8 Appendix

8.1 Sklar's Theorem

Theorem 3 (Sklar, 1959). Let F be a distribution function with margins $F_{1}, \ldots F_{d}$. Then there exists a d-dimensional copula C such that for all $\left.\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}\right)$ it holds that $F\left(x_{1}, \ldots, x_{d}\right)=$ $C\left(F\left(x_{1}\right), \ldots, F\left(x_{d}\right)\right)$. Furthermore, if F_{1}, \ldots, F_{d} are continuous, then C is unique. Conversely, if C is a d-dimensional copula and F_{1}, \ldots, F_{d} are univariate distribution functions, then $F\left(x_{1}, \ldots, x_{d}\right)=$ $C\left(F\left(x_{1}\right), \ldots, F\left(x_{d}\right)\right)$ is a d-dimensional distribution.

8.2 Derivations for deratives of inverses

If g is the inverse of f, that is, $g_{w}(y)=f_{w}^{-1}(y)$ or $g_{w}\left(f_{w}(t)\right)=t$ for some weights w. If we treat w as parameters as well, then we have scalar functions $g(a, b)$ and $f(c, d)$ such that the identity

$$
g(f(t, w), w)=t
$$

holds for all possible w.
Part 1. We want to find $\left.\frac{\partial g(y, r)}{\partial y}\right|_{\substack{y=a \\ r=w}}$. Since f and g are scalar functions of y, it is easy to see geometrically that

$$
\left.\frac{\partial g(y, r)}{\partial y}\right|_{\substack{y=a \\ r=w}}=1 /\left(\left.\frac{\partial f(x, r)}{\partial x}\right|_{\substack{x=g(a, w) \\ r=w}}\right)
$$

Part 2. We want to find $\left.\frac{\partial g(y, r)}{\partial r}\right|_{\substack{y=a \\ r=w}}$ for a given w and a, given access to an oracle $f(x, r), g(y, r), \frac{\partial f(x, r)}{\partial r}$, $\frac{\partial f(x, r)}{\partial x}$ and for any values of x, y, r. Here, evaluating $g(y, w)$ requires a call to Newton's method and the 2 partial derivatives may be obtained from autograd. Taking full derivatives of the identity $g(f(t, w), w)=t$ with respect to w yields

$$
\begin{aligned}
\frac{d g(f(t, w), w)}{d w} & =\frac{\partial g}{\partial f} \frac{\partial f}{\partial w}+\frac{\partial g}{\partial w} \\
& =\left(\left.\frac{\partial g(y, r)}{\partial y}\right|_{\substack{y=f(t, w) \\
r=w}}\right) \cdot\left(\left.\frac{\partial f(x, r)}{\partial r}\right|_{\substack{x=t \\
r=w}}\right)+\left.\frac{\partial g(y, r)}{\partial r}\right|_{\substack{y=f(t, w) \\
r=w}} \\
& =0 \\
\left.\frac{\partial g(y, r)}{\partial r}\right|_{\substack{y=f(t, w) \\
r=w}} & =-\left(\left.\frac{\partial g(y, r)}{\partial y}\right|_{\substack{y=f(t, w) \\
r=w}}\right) \cdot\left(\left.\frac{\partial f(x, r)}{\partial r}\right|_{\substack{x=t \\
r=w}}\right)
\end{aligned}
$$

Note that this holds for all t. Performing a substitution gives

$$
\begin{aligned}
\left.\frac{\partial g(y, r)}{\partial r}\right|_{\substack{y=a \\
r=w}} & =-\left(\left.\frac{\partial g(y, r)}{\partial y}\right|_{\substack{y=a \\
r=w}}\right) \cdot\left(\left.\frac{\partial f(x, r)}{\partial r}\right|_{\substack{x=g(a, w) \\
r=w}}\right) \\
& =-\left(\left.\frac{\partial f(x, r)}{\partial r}\right|_{\substack{x=g(a, w) \\
r=w}}\right) /\left(\left.\frac{\partial f(x, r)}{\partial x}\right|_{\substack{x=g(a, w) \\
r=w}}\right)
\end{aligned}
$$

where the last line holds using $\left[h^{-1}\right]^{\prime}(x)=1 /\left[h^{\prime}\left(h^{-1}(x)\right)\right]$ for scalar h (Part 1).

