Appendix A Derivation of γ -Model-Based Rollout Weights

Theorem 1. Let $\mu_n(\mathbf{s}_e \mid \mathbf{s}_t; \gamma)$ denote the distribution over states at the n^{th} sequential step of a γ -model rollout beginning from state \mathbf{s}_t . For any desired discount $\tilde{\gamma} \in [\gamma, 1)$, we may reweight the samples from these model rollouts according to the weights

$$\alpha_n = \frac{(1-\tilde{\gamma})(\tilde{\gamma}-\gamma)^{n-1}}{(1-\gamma)^n}$$

to obtain the state distribution drawn from $\mu_1(\mathbf{s}_e \mid \mathbf{s}_t; \tilde{\gamma}) = \mu(\mathbf{s}_e \mid \mathbf{s}_t; \tilde{\gamma})$. That is, we may reweight the steps of a γ -model rollout so as to match the distribution of a $\tilde{\gamma}$ -model with larger discount:

$$\mu(\mathbf{s}_e \mid \mathbf{s}_t; \tilde{\gamma}) = \sum_{n=1}^{\infty} \alpha_n \mu_n(\mathbf{s}_e \mid \mathbf{s}_t; \gamma).$$

Proof. Each step of the γ -model samples a time according to $\Delta t \sim \text{Geom}(1 - \gamma)$, so the time after $n \gamma$ -model steps is distributed according to the sum of n independent geometric random variables with identical parameters. This sum corresponds to a negative binomial random variable, NB $(n, 1 - \gamma)$, with the following pmf:

$$p_n(t) = \binom{t-1}{t-n} \gamma^{(t-n)} (1-\gamma)^n \tag{7}$$

Equation 7 is mildly different from the textbook pmf because we want a distribution over the total number of trials (in our case, cumulative timesteps t) instead of the number of successes before the n^{th} failure. The latter is more commonly used because it gives the random variable the same support, $t \ge 0$, for all n. The form in Equation 7 only has support for $t \ge n$, which substantially simplifies the following analysis.

The distributions q(t) expressible as a mixture over the per-timestep negative binomial distributions p_n are given by:

$$q(t) = \sum_{n=1}^{t} \alpha_n p_n(t),$$

in which α_n are the mixture weights. Because p_n only has support for $t \ge n$, it suffices to only consider the first t γ -model steps when solving for q(t).

We are interested in the scenario in which q(t) is also a geometric random variable with smaller parameter, corresponding to a larger discount $\tilde{\gamma}$. We proceed by setting $q(t) = \text{Geom}(1 - \tilde{\gamma})$ and solving for the mixture weights α_n by induction.

Base case. Let n = 1. Because p_1 is the only mixture component with support at t = 1, α_1 is determined by q(1):

$$1 - \tilde{\gamma} = \alpha_1 \binom{t-1}{t-1} \gamma^{t-1} (1-\gamma)^t$$
$$= \alpha_1 (1-\gamma).$$

Solving for α_1 gives:

$$\alpha_1 = \frac{1 - \tilde{\gamma}}{1 - \gamma}.$$

Induction step. We now assume the form of α_k for k = 1, ..., n - 1 and solve for α_n using q(n).

$$\begin{aligned} (1-\tilde{\gamma})\tilde{\gamma}^{n-1} &= \sum_{k=1}^{n} \alpha_k \binom{n-1}{n-k} \gamma^{n-k} (1-\gamma)^k \\ &= \left\{ \sum_{k=1}^{n-1} \frac{(1-\tilde{\gamma})(\tilde{\gamma}-\gamma)^{k-1}}{(1-\gamma)^k} \binom{n-1}{n-k} \gamma^{n-k} (1-\gamma)^k \right\} + \alpha_n (1-\gamma)^n \\ &= (1-\tilde{\gamma}) \left\{ \sum_{k=1}^{n-1} \binom{n-1}{n-k} (\tilde{\gamma}-\gamma)^{k-1} \gamma^{n-k} \right\} + \alpha_n (1-\gamma)^n \\ &= (1-\tilde{\gamma}) \left\{ \sum_{k=1}^{n} \binom{n-1}{n-k} (\tilde{\gamma}-\gamma)^{k-1} \gamma^{n-k} \right\} - (1-\tilde{\gamma})(\tilde{\gamma}-\gamma)^{n-1} + \alpha_n (1-\gamma)^n \\ &= (1-\tilde{\gamma})\tilde{\gamma}^{n-1} - (1-\tilde{\gamma})(\tilde{\gamma}-\gamma)^{n-1} + \alpha_n (1-\gamma)^n \end{aligned}$$

