼ B(π; l), π ∈ [0, 1] indicating select or skip the non-residual block Fl(x) in
layer l, and samples from one layer are independent from other layers. This modeling choice allows
us to prune layers which reduces inference cost and may regularize training.

Marginalizing over z becomes intractable when l grows large. Therefore, we use variational inference
as a more general optimization solution. Specifically, we instead maximize the evidence lower bound
(ELBO) of Eq. 3

log p(y | x) ≥ Eqφ(z)[log pθ(y | x, z)]−DKL(qφ(z) ‖ p(z)) (4)

We point out that although we could treat the rest of the network parameters Θ as latent variables
too and model the joint distribution of p(θ, z), which could be optimized using Coupled Variational
Bayes (CVB) and optimization embedding as demonstrated in [27] for neural architecture search, in
practice we found a simpler optimization procedure (Algorithm 2) to learn both θ and z jointly from
scratch.

We use the Gumbel-Softmax reparameterization [14] to sample from the approximate posterior qφ(z)
which makes the model end-to-end differentiable while learning (approximately) discrete policies
without resorting to policy gradients. To allow both “soft weighting" and “hard selection" of layers,
each of which has the appealing property of achieving model pruning while training with larger
model capacity, we generate soft samples of z during training and draw hard samples for pruning at
inference time if qφ(z) becomes (close to) discrete. We directly learn the logits parameter αl for each
layer l:

zil (αl) =
exp((αl(i) + ε(i))/τ)∑

i∈{0,1} exp((αl(i) + ε(i))/τ)
, ε ∼ G(0, 1) (5)

where G(0, 1) is the Gumbel distribution, and τ is a temperature hyperparameter which increases
the discreteness of samples when τ → 0. For p(z) we can use the conjugate prior Beta(a, b) which
allows us to express different preferences of z, such as a = b = 1 for an uniform prior, a > b to bias
towards layer selection and a < b to favor skipping layers.

Gradient scaling. Next we analyze the impact of latent layers on gradient backpropagation during
training in the pre-norm setting. In Eq. 6, we can see that given the forward pass loss L, the gradient
accumulation from higher layers ml<m<L is now weighted by the their corresponding latent samples
zm, which acts as gradient scaling. In Section 3 we show that with such gradient normalization we
can train deeper Transformers without using layer normalisation.

∂L
∂xl

=
∂L
∂xL

× (1 +

L−1∑
m=l

zm
∂Fm(xm)

∂xl
) (6)

2.2 Multilingual Latent Layers

It is sometimes convenient to share a Transformer network across multiple languages, enabling
crosslingual transfer, with recent success in multilingual machine translation and multilingual pre-
training (e.g. multilingual BERT and BART) [3, 8, 20, 17]. Current approaches share a vanilla
(usually 12-layer) Transformer across all languages.
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To explore the potential of latent layers for a multilingual Transformer, we let each language learn its
own layer utilization given a single Transformer network Θ shared among N languages by learning
its own posterior inference network q(n)

φ of {αl}. We acknowledge that an alternative is to learn a
shared inference network qφ(n) which takes language n as input. The latter may enable learning
commonalities across languages but at the cost of extra parameters, including a non-trivial N × d
parameters for language embeddings. Therefore, we chose the former approach and leave the latter
(and the comparison) for future work. With this modeling choice, we can still encourage layer-sharing
across languages by using the aggregated posterior across languages q̃(z) as the prior in the DKL

term:

DKL(qφ(z) ‖ q̃(z)) = Eqφ(z)[log
qφ(z)

q̃(z)
] , q̃(z) =

1

N

N∑
n=1

qφ(z | x(n), y(n), θ̂) (7)

Latent Layers with Targeted Depth To deploy Transformers in the real world, we would like to
have lower computational cost at inference time. Within a Transformer layer, some computation is
parallel, such as multi-head attention, but the time and space complexity at inference time grows
linearly with the number of layers. Therefore, pruning layers at test time directly reduces inference
cost. Our approach can be extended to perform model pruning, encouraging the model to achieve a
target depth K by adding an extra loss LK = ‖

∑L−1
l=0 ul −K‖2 where ul refers to the “utilization"

of layer l. ul can be approximated by samples of the latent variables zl and for the multilingual case
ul =

∑N
n=1 z

(n)
l /N .

The general loss for training a Transformer with latent depth K is

LLL = Eqφ(z)[− log pθ(y | x, z)] + βDKL(qφ(z) ‖ p(z))︸ ︷︷ ︸
LELBO

+λLK (8)

To learn Θ and qφ jointly from scratch, we use an two-level optimization procedure described in
Algorithm 2. This training strategy is inspired by the Generalized Inner Loop Meta-learning [10]. We
provide a more detailed explanation of this training procedure in Appendix B.1.