8.3 Proof of Theorem 2

We first show that the output at each layer $\left\{\varphi^{\mathrm{nn}}\right\}(t)$ is a convex combination of negative exponentials, i.e.,

$$
\left\{\varphi^{\mathrm{nn}}\right\}_{\ell, i}(t)=\sum_{k=1}^{K_{\ell, i}} \alpha_{k} \exp \left(-\beta_{\ell, i, k} t\right) \quad \text { where } \sum_{k=1}^{K_{\ell, i}} \alpha_{\ell, i, k}=1
$$

where $K_{\ell}=\prod_{q=1}^{\ell-1} H_{q}$ and denotes the number of components in the mixture of exponentials (with potential repetitions). The theorem is shown by induction on the layer index ℓ. The base case when $\ell=0$ is obvious by setting $K_{0,1}=1, \alpha_{0,1}=1, \beta_{0,1}=0$. Now suppose that the induction hypothesis is true for all $\left\{\varphi^{\mathrm{nn}}\right\}_{\ell-1, i}$, we have,

$$
\begin{align*}
\left\{\varphi^{\mathrm{nn}}\right\}_{\ell, i}(t) & =\exp \left(-B_{\ell, i} \cdot t\right) \sum_{j=1}^{H_{\ell-1}} A_{\ell, i, j}\left\{\varphi^{\mathrm{nn}}\right\}_{\ell-1, j}(t) \\
& =\exp \left(-B_{\ell, i} \cdot t\right) \sum_{j=1}^{H_{\ell-1}} A_{\ell, i, j} \sum_{k=1}^{K_{\ell-1}} \alpha_{\ell-1, j, k} \exp \left(-\beta_{\ell-1, j, k} t\right) \quad \text { (induction hypothesis) } \\
& =\sum_{j=1}^{H_{\ell-1}} \sum_{k=1}^{K_{\ell-1}} \underbrace{A_{\ell, i, j} \alpha_{\ell-1, j, k}}_{\alpha_{\ell, i, \cdot}} \exp (-\underbrace{\left(\beta_{\ell-1, j, k}+B_{\ell, i}\right)}_{\beta_{\ell, i, \cdot}} t) \\
& =\sum_{k=1}^{K_{\ell}} \alpha_{\ell, i, k} \exp \left(-\beta_{\ell, i, k} t\right) . \tag{4}
\end{align*}
$$

In the third and fourth line, we can also see that $\sum_{k=1}^{K_{\ell}} \alpha_{\ell, i, k}$ since from the induction hypothesis $\sum_{k=1}^{K_{\ell-1}} \alpha_{\ell-1, j, k}=1$ and the design of ACNet, which guarantees $\sum_{j=1}^{H_{\ell-1}} A_{\ell, i, j}=1$. Theorem 2 follows from the fact that sum of completely monotone functons are also completely monotone. The range of $\left\{\varphi^{\mathrm{nn}}\right\}$ follows directly from it being a convex combination of negative exponentials.

8.4 Representation of M in ACNet as a Markov reward process

It is known that Archimedean copula with completely monotone generators are extendible, and have generators φ which are Laplace transforms of (almost surely) positive random variables M. The random variable M is known as the mixing variable in a manner analogous to the De Finetti's theorem (observe that Archimedean copula are exchangable), such that a sample from the copula C is given by $\left(\varphi\left(E_{1} / M\right), \ldots, \varphi\left(E_{d} / M\right)\right.$), where the E_{i} are i.i.d. samples from an exponential distribution with scale parameter 1 . Hence, M is known as the mixing(latent) variable, since each U_{i} is independent of $U_{j}, i \neq j$ conditioned on M. For more information about extendible copula, refer to Chapters 1-3 of Matthias, Scherer, and Mai Jan-frederik.
From the derivations in (4], it can be seen that for all $\ell \in[L], i \in\left[H_{\ell}\right], k \in\left[K_{\ell, i}\right]$, we have

$$
\beta_{\ell, i, k}=\sum_{q=1}^{\ell} B_{\ell, z_{q}^{k}}, \quad \quad \alpha_{\ell, i}=\prod_{\ell^{\prime}=1}^{\ell} A_{\ell^{\prime}, z_{\ell^{\prime}}^{k}, z_{\ell^{\prime}-1}^{k}}
$$

