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Abstract

A central problem in machine learning and statistics is to model joint densities of
random variables from data. Copulas are joint cumulative distribution functions
with uniform marginal distributions and are used to capture interdependencies in
isolation from marginals. Copulas are widely used within statistics, but have not
gained traction in the context of modern deep learning. In this paper, we introduce
ACNet, a novel differentiable neural network architecture that enforces structural
properties and enables one to learn an important class of copulas–Archimedean
Copulas. Unlike Generative Adversarial Networks, Variational Autoencoders, or
Normalizing Flow methods, which learn either densities or the generative process
directly, ACNet learns a generator of the copula, which implicitly defines the
cumulative distribution function of a joint distribution. We give a probabilistic
interpretation of the network parameters of ACNet and use this to derive a simple
but efficient sampling algorithm for the learned copula. Our experiments show that
ACNet is able to both approximate common Archimedean Copulas and generate
new copulas which may provide better fits to data.

1 Introduction

Modeling dependencies between random variables is a central problem in machine learning and
statistics. Copulas are a special class of cumulative density functions which specify the dependencies
between random variables without any restriction on their marginals. This has led to long lines of
research in modeling and learning copulas [15, 7], as well as their applications in fields such as
finance and healthcare [5, 3]. Amongst the most common class of copulas are Archimedean Copulas,
which are defined by a one-dimensional function ϕ, known as the generator, and often favored for
their simplicity and ability to model extreme distributions. A key problem in the application of
Archimedean Copulas is the selection of the parametric form of ϕ as well as the limitations on the
expressiveness of commonly used copula. Present workarounds include the selection of the best
model between a fixed set of commonly used copulas, the use of methods based on information
criterion such as Akaike and Bayesian Information Criterion (AIC, BIC), as well as more modern
nonparametric methods.

In this paper, we propose ACNet, a novel network architecture which models the generator of an
Archimedean copula using a deep neural network, allowing for network parameters to be learnt
using backpropagation and gradient descent. The core idea behind ACNet is to model the generator
as a sum of convex combination of a finite set of exponential functions with varying rates of
decay, while exploiting their invariance to convex combinations and multiplications with other
exponentials. ACNet is built from simple, differentiable building blocks, ensuring that log-likelihood
is a differentiable function of ϕ, ensuring ease of training via backpropagation. By possessing a larger
set of parameters, ACNet is able to approximate all copulas with completely monotone generators,
a large class which encompasses most of the commonly used copulas, but also other Archimedean
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copulas which have no straightforward closed forms. To our knowledge, ACNet is the first method to
utilize deep representations to model generators for Archimedean copulas directly.

ACNet enjoys several theoretical properties, such as a simple interpretation of network weights in
terms of a Markov reward process, resulting in a numerically stable, dimension independent method
of sampling from the copula. Using this interpretation, we show that deep variants of ACNet are
theoretically able to represent generators which shallow nets may not. By modeling the cumulative
density directly, ACNet is able to provide a wide range of probabilistic quantities such as conditional
densities and distributions using a single trained model. This flexibility in expression extends to both
inference and training and is not possible with other deep methods such as Generative Adversarial
Networks (GANs) or Normalizing Flows, which at best allow for the evaluation of densities.

Empirical results show that ACNet is able to learn standard copula with little to no hyperparameter
tuning. When tested on real-world data, we observed that ACNet was able to learn new generators
which are a better qualitative description of observed data compared to commonly used Archimedean
copulas. Lastly, we demonstrate the effectiveness of ACNet in situations where measurements are
uncertain within known boundaries. This task is challenging for methods which learn densities as
evaluating probabilities would then involve the costly numerical integration of densities.

We (i) propose ACNet, the first network to learn completely monotone generating functions for
the purpose of learning copulas, (ii) study the theoretical properties of ACNet, including a simple
interpretation of network weights and an efficient sampling process, (iii) show how ACNet may be
used to compute probabilistic quantities beyond log-likelihood and cumulative densities, and (iv)
evaluate ACNet on both synthetic and real-world data, demonstrating that ACNet combines the ease
of use enjoyed by commonly used copulas and the representational capacity of Archimedean copulas.
The source code for this paper may be found at https://github.com/lingchunkai/ACNet.

2 CDFs and Copulas

Consider a d-dimensional continuous random vector X = {X1, X2, · · ·Xd}with marginals Fi(xi) =
P(Xi ≤ xi). Given a x ∈ Rd, the distribution function F (x) = P (X1 ≤ x1, · · ·Xd ≤ xd) specifies
all marginal distributions Fi(xi) as well as any dependencies between X . This paper focuses on
continuous distribution functions which have well-defined densities.

2.1 Copulas

Of particular interest is a special type of distribution function known as a copula. Informally, copulas
are distribution functions with uniform marginals in [0, 1]. Formally, C(u1, · · · , ud) : [0, 1]

d → [0, 1]
is a copula if the following 3 conditions are satisfied.

• (Grounded) It is equal to 0 if any of its arguments are 0, i.e., C(. . . , 0, . . . ) = 0.
• It is equal to ui if all other arguments 1, i.e., for all i ∈ [d], C(1, · · · , 1, ui, 1, · · · , 1) = ui.
• (d-increasing) For all u = (u1, . . . , ud) and v = (v1, . . . , vd) where ui < vi for all i ∈ [d],∑

(w1,...wd)∈×d
i=1{ui,vi}

(−1)|i:wi=ui|C(w1, . . . , wd) ≥ 0. (1)

Heuristically, the d-increasing property states that the probability assigned to any non-negative
d-dimensional rectangle is non-negative.