3 Experimental Settings

Algorithm 1 Training with Latent Layers

1: Initialize Θ, qφ.
2: for t=1, ..., T do
3: for i=1, ..., I do
4: Sample a mini-batch (x, y) ∼ D .
5: Sample zl=0,...,L−1 with Eq. 5
6: Compute L̂LL((x, y); Θi−1, q

t−1
φ )

with Eq. 8
7: Update Θi = Θi−1 − η∇Θi−1

L̂LL
8: Update qtφ = qt−1

φ − η∇qt−1
φ
L̂LL

We first evaluate on the standard WMT English-
German translation task and a masked language
modeling task to demonstrate the effectiveness
of the proposed approach at enabling train-
ing deeper Transformers and whether this in-
creased depth improves model performance. We
then evaluate multilingual latent layers (see sec-
tion 2.2) on multilingual machine translation.

Bilingual Machine Translation. We use the
same preprocessed WMT’16 English-German
sentence pairs as is used in [30, 31]. To make
comparison more clear and fair, we evaluate on
the last model checkpoint instead of ensembles
from averaging the last 5 checkpoints. We use beam size 5 and length penalty 1.0 in decoding and
report corpus-level BLEU with sacreBLEU [22].

Crosslingual Masked Language Modelling. We test our method on a scaled-down version of
XLM-R [8], intending to show the promise of our method, but not obtain state-of-the-art results on
downstream tasks. In particular we use as training data the Wikipedia text of the 25 languages used
in the mBART [17] model, and evaluate using perplexity on a held out dataset consisting of 5000
sentences in each language (sampled randomly from each Wikipedia text).

Multilingual Machine Translation. We evaluate the proposed approach on multilingual machine
translation using the 58-language TED corpus [23]. To study its performance independent of task
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(a) Gradient norms of encoder and decoder in standard Transformer.

(b) Improvement of decoder’s gradient norm using latent layers.
Figure 2: Comparing gradient norms of baseline (a) and using latent layers (b).

similarity and difficulty, we evaluate on both related (four low resource languages and four high
resource languages from the same language family) and diverse (four low resource languages and
four high resource ones without shared linguistic properties) settings as is used in [32]. Dataset
descriptions and statistics are summarized in the Appendix C.1. For each set of languages, we
evaluate both many-to-one (M2O), i.e. translating all languages to English, and one-to-many (O2M),
translating English to each of the target languages, which is a more difficult task given the diversity
of target-side languages.

Baselines. We compare to the standard Transformer with static depth on machine translation task
and “wide" model, e.g. Transformer-big architecture in [30] which increases the hidden (and FFN)
dimension and has been a common approach to leverage large model capacity without encountering
the optimization challenges of training a deeper model.

We also compare to recent approaches to training deeper Transformers:

• Random Layer drop. For deeper models where the static depth baselines diverged, we apply
the random LayerDrop described in [9] which trains a shallower model by skipping layers.

• Dynamic linear combination of layers (DLCL). This is a recently proposed approach
to address vanishing gradient by applying dense connections between layer which was
demonstrated effective for machine translation[31].

• ReZero[5]. This is similar to our method in that both methods learn to weigh each layer.
The key difference is that ReZero learns (unconstrained) weighting parameters. In our
experiments, we found ReZero suffers from gradient exploding and training loss diverged.

4 Results

4.1 Addressing vanishing gradient

Figure 3: Comparing learning curves, training and vali-
dation per-token negative loglikelihood (NLL) loss, of
baseline models (static depth) and the proposed method
when training deeper model (decoder).

First, we empirically show that with static depth,
gradient vanishing happens at bottom layers of
decoder Figure 2a. The effect of training with
latent layers using the proposed approach is il-
lustrated in Figure 2b, which shows that gradient
norms for bottom layers in the decoder are in-
creased.

Next, we compared the learning curves when
training deeper models. As is shown in Figure
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3 (evaluated on multilingual translation task O2M-Diverse dataset), the baseline model with static
depth diverged for a 24-layer decoder, while using the latent layers ((LL-D) approach we could train
both 24-layer and 100-layer decoder successfully. We further compared the 100-layer model with a
wider model (Transformer-big), and found that besides stable training, deep latent layer models are
less prone to overfitting (i.e. they achieve lower validation loss, with a smaller gap between train and
validation losses) despite having more parameters.