where $z_{q} \in\left[H_{q}\right]$ such that the sequence of nodes $\left(\left(0, z_{0}^{k}=1\right),\left(1, z_{1}^{k}\right), \ldots,\left(\ell-1, z_{\ell-1}^{k}\right),\left(\ell, z_{i}^{k}\right)\right)$, each given of the form (layer, index), represents a forward path along the directed acyclic graph prescribed by the layers of the network, starting from the input node to the node (ℓ, i). For the i-th output in the ℓ-th layer, each constituent decay weight $\beta_{\ell, i, k}$ is the sum of ' B-terms' taken along some path starting from the input node and ending at the (ℓ, i)-th node. Similarly, the $\alpha_{\ell, i, k}$ terms are the product of weights of convex combinations, given by the ' A-terms' taken along that same path. Each term in the summand of (4) has a one-to-one mapping with such a path.
Consequently, each constituent exponential function in the output node is represented by a path $\left(\left(0, z_{0}\right),\left(1, z_{1}\right), \ldots,\left(L, z_{L}\right),(L+1,1)\right)$. Let \mathcal{P} be the set of all such paths, where the k-th path is given by $p_{k}=\left(\left(0, z_{0}^{k}\right)=1,\left(1, z_{1}^{k}\right), \ldots,\left(L, z_{L}^{k}\right),\left(L+1, z_{L+1}^{k}=1\right)\right)$.

$$
\begin{align*}
\left\{\varphi^{\mathrm{nn}}\right\}_{L+1,1}(t) & =\sum_{k=1}^{K_{L+1}} \alpha_{L+1,1, k} \exp \left(-\beta_{\ell, i, k} t\right) \\
& =\sum_{p_{k} \in \mathcal{P}}\left(\prod_{\ell=1}^{L+1} A_{\ell, z_{\ell}^{k}, z_{\ell-1}^{k}}\right)\left(\exp \left(-\left(\sum_{\ell=1}^{L} B_{\ell, z_{\ell}^{k}}\right) t\right)\right) \\
& =\mathcal{L}\left\{\sum_{p_{k} \in \mathcal{P}}\left(\prod_{\ell=1}^{L+1} A_{\ell, z_{\ell}^{k}, z_{\ell-1}^{k}}\right) \delta\left(t-\sum_{\ell=1}^{L} B_{\ell, z_{\ell}^{k}}\right)\right\} \tag{5}
\end{align*}
$$

Using the fact that $\sum_{j=1}^{H_{\ell-1}} A_{\ell, i, j}=1$ (by the design of ACNet), we can see that each A_{ℓ} is a transition matrix from one layer to the one which precedes it. Since $\ell \in[L], \sum_{k=1}^{K_{\ell, i}} \alpha_{\ell, i, k}=1$, the expression in (5) is the Laplace transform of a discrete random variable M taking values at $\sum_{\ell=1}^{L} B_{\ell, z_{\ell}^{k}}$ with probability $\left(\prod_{\ell=1}^{L+1} A_{\ell, z_{\ell}^{k}, z_{\ell-1}^{k}}\right)$,

Figure 10: Sampling M starting from the output node. Labels on edges denote probabilities of transition. Numbers in boxes correspond to rewards accumulated at each hidden node. Straight lines show a potential sample path in sampling, with total ward $B_{1,1}+B_{2,1}$.

```
Algorithm 1: Sampling from ACNet
Result: \(d\) dimensional sample from ACNet
\(M \leftarrow 0\), state \(\leftarrow\) output node;
while state is not in first layer do
    Sample next state propotionate to \(A\);
    state \(\leftarrow\) next state;
    Accumulate \(M\) according to state based on \(B\);
end
Draw \(d\) i.i.d. samples \(E_{i} \sim \operatorname{Exp}(1)\);
return \(\left(\left\{\varphi^{\mathrm{nn}}\right\}\left(E_{1} / M\right), \ldots,\left\{\varphi^{\mathrm{nn}}\right\}\left(E_{d} / M\right)\right)\)
```

for each possible $p_{k} \in \mathcal{P}$. This is precisely the random variable coressponding to the Markov reward process in the 'reversed network' with rewards $\left\{B_{\ell}\right\}$ and transition matrixes $\left\{A_{\ell}\right\}$-most notably, the transitions given by A_{ℓ} are independent of the previous transitions taken and only depend on current state. A graphical representation of this when $L=2$ and $H_{\ell}=2$ is given in Figure 10 This Markovian property is precisely why ACNet is able to represent a generator comprising an exponential (in terms of parameters) of negative exponential components. Since we can sample from M, we are also able to sample from the copula efficiently using the algorithm of [25]. The psuedocode for doing so is given in Algorithm 1