Solving for α_n gives

$$\alpha_n = \frac{(1 - \tilde{\gamma})(\tilde{\gamma} - \gamma)^{n-1}}{(1 - \gamma)^n}$$

as desired.

Appendix B Derivation of γ -Model-Based Value Expansion

In this section, we derive the γ -MVE estimator and provide pseudo-code showing how it may be used as a drop-in replacement for value estimation in an actor-critic algorithm. Before we begin, we prove a lemma which will become useful in interpreting value functions as weighted averages.

Lemma 1.

$$1 - \sum_{n=1}^{H} \alpha_n = \left(\frac{\tilde{\gamma} - \gamma}{1 - \gamma}\right)^H$$

Proof.

$$1 - \sum_{n=1}^{H} \alpha_n = 1 - \left(\frac{1-\tilde{\gamma}}{\tilde{\gamma}-\gamma}\right) \sum_{n=1}^{H} \left(\frac{\tilde{\gamma}-\gamma}{1-\gamma}\right)^n$$
$$= 1 - \left(\frac{1-\tilde{\gamma}}{\tilde{\gamma}-\gamma}\right) \frac{\left(\frac{\tilde{\gamma}-\gamma}{1-\gamma}\right) - \left(\frac{\tilde{\gamma}-\gamma}{1-\gamma}\right)^{H+1}}{\frac{1-\tilde{\gamma}}{1-\gamma}}$$
$$= 1 - \left(\frac{1-\gamma}{\tilde{\gamma}-\gamma}\right) \left(\left(\frac{\tilde{\gamma}-\gamma}{1-\gamma}\right) - \left(\frac{\tilde{\gamma}-\gamma}{1-\gamma}\right)^{H+1}\right)$$
$$= \left(\frac{\tilde{\gamma}-\gamma}{1-\gamma}\right)^H$$

We now proceed to the γ -MVE estimator itself.

Theorem 2. For $\tilde{\gamma} > \gamma$, $V(\mathbf{s}_t; \tilde{\gamma})$ may be decomposed as a weighted average of $H \gamma$ -model steps and a terminal value estimation. We denote this as the γ -MVE estimator:

$$\hat{V}_{\gamma-\text{MVE}}(\mathbf{s}_t;\tilde{\gamma}) = \frac{1}{1-\tilde{\gamma}} \sum_{n=1}^{H} \alpha_n \mathbb{E}_{\mathbf{s}_e \sim \mu_n(\cdot|\mathbf{s}_t;\gamma)} \left[r(\mathbf{s}_e) \right] + \left(\frac{\tilde{\gamma} - \gamma}{1-\gamma} \right)^H \mathbb{E}_{\mathbf{s}_e \sim \mu_H(\cdot|\mathbf{s}_t;\gamma)} \left[V(\mathbf{s}_e;\tilde{\gamma}) \right].$$

Proof.