4.2 En-De Machine Translation

In Table 1 we evaluate on training deeper Transformers and examine the impact of

Model Params NLLvalid ↓ BLEUvalid ↑ BLEUtest ↑
Transformer-Big 246M 2.081 28.7 28.1
DLCL, 36/36 224M 2.128 28.5 27.7
DLCL, 48/48 224M 2.090 28.8 28.1
LL-D, 12/24 135M 2.179 28.1±0.08 27.2±0.04
LL-D,12/48 211M 2.128 28.1±0.00 27.3±0.04
LL-Both, 36/36 224M 2.147 28.4±0.07 28.1±0.07
LL-Both, 48/48 287M 2.078 28.7±0.10 28.7±0.09
LL-Both, 64/64 371M 2.069 28.5±0.07 28.4±0.08

Table 1: Performance on WMT’16 En-De. For BLEU scores evaluation, we
provide standard errors from 5 runs with different seeds.

latent layers in decoder (LL-
D) and both encoder and
decoder (LL-Both) respec-
tively. Compared to ex-
isting methods for training
deeper Transformers such
as using dense residual con-
nections (DLCL), our ap-
proach can leverage larger
model capacity from in-
creased depth and achieved
improved generalization.

4.3 Masked Language Modeling

Model Params Perplexity ↓
Static depth 24 202M 2.91
LL, 24 202M 2.82
Static 48 372M 2.60
LL, 48 372M 2.71
Static 96 712M Diverged
+ layer-drop 712M Diverged
LL, 96 712M 2.66

Table 2: Perplexity on held-out data for
crosslingual masked language modeling.

Latent layers (LL) is also shown to be effective for training
deeper encoder without divergence (see Table 2). For 24
and 48 layer encoders, we observed stable training with 2x
learning rate and achieved better performance for 24 layers.
However the result of scaling up to 96 layers was slightly
worse performance than a vanilla 48 layer model. This
shows the promise of the method for stabilising training
at increased depth, however we did not attempt to scale up
our data to match our larger model capacity.

4.4 Multilingual Translation

We separately test the impact of applying latent layers in the decoder (LL-D), encoder (LL-E) and
both (LL-Both).

Model Params Avg. aze bel ces glg por rus slk tur
6/6 63.6M 19.65 5.4 9.1 21.9 22.4 38.6 19.4 24.6 15.8
6/6, wide 190M 20.33 5.7 9.7 22.4 23.1 40.3 20.6 24.1 16.8
12/12 95.1M 20.48 5.6 10.3 23.1 22.8 39.7 20.1 25.1 17.1
12/24 133M NA - - - - - - - -
24/24 158M NA - - - - - - - -
+layer drop 158M 11.16 3.3 7.5 11.6 14.4 23.4 10.4 12.9 5.8
LL-D, 12/24 133M 20.83 5 10.2 23.4 24.3 40.3 21 24.8 17.6
LL-D, 24/24 158M 20.84 5.3 10.6 23.4 23.7 40.7 20.9 24.8 17.5

Table 3: BLEU scores for one-to-many multilingual translation on related languages. “NA" means
training diverged.

Latent layers in decoder. To evaluate the impact of increased decoder depth, we tested on one-to-
many (O2M) multilingual translation. In Table 3 we show performance on the “Related" languages
setting. Baseline models began to diverge when decoder depth increases to L = 24, and applying
random LayerDrop did not help. Latent layers allows us to train the same depth successfully, and we
observe improvement in translation quality for both language pairs as well as overall quality shown
by the average BLEU score. In Table 4, we evaluate the impact of deeper decoder with latent layers
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in the O2M-Diverse setting. This is a more challenging task than O2M-Related since decoder needs
to handle more diversified syntax and input tokens.

Model Avg. bos mar hin mkd ell bul fra kor
6/6 22.12 12.6 11.1 14.6 22.7 29.8 31.8 37.3 17.1
6/6, wide 23.51 12.7 11.3 13.9 23.8 32.5 34.8 40.6 18.5
12/12 23.34 13.1 11.1 13.6 22.5 32.7 34.7 40.4 18.6
12/24 NA - - - - - - - -
24/24 NA - - - - - - - -
+layer drop 22.06 13.0 10.0 12.2 21.5 30.7 33.0 38.5 17.6
LL-D, 12/24 23.70 13.4 10.7 14.1 22.8 33.1 35.1 41.1 19.3
LL-D, 12/100 24.16 13.5 10.6 13.8 24.1 32.7 38.2 41.3 19.1
LL-D, 24/24 24.46 15.5 11.4 14.6 24.4 33.5 35.5 41.5 19.3

Table 4: BLEU scores for one-to-many multilingual translation on diverse languages.

Latent layers in encoder, decoder, and both. We use the many-to-one multilingual translation
task to verify the pattern observed above, and test the effect of increased depth in encoder. Results
are summarized in Table 5. Similar to O2M, standard Transformer begins to diverge when decoder
depth increase over 24 while applying latent layers enable successful training and yields improved
translation quality.

Model Avg. bos mar hin mkd ell bul fra kor
6/6 25.95 20.7 8.6 19.2 30.0 36.3 36.9 38.4 17.5
12/12 27.73 22.5 9.4 20.1 31.6 38 39.6 40.8 19.9
24/12 27.86 23.7 9.7 21.6 31.2 37.6 39.3 40.0 19.8
24/24 NA - - - - - - - -
+layer drop 26.7 21.3 9 19.2 29.2 37.5 38.8 39.9 18.7
LL-E, 36/12 27.98 24.2 10.2 21.9 32 37.3 38.8 39.3 20.1
LL-D, 12/24 27.63 22.4 9.3 20.2 30.8 38.2 39.7 40.5 19.9
LL-D, 12/36 27.89 22.3 9.5 21.1 30.7 38.2 40.2 41.2 19.9
LL-D, 24/24 28.43 23.6 10.0 21.9 31.7 38.4 40.3 41.2 20.4
LL-Both, 24/24 28.56 23.5 10.3 22.3 32.8 38.3 40 40.8 20.5

Table 5: BLEU scores of models with increased depth in the encoder and decoder for many-to-one on diverse
languages.

Figure 4: Quality improvement (over static depths 12/12) by allocating
increased capacity to all-encoder (36/12), all-decoder (12/36), and even
allocation (24/24).

By applying latent layers
to encoder only (LL-E)
we found increased depth
(36/12) improves low re-
source languages (e.g. bos
and hin) over the baseline
(12/12). However, deeper
decoder (12/36) or even al-
location of depth (24/24)
brings consistent gains as is
shown in Fig 4.

5 Analysis

In this section, we analyze the effect of several modeling choices and understand their contribution to
the results.

Effect of Priors In Figure 5 we illustrate the difference between using aggregated posterior q̃(z)
versus a uniform prior Beta(1, 1) in computing the DKL loss.

Compared to the uniform prior, using the aggregated posterior as prior discretizes layer utilization, that
is, the model is incentivised to make layer selections consistent across all languages, i.e. facilitating
parameter sharing. Interestingly, the learnt “sharing" pattern by using q̃(z) as prior is consistent with
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Figure 5: Layer selection samples zl at epoch 1 from different priors used for DKL.

Figure 6: Visualization of layer utilization ul during training using the M2O Diverse dataset.

heuristics such as dropping every other layer for pruning which was empirically found effective [9].
However, training with such a prior in the beginning can lead to “posterior collapse”, which is a
well-known challenge found in training variational autoencoders. After applying “KL annealing”
(annealing the DKL coefficient β), we can see that layer selection samples are more continuous with
a curriculum to use the bottom layers first.

EL Avg. valid BLEU
β = 0 10.25 28.50
β = 1 11.25 28.53
β = 10 12.125 28.23

Table 6: Impact of the KL coefficient β on
network effective depth (EL) and translation
quality, evaluated on M2O-Diverse.

Effect of β. In order to understand how the DKL loss
term affects layer selection policies and samples through-
out training, we vary the DKL coefficient β ∈ {0, 1, 10}.
First, we examine layer utilization ul, e.g. whether “hot
layers" (ul → 1) and “cold layers" (ul → 0) change over
time. As is shown in Figure 6, without the DKL term, layer
utilization stays constant for most of the layers, especially
several top layers whose parameters were rarely updated.
By increasing the contribution from the DKL to the total
loss, layer selections are more evenly spread out across languages, i.e. ul becomes more uniform.
This is also reflected in Table 6 where the “effective depth" EL increases with β.

5.1 Ablation Studies

In this section, we provide ablation experiments to understand how different loss terms contribute to
the results. Table 7 compares the effect on translation quality from different loss terms in Eq. 8. We
can see that optimizing the LELBO loss brings the most quality gains, and LK loss adds additional
improvement by acting as a regularization.

Model Avg. bos mar hin mkd ell bul fra kor
LL-D, 24/24 24.46 15.5 11.4 14.6 24.4 33.5 35.5 41.5 19.3
- LK 24.28 14.5 10.8 14.3 25 33.4 35.4 41.6 19.2
- DKL 23.89 13.7 11.0 14.7 24.2 32.9 35.0 40.9 18.9
- both 23.75 13.4 10.9 14.2 23.6 33.2 35.2 40.7 18.8

Table 7: Effects from different terms in LLL evaluated on the O2M-Diverse dataset.

5.2 Latent depth vs. static depth

We compare a deeper model with latent effective depth E[L] to models with the same depth trained
from scratch.
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Model BLEUvalid ↑ BLEUtest ↑
Latent depth, L = 24, E[L] = 12 28.6±0.07 27.88±0.04
Static depth, L = 12 27.2 26.5

Table 8: Comparing a 24 latent layers model with effective depth E[L] =
12 with a 12-layer static depth model trained from scratch, evaluated on
WMT’16 En-De.

As is observed in both bilingual
(Table 8) and multilingual (Ta-
ble 9) machine translation tasks,
training a deeper model with la-
tent depth outperforms standard
Transformer with the same num-
ber of effective layers but trained
with static depth.

Model Avg. bos mar hin mkd ell bul fra kor
Latent depth, E[L] = 14.5 28.43 23.6 10.0 21.9 31.7 38.4 40.3 41.2 20.4
Static depth, L = 15 27.9 23.9 10.3 21.5 31.4 37.5 38.9 39.8 19.9

Table 9: Comparing a 24 latent layers model with effective depth E[L] = 14.5 with a 15-layer static
depth model trained from scratch, evaluated on M2O-Diverse dataset.

6 Related Work

The Transformer model [30] has achieved state-of-the-art performance on various natural language
processing (NLP) tasks. Theoretical results suggest networks often have an expressive power that
scales exponentially in depth instead of width [21], and recent work [36, 1, 23, 32] finds that deeper
Transformers improve performance on various generation tasks. However, deeper Transformer
models also face the gradient vanishing/exploding problem leading to unstable training [6, 31]. In
order to mitigate this issue, Huang et al. (2016) [13] drop a subset of layers during the training, and
bypass them with the identity function. Zhang et al. (2019) [38] propose an initialization method to
scale gradients at the beginning of training to prevent exploding or vanishing gradient. Bachlechner
et al. (2020) [5] initialize an arbitrary layer as the identity map, using a single additional learned
parameter per layer to dynamically facilitates well-behaved gradients and arbitrarily deep signal
propagation. Fan et al. (2019) [9] introduce a form of structured dropout, LayerDrop, which has a
regularization effect during training and allows for efficient pruning at inference time. Concurrent
work which shown improvement on NMT task by increasing model depth includes Zhang et al.
(2020) [37] and Wei et al. (2020) [33].

Exploring dynamic model architecture beyond hard parameter sharing has received growing interest.
In multi-task learning, Multi-Task Attention Network (MTAN) [16], routing network [25] and
branched network [29] enables soft parameter sharing by learning a dynamic sub-network for a
given task. One concurrent work “GShard" [15] also demonstrate deeper model with conditional
computation brings consistent quality improvement for multilingual translation. More work on
learning an adaptive sub-network includes BlockDrop [34] which learns dynamic inference paths
per instance, and SpotTune [11] which learns which layers to finetune or freeze to improve transfer
learning from a pretrained model.

7 Conclusion

We proposed a novel method to enable training deep Transformers, which learns the effective network
depth, by modelling the choice to use each layer as a latent variable. Experiments on machine
translation and masked language modeling demonstrate that this approach is effective in leveraging
increased model capacity and achieves improved quality. We also presented a variant of this method in
a multilingual setting where each language can learn its own sub-network with controllable parameter
sharing. This approach can be extended to use a shared Transformer for multi-task learning in NLP
tasks, and offers insight into which layers are important for which tasks.

Broader Impact

This work proposes a new method to leverage a model with increased depth during training, while
learning a compact sub-work with reduced depth which can be used for deployment in real-world
applications where Transformers have achieved state-of-the-art quality such as machine translation
systems, dialog and assistant applications, etc, as reducing the number of layers especially in
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decoder (often autoregressive) can have direct impact on reducing inference-time latency, memory
consumption, etc. However scaling up the number of layers adds to energy cost of training, even if
we can prune at inference time.

We hope our research on multilingual NLP will contribute to the effort of improving the standard
of NLP tools for low-resource languages. However we only test our machine translation systems
on to-English or from-English tasks, leaving out translation from non-English languages to other
non-English languages entirely.
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