8.5 Representational limits of ACNet

Copulas are sometimes used to model upper and lower tail-dependencies. When $d=2$, they are quantified respectively by,

$$
\begin{array}{ll}
U T D_{C}=\lim _{u \rightarrow 1^{-}} \frac{C(u, u)-2 u+1}{1-u}=\lim _{u \rightarrow 1^{-}} \mathbb{P}\left(U_{1}>u \mid U_{2}>u\right) & \text { (Upper tail dependency) } \\
L T D_{C}=\lim _{u \rightarrow 0^{+}} \frac{C(u, u)}{u}=\lim _{u \rightarrow 0^{+}} \mathbb{P}\left(U_{1} \leq u \mid U_{2} \leq u\right) & \text { (Lower tail dependency) }
\end{array}
$$

assuming those limits exist. These quantities describe the limiting dependencies in the tails of the joint distribution. Many common Archimedean copula are have asymmetric tail dependencies, i.e., $U T D_{C} \neq L T D_{C}$. Both $U T D_{C}$ and $L T D_{C}$ of an Archimedean copula are closely linked to the mixing variable M. In particular, if $\mathbb{E}(M)<\infty$ then $U T D_{C}=0$. Similarly, if M is bounded away from zero, i.e., there exists ϵ such that $\mathbb{P}(M \in[0, \epsilon])=0$, then $L T D_{C}=0$. Since M is discrete with a finite support, both these conditions are satisfied and $U T D_{C}$ and $L T D_{C}$ are equal to 0 .

8.6 Probabilistic quantities derivable from C (or F)

Table 1 gives a list of some of the common probabilistic quantities which can be derived from C (or F).

Name	Expression	Formula in terms of C or F
Distribution	$C\left(u_{1}, \ldots, u_{d}\right)$	$C\left(u_{1}, \ldots, u_{d}\right)$
Likelihood	$p\left(u_{1}, \ldots u_{d}\right)$	$\frac{\partial^{d} C\left(u_{1}, \ldots, u_{d}\right.}{\partial u_{1}, \ldots, \partial u_{d}}$
Cond. Distribution	$\mathbb{P}\left(X_{\bar{K}} \leq x_{\bar{K}} \mid X_{K}=x_{K}\right)$	$\frac{\partial F\left(x_{K}, x_{\bar{K}}\right)}{\partial x_{1} \cdots \partial x_{k}} / \frac{\partial F\left(x_{K}, 1\right)}{\partial x_{1}, \cdots, \partial x_{k}}$
Cond. Likelihood	$p\left(X_{\bar{K}}=x_{\bar{K}} \mid X_{K}=x_{K}\right)$	$\frac{\partial F\left(x_{K}, x_{\bar{K}}\right)}{\partial x_{1} \cdots \partial x_{d}} / \frac{\partial F\left(x_{K}, 1\right)}{\partial x_{1}, \cdots, \partial x_{k}}$
Probability	$\mathbb{P}\left(U_{1} \in\left[\underline{u_{1}}, \overline{u_{1}}\right] \wedge \cdots \wedge U_{d} \in\left[\underline{u_{d}}, \overline{u_{d}}\right]\right)$	See d-increasing property, (1)

Table 1: Probabilistic quantities written in terms of derivatives of C or F.

8.7 Datasets

The POWER and GAS datasets are obtained from the UCI machine learning repository (https://archive ics.uci.edu/ml/index.php). The Boston housing dataset is commonly found and may be downloaded through scikit-learn (https://scikit-learn.org/stable/datasets/index.html) or Kaggle (https: //www.kaggle.com/c/boston-housing). The INTC-MSFT dataset is standard in copula libraries for R (https://rdrr.io/cran/copula/man/rdj.html). The GOOG-FB dataset was obtained by the authors from Yahoo Finance. We will provide instructions on how to obtain the final 2 datasets alongside our source code.