Observe that the first 2 conditions are stronger than the limiting conditions required for distribution
functions—in fact, groundedness coupled with the d-increasing property sufficiently define any
distribution function. In particular, the second condition implies that Copulas have uniform marginals
and hence, are special cases of distribution functions. Copulas have found numerous real world
applications in engineering, medicine, and quantitative finance. The proliferation of applications may
be attributed to Sklar’s theorem (see appendix for details). Loosely speaking, Sklar’s theorem states
that any d-dimensional continuous joint distribution may be uniquely decomposed into d marginal
distribution functions and a single copula C. The copula precisely captures dependencies between
random variables in isolation from marginals. This allows for the creation of non-independent
distributions by combining marginals—potentially from different families and tying them together
using a suitable copula.
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2.2 Archimedean copulas

In this paper, we will restrict ourselves to Archimedean copulas. Archimedean copulas enjoy
simplicity by modeling dependencies in high dimensions using a single 1-dimensional function:

C(u1, · · · , ud) = ϕ
(
ϕ−1(u1) + ϕ−1(u1) + · · ·ϕ−1(ud)

)
, (2)

where ϕ : [0,∞)→ [0, 1] is d-monotone, i.e., (−1)kϕ(k)(t) ≥ 0 for all k ≤ d, t ≥ 0.

Here, ϕ is known as the generator of C. A single d-monotone function ϕ defines a d-dimensional
copula which satisfies the conditions laid out in Section 2.1. We say that ϕ is completely monotone
if (−1)kϕ(k)(t) ≥ 0 for all values of k. Completely monotone generators define copula regardless
of the dimension d. Most (but not all) Archimedean copula are defined by completely monotone
generators. For this reason, we focus on Archimedean copula with completely monotone generators,
also known in the literature as extendible Archimedean copula. The following theorem by Bernstein
(see [27] for details) characterizes all completely monotone ϕ as a mixture of exponential functions.

Theorem 1 (Bernstein-Widder). A generator ϕ is completely monotone if and only if ϕ is the Laplace
transform of a positive random variable M , i.e., ϕ(t) = EM (exp(−tM)) and P(M > 0) = 1.

In fact, [25] show that C has an easy interpretation in terms of the random variable M . Specifically,
if U = (U1, · · · , Ud) ∼ C, where C is generated by ϕ, which is in turn the Laplace transform
of some non-negative random variable M which almost never takes the value 0, then, we have
Ui = ϕ(Ei/M), where Ei ∼ Exp(1). It follows that sampling from C is easy and efficient given
access to a sampler for M and an oracle for ϕ, which is the case for most commonly used copulas.

2.3 Related work

Copulas offer a wide range of applications, from finance and actuarial sciences [3, 1, 8, 31] to
epidemiology [5, 21], engineering [32, 4] and disaster modeling [2, 24]. Copulas are popular for
modeling extreme tail distributions. Recently, [35] show that GANs and Normalizing Flows suffer
from inherent limitations in modeling tail dependencies and propose using copulas to explicitly do so.

In lockstep with this proliferation of applications is the introduction of more sophisticated copulas and
training/learning methods. Vine copula and Copula bayesian networks [15, 16, 7] extend bivariate
parametric copula to higher dimensions; the former models high dimensional distributions using
a collection of bivariate copula organised in a tree-like structure, while the latter extends bayesian
networks while using copulas to reparameterize conditional densities. Various mixture methods are
also frequently used [29, 33, 31, 19] to construct richer representations from existing copula. Other
methods include non-parametric or semiparametric methods [36, 13, 14]. In terms of model selection,
[10] introduce Copula Information Criterion (CIC), an analog to classical AIC and BIC methods for
copula.

In the domain of deep neural networks, popular generative models include Generative Adversarial
Networks [9], Variational Autoencoders [20], and Normalizing Flow methods [30, 6]. These methods
either describe a generative process or learn densities directly, as opposed to the joint distribution
function. Unless explicitly designed to do so, these models are ill suited to inference on quantities
such as conditional densities or distributions, while ACNet may do so via simple operations.

3 Archimedean Copula networks

Bernstein’s theorem states that completely monotone functions are essentially mixtures of (potentially
infinitely many) negative exponentials. This suggests that generators ϕ could be approximated
by a finite sum of negative exponentials, which in turn defines an approximation for (extendible)
Archimedean copula. Motivated by this, our proposed model parameterizes ϕ using a large but finite
mixture of negative exponentials. We achieve this large mixture (often exponential in model size)
of exponentials using deep neural networks.1 We term the resultant network Archimedean-Copula
Networks, or ACNet for short.

1Approximating completely monotone functions using sums of exponentials has been studied [18, 17], but
not in the context required for learning copula.
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Figure 1: Forward pass through ACNet with L = 3,H1 = H2 = H3 = 2

3.1 Representing C from neural network representations of ϕ

The key component of our model is the a neural network module {ϕnn} : [0,∞)→ [0, 1] specifