
8 Appendix

8.1 Sklar’s Theorem

Theorem 3 (Sklar, 1959). Let F be a distribution function with margins F1, . . . Fd. Then there ex-
ists a d-dimensional copula C such that for all (x1, . . . , xd) ∈ Rd) it holds that F (x1, . . . , xd) =
C(F (x1), . . . , F (xd)). Furthermore, if F1, . . . , Fd are continuous, then C is unique. Conversely, if C
is a d-dimensional copula and F1, . . . , Fd are univariate distribution functions, then F (x1, . . . , xd) =
C(F (x1), . . . , F (xd)) is a d-dimensional distribution.

8.2 Derivations for deratives of inverses

If g is the inverse of f , that is, gw(y) = f−1
w (y) or gw(fw(t)) = t for some weights w. If we treat w as

parameters as well, then we have scalar functions g(a, b) and f(c, d) such that the identity

g(f(t, w), w) = t

holds for all possible w.

Part 1. We want to find ∂g(y,r)
∂y

∣∣∣∣∣y=a
r=w

. Since f and g are scalar functions of y, it is easy to see geometrically

that

∂g(y, r)

∂y

∣∣∣∣∣y=a
r=w

= 1

/∂f(x, r)

∂x

∣∣∣∣∣
x=g(a,w)

r=w



Part 2. We want to find ∂g(y,r)
∂r

∣∣∣∣∣y=a
r=w

for a given w and a, given access to an oracle f(x, r), g(y, r), ∂f(x,r)
∂r

,

∂f(x,r)
∂x

and for any values of x, y, r. Here, evaluating g(y, w) requires a call to Newton’s method and the 2
partial derivatives may be obtained from autograd. Taking full derivatives of the identity g(f(t, w), w) = t with
respect to w yields

dg(f(t, w), w)

dw
=

∂g

∂f

∂f

∂w
+

∂g

∂w

=

∂g(y, r)

∂y

∣∣∣∣∣
y=f(t,w)

r=w

 ·

∂f(x, r)

∂r

∣∣∣∣∣
x=t
r=w

+
∂g(y, r)

∂r

∣∣∣∣∣
y=f(t,w)

r=w

= 0

∂g(y, r)

∂r

∣∣∣∣∣
y=f(t,w)

r=w

= −

∂g(y, r)

∂y

∣∣∣∣∣
y=f(t,w)

r=w

 ·

∂f(x, r)

∂r

∣∣∣∣∣
x=t
r=w


Note that this holds for all t. Performing a substitution gives

∂g(y, r)

∂r

∣∣∣∣∣y=a
r=w

= −

∂g(y, r)

∂y

∣∣∣∣∣y=a
r=w

 ·

∂f(x, r)

∂r

∣∣∣∣∣
x=g(a,w)

r=w


= −

∂f(x, r)

∂r

∣∣∣∣∣
x=g(a,w)

r=w

/∂f(x, r)

∂x

∣∣∣∣∣
x=g(a,w)

r=w

 ,

where the last line holds using
[
h−1

]′
(x) = 1/

[
h′(h−1(x))

]
for scalar h (Part 1).

8.3 Proof of Theorem 2

We first show that the output at each layer {ϕnn}(t) is a convex combination of negative exponentials, i.e.,

{ϕnn}`,i(t) =
K`,i∑
k=1

αk exp(−β`,i,kt) where
K`,i∑
k=1

α`,i,k = 1,

12



where K` =
∏`−1

q=1 Hq and denotes the number of components in the mixture of exponentials (with potential
repetitions). The theorem is shown by induction on the layer index `. The base case when ` = 0 is obvious by
setting K0,1 = 1, α0,1 = 1, β0,1 = 0. Now suppose that the induction hypothesis is true for all {ϕnn}`−1,i, we
have,

{ϕnn}`,i(t) = exp(−B`,i · t)
H`−1∑
j=1

A`,i,j{ϕnn}`−1,j(t)

= exp(−B`,i · t)
H`−1∑
j=1

A`,i,j

K`−1∑
k=1

α`−1,j,k exp(−β`−1,j,kt) (induction hypothesis)