$$V(\mathbf{s}_{t};\tilde{\gamma}) = \frac{1}{1-\tilde{\gamma}} \mathbb{E}_{\mathbf{s}_{e}\sim\mu(\cdot|\mathbf{s}_{t};\tilde{\gamma})} [r(\mathbf{s}_{e})]$$

$$= \frac{1}{1-\tilde{\gamma}} \sum_{n=1}^{\infty} \alpha_{n} \mathbb{E}_{\mathbf{s}_{e}\sim\mu_{n}(\cdot|\mathbf{s}_{t};\gamma)} [r(\mathbf{s}_{e})]$$

$$= \frac{1}{1-\tilde{\gamma}} \underbrace{\sum_{n=1}^{H} \alpha_{n} \mathbb{E}_{\mathbf{s}_{e}\sim\mu_{n}(\cdot|\mathbf{s}_{t};\gamma)} [r(\mathbf{s}_{e})]}_{(1)} + \frac{1}{1-\tilde{\gamma}} \underbrace{\sum_{n=H+1}^{\infty} \alpha_{n} \mathbb{E}_{\mathbf{s}_{e}\sim\mu_{n}(\cdot|\mathbf{s}_{t};\gamma)} [r(\mathbf{s}_{e})]}_{(2)}.$$
(8)

The second equality rewrites an expectation over a $\tilde{\gamma}$ -model as an expectation over a rollout of a γ -model using step weights α_n from Theorem 1. We recognize 1 as the model-based component of the value estimation in γ -MVE. All that remains is to write 2 using a terminal value function.

$$\sum_{n=H+1}^{\infty} \alpha_n \mathbb{E}_{\mathbf{s}_e \sim \mu_n(\cdot | \mathbf{s}_t; \gamma)} \left[r(\mathbf{s}_e) \right] = \sum_{n=1}^{\infty} \alpha_{H+n} \mathbb{E}_{\mathbf{s}_e \sim \mu_{H+n}(\cdot | \mathbf{s}_t; \gamma)} \left[r(\mathbf{s}_e) \right]$$
$$= \left(\frac{\tilde{\gamma} - \gamma}{1 - \gamma} \right)^H \mathbb{E}_{\mathbf{s}_H \sim \mu_H(\cdot | \mathbf{s}_t; \gamma)} \left[\sum_{n=1}^{\infty} \alpha_n \mathbb{E}_{\mathbf{s}_e \sim \mu_n(\cdot | \mathbf{s}_H; \gamma)} \left[r(\mathbf{s}_e) \right] \right]$$
$$= \left(\frac{\tilde{\gamma} - \gamma}{1 - \gamma} \right)^H \mathbb{E}_{\mathbf{s}_H \sim \mu_H(\cdot | \mathbf{s}_t; \gamma)} \left[\mathbb{E}_{\mathbf{s}_e \sim \mu(\cdot | \mathbf{s}_H; \tilde{\gamma})} \left[r(\mathbf{s}_e) \right] \right]$$
$$= \left(1 - \tilde{\gamma} \right) \left(\frac{\tilde{\gamma} - \gamma}{1 - \gamma} \right)^H \mathbb{E}_{\mathbf{s}_e \sim \mu_H(\cdot | \mathbf{s}_t; \gamma)} \left[V(\mathbf{s}_e; \tilde{\gamma}) \right]$$
(9)

The second equality uses $\alpha_{H+n} = \left(\frac{\tilde{\gamma}-\gamma}{1-\gamma}\right)^H \alpha_n$ and the time-invariance of $G^{(n)}$ with respect to its conditioning state. Plugging Equation 9 into Equation 8 gives:

$$V(\mathbf{s}_{t};\tilde{\gamma}) = \frac{1}{1-\tilde{\gamma}} \sum_{n=1}^{H} \alpha_{n} \mathbb{E}_{\mathbf{s}_{e} \sim \mu_{n}(\cdot|\mathbf{s}_{t};\gamma)} \left[r(\mathbf{s}_{e}) \right] + \left(\frac{\tilde{\gamma} - \gamma}{1-\gamma} \right)^{H} \mathbb{E}_{\mathbf{s}_{e} \sim \mu_{H}(\cdot|\mathbf{s}_{t};\gamma)} \left[V(\mathbf{s}_{e};\tilde{\gamma}) \right].$$

Remark 1. Using Lemma 1 to substitute $1 - \sum_{n=1}^{H} \alpha_n$ in place of $\left(\frac{\tilde{\gamma} - \gamma}{1 - \gamma}\right)^H$ clarifies the interpretation of $V(\mathbf{s}_t; \tilde{\gamma})$ as a weighted average over $H \gamma$ -model steps and a terminal value function. Because the mixture weights must sum to 1, it is unsurprising that the weight on the terminal value function turned out to be $\left(\frac{\tilde{\gamma} - \gamma}{1 - \gamma}\right)^H = 1 - \sum_{n=1}^{H} \alpha_n$.