=

H`−1∑
j=1

K`−1∑
k=1

A`,i,jα`−1,j,k︸ ︷︷ ︸
α`,i,·

exp(− (β`−1,j,k +B`,i)︸ ︷︷ ︸
β`,i,·

t)

=

K∑̀
k=1

α`,i,k exp(−β`,i,kt). (4)

In the third and fourth line, we can also see that
∑K`

k=1 α`,i,k since from the induction hypothesis∑K`−1

k=1 α`−1,j,k = 1 and the design of ACNet, which guarantees
∑H`−1

j=1 A`,i,j = 1. Theorem 2 follows from
the fact that sum of completely monotone functons are also completely monotone. The range of {ϕnn} follows
directly from it being a convex combination of negative exponentials.

8.4 Representation of M in ACNet as a Markov reward process

It is known that Archimedean copula with completely monotone generators are extendible, and have generators
ϕ which are Laplace transforms of (almost surely) positive random variables M . The random variable M is
known as the mixing variable in a manner analogous to the De Finetti’s theorem (observe that Archimedean
copula are exchangable), such that a sample from the copula C is given by (ϕ(E1/M), . . . , ϕ(Ed/M)), where
the Ei are i.i.d. samples from an exponential distribution with scale parameter 1. Hence, M is known as the
mixing(latent) variable, since each Ui is independent of Uj , i 6= j conditioned on M . For more information
about extendible copula, refer to Chapters 1-3 of Matthias, Scherer, and Mai Jan-frederik.

From the derivations in (4), it can be seen that for all ` ∈ [L], i ∈ [H`], k ∈ [K`,i], we have

β`,i,k =
∑̀
q=1

B`,zkq
, α`,i =

∏̀
`′=1

A`′,zk
`′ ,z

k
`′−1

where zq ∈ [Hq] such that the sequence of nodes
(
(0, zk0 = 1), (1, zk1 ), . . . , (`− 1, zk`−1), (`, z

k
i )
)
, each given

of the form (layer, index), represents a forward path along the directed acyclic graph prescribed by the layers of
the network, starting from the input node to the node (`, i). For the i-th output in the `-th layer, each constituent
decay weight β`,i,k is the sum of ‘B-terms’ taken along some path starting from the input node and ending at
the (`, i)-th node. Similarly, the α`,i,k terms are the product of weights of convex combinations, given by the
‘A-terms’ taken along that same path. Each term in the summand of (4) has a one-to-one mapping with such a
path.

Consequently, each constituent exponential function in the output node is represented by a path
((0, z0), (1, z1), . . . , (L, zL), (L+ 1, 1)). Let P be the set of all such paths, where the k-th path is given
by pk =

(
(0, zk0 ) = 1, (1, zk1 ), . . . , (L, z

k
L), (L+ 1, zkL+1 = 1)

)
.

{ϕnn}L+1,1(t) =

KL+1∑
k=1

αL+1,1,k exp(−β`,i,kt)

=
∑
pk∈P

(
L+1∏
`=1

A`,zk
`
,zk

`−1

)(
exp(−(

L∑
`=1

B`,zk
`
)t)

)

= L

{ ∑
pk∈P

(
L+1∏
`=1

A`,zk
`
,zk

`−1

)
δ

(
t−

L∑
`=1

B`,zk
`

)}
(5)

Using the fact that
∑H`−1

j=1 A`,i,j = 1 (by the design of ACNet), we can see that each A` is a transition matrix

from one layer to the one which precedes it. Since ` ∈ [L],
∑K`,i

k=1 α`,i,k = 1, the expression in (5) is the Laplace

transform of a discrete random variable M taking values at
∑L

`=1 B`,zk
`

with probability
(∏L+1

`=1 A`,zk
`
,zk

`−1

)
,

13



!",$,$
!%,$,$

!%,$,%
1

+(%,$+($,$

!",$,%

Figure 10: Sampling M starting from the output node. Labels on edges denote probabilities of
transition. Numbers in boxes correspond to rewards accumulated at each hidden node. Straight lines
show a potential sample path in sampling, with total ward B1,1 +B2,1.

Algorithm 1: Sampling from ACNet
Result: d dimensional sample from ACNet
M ← 0, state← output node;
while state is not in first layer do

Sample next state propotionate to A;
state← next state;
Accumulate M according to state based on B;

end
Draw d i.i.d. samples Ei ∼ Exp(1) ;
return ({ϕnn} (E1/M) , . . . , {ϕnn} (Ed/M))

for each possible pk ∈ P . This is precisely the random variable coressponding to the Markov reward process in
the ‘reversed network’ with rewards {B`} and transition matrixes {A`}—most notably, the transitions given by
A` are independent of the previous transitions taken and only depend on current state. A graphical representation
of this when L = 2 and H` = 2 is given in Figure 10. This Markovian property is precisely why ACNet is able
to represent a generator comprising an exponential (in terms of parameters) of negative exponential components.
Since we can sample from M , we are also able to sample from the copula efficiently using the algorithm of [25].
The psuedocode for doing so is given in Algorithm 1.

8.5 Representational limits of ACNet

Copulas are sometimes used to model upper and lower tail-dependencies. When d = 2, they are quantified
respectively by,

UTDC = lim
u→1−

C(u, u)− 2u+ 1

1− u
= lim

u→1−
P(U1 > u|U2 > u) (Upper tail dependency)

LTDC = lim
u→0+

C(u, u)

u
= lim

u→0+
P(U1 ≤ u|U2 ≤ u) (Lower tail dependency)

assuming those limits exist. These quantities describe the limiting dependencies in the tails of the joint
distribution. Many common Archimedean copula are have asymmetric tail dependencies, i.e., UTDC 6= LTDC .
Both UTDC and LTDC of an Archimedean copula are closely linked to the mixing variable M . In particular,
if E(M) < ∞ then UTDC = 0. Similarly, if M is bounded away from zero, i.e., there exists ε such that
P(M ∈ [0, ε]) = 0, then LTDC = 0. Since M is discrete with a finite support, both these conditions are
satisfied and UTDC and LTDC are equal to 0.

8.6 Probabilistic quantities derivable from C (or F )

Table 1 gives a list of some of the common probabilistic quantities which can be derived from C (or F ).

14



Name Expression Formula in terms of C or F

Distribution C(u1, . . . , ud) C(u1, . . . , ud)

Likelihood p(u1, . . . ud)
∂dC(u1,...,ud

∂u1,...,∂ud

Cond. Distribution P(XK̄ ≤ xK̄ |XK = xK) ∂F (xK ,xK̄)
∂x1···∂xk

/
∂F (xK ,1)
∂x1,··· ,∂xk

Cond. Likelihood p(XK̄ = xK̄ |XK = xK) ∂F (xK ,xK̄)
∂x1···∂xd

/
∂F (xK ,1)
∂x1,··· ,∂xk

Probability P
(
U1 ∈

[
u1, u1

]
∧ · · · ∧ Ud ∈

[
ud, ud

])
See d-increasing property, (1)

Table 1: Probabilistic quantities written in terms of derivatives of C or F .

8.7 Datasets

The POWER and GAS datasets are obtained from the UCI machine learning repository (https://archive.
ics.uci.edu/ml/index.php). The Boston housing dataset is commonly found and may be downloaded
through scikit-learn (https://scikit-learn.org/stable/datasets/index.html) or Kaggle (https:
//www.kaggle.com/c/boston-housing). The INTC-MSFT dataset is standard in copula libraries for R
(https://rdrr.io/cran/copula/man/rdj.html). The GOOG-FB dataset was obtained by the authors
from Yahoo Finance. We will provide instructions on how to obtain the final 2 datasets alongside our source
code.

15

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://scikit-learn.org/stable/datasets/index.html
https://www.kaggle.com/c/boston-housing
https://www.kaggle.com/c/boston-housing
https://rdrr.io/cran/copula/man/rdj.html