Remark 2. Setting $\gamma = 0$ recovers standard MVE with a single-step model, as the weights on the model steps simplify to $\alpha_n = (1 - \tilde{\gamma})(\tilde{\gamma} - \gamma)^{n-1}$ and the weight on the terminal value function simplifies to $\tilde{\gamma}^H$.

Appendix C Implementation Details

 γ -MVE algorithmic description. The γ -MVE estimator may be used for value estimation in any actor-critic algorithm. We describe the variant used in our control experiments, in which it is used in the soft actor critic algorithm (SAC; Haarnoja et al. 2018), in Algorithm 3. The γ -model update is unique to γ -MVE; the objectives for the value function and policy are identical to those in SAC. The objective for the *Q*-function differs only by replacing $V(\mathbf{s}_{t+1})$ with $V_{\gamma-MVE}(\mathbf{s}_{t+1})$. For a detailed description of how the gradients of these objectives may be estimated, and for hyperparameters related to the training of the *Q*-function, value function, and policy, we refer to Haarnoja et al. (2018).

Algorithm 3 γ -model based value expansion

1: Input γ : model discount, $\tilde{\gamma}$: value discount, λ : step size 2: **Initialize** μ_{θ} : γ -model generator 3: Initialize Q_{ω} : Q-function, V_{ξ} : value function, π_{ψ} : policy, \mathcal{D} : replay buffer 4: for each iteration do for each environment step do 5: 6: $\mathbf{a}_t \sim \pi_{\psi}(\cdot \mid \mathbf{s}_t)$ $\begin{aligned} \mathbf{x}_{t} & \pi_{\psi}(\cdot \mid \mathbf{s}_{t}) \\ \mathbf{s}_{t+1} & \sim p(\cdot \mid \mathbf{s}_{t}, \mathbf{a}_{t}) \\ \mathbf{r}_{t} &= r(\mathbf{s}_{t}, \mathbf{a}_{t}) \\ \mathcal{D} \leftarrow \mathcal{D} \cup \{\mathbf{s}_{t}, \mathbf{a}_{t}, \mathbf{r}_{t}, \mathbf{s}_{t+1}\} \end{aligned}$ 7: 8: 9: 10: end for for each gradient step do 11: 12: Sample transitions $(\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}_{t+1})$ from \mathcal{D} Update μ_{θ} to Algorithm 1 or 2 13: Compute $V_{\gamma-MVE}(\mathbf{s}_{t+1})$ according to Theorem 2 14: Update *Q*-function parameters: 15: $\omega \leftarrow \omega - \lambda \nabla_{\omega} \frac{1}{2} \left(Q_{\omega}(\mathbf{s}_{t}, \mathbf{a}_{t}) - (\mathbf{r}_{t} + \tilde{\gamma} V_{\gamma - \text{MVE}}(\mathbf{s}_{t+1})) \right)^{2}$ Update value function parameters: $\xi \leftarrow \xi - \lambda \nabla_{\xi} \frac{1}{2} \left(V_{\xi}(\mathbf{s}_{t}) - \mathbb{E}_{\mathbf{a} \sim \pi_{\psi}}(\cdot | \mathbf{s}_{t}) \left[Q_{\omega}(\mathbf{s}_{t}, \mathbf{a}) - \log \pi_{\psi}(\mathbf{a} | \mathbf{s}_{t}) \right] \right)^{2}$ Update policy parameters: 16: 17: $\psi \leftarrow \psi - \lambda \nabla_{\psi} \mathbb{E}_{\mathbf{a} \sim \pi_{\psi}(\cdot | \mathbf{s}_{t})} \left[\log \pi_{\psi}(\mathbf{a} \mid \mathbf{s}_{t}) - Q_{\omega}(\mathbf{s}_{t}, \mathbf{a}) \right]$ 18: end for 19: end for

Table 1: GAN γ -model hyperparameters (Algorithm 1).

Parameter	Value
Batch size	128
Number of \mathbf{s}_e samples per $(\mathbf{s}_t, \mathbf{a}_t)$ pair	512
Delay parameter τ	$5 \cdot 10^{-3}$
Step size λ	$1 \cdot 10^{-4}$
Replay buffer size (off-policy prediction experiments)	$2 \cdot 10^{5}$

Network architectures. For all GAN experiments, the γ -model generator μ_{θ} and discriminator D_{ϕ} are instantiated as two-layer MLPs with hidden dimensions of 256 and leaky ReLU activations. For all normalizing flow experiments, we use a six-layer neural spline flow (Durkan et al., 2019) with 16 knots defined in the interval [-10, 10]. The rational-quadratic coupling transform uses a three-layer MLP with hidden dimensions of 256.

Hyperparameter settings. We include the hyperparameters used for training the GAN γ -model in Table 1 and the flow γ -model in Table 2.

We found the original GAN (Goodfellow et al., 2014) and the least-squares GAN (Mao et al., 2016) formulation to be equally effective for training γ -models as GANs.

Appendix D Environment Details

Acrobot-v1 is a two-link system (Sutton, 1996). The goal is to swing the lower link above a threshold height. The eight-dimensional observation is given by $[\cos \theta_0, \sin \theta_0, \cos \theta_1, \sin \theta_1, \frac{d}{dt}\theta_0, \frac{d}{dt}\theta_1]$. We modify it to have a one-dimensional continuous action space instead of the standard three-dimensional discrete action space. We provide reward shaping in the form of $r_{\text{shaped}} = -\cos \theta_0 - \cos(\theta_0 + \theta_1)$.

MountainCarContinuous-v0 is a car on a track (Moore, 1990). The goal is to drive the car up a high too high to summit without built-up momentum. The two-dimmensional observation space is $[x, \frac{d}{dt}x]$. We provide reward shaping in the form of $r_{shaped} = x$.

Parameter	Value
Batch size	1024
Number of \mathbf{s}_e samples per $(\mathbf{s}_t, \mathbf{a}_t)$ pair	1
Delay parameter τ	$5 \cdot 10^{-3}$
Step size λ	$1 \cdot 10^{-4}$
Replay buffer size (off-policy prediction experiments)	$2 \cdot 10^5$
Single-step Gaussian variance σ^2	$1 \cdot 10^{-2}$

Table 2: Flow γ -model hyperparameters (Algorithm 2)

Pendulum-v0 is a single-link system. The link starts in a random position and the goal is to swing it upright. The three-dimensional observation space is given by $[\cos \theta, \sin \theta, \frac{d}{dt}\theta]$.

Reacher-v2 is a two-link arm. The objective is to move the end effector \mathbf{e} of the arm to a randomly sampled goal position \mathbf{g} . The 11-dimensional observation space is given by $[\cos \theta_0, \cos \theta_1, \sin \theta_0, \sin \theta_1, \mathbf{g}_x, \mathbf{g}_y, \frac{\mathrm{d}}{\mathrm{d}t}\theta_0, \frac{\mathrm{d}}{\mathrm{d}t}\theta_1, \mathbf{e}_x - \mathbf{g}_x, \mathbf{e}_y - \mathbf{g}_y, \mathbf{e}_z - \mathbf{g}_z].$

Model-based methods often make use of shaped reward functions during model-based rollouts (Chua et al., 2018). For fair comparison, when using shaped rewards we also make the same shaping available to model-free methods.

Appendix E Adversarial γ -Model Predictions

Figure 6: Visualization of the distribution from a single feedforward pass of γ -models trained as GANs according to Algorithm 1. GAN-based γ -models tend to be more unstable than normalizing flow γ -models, especially at higher discounts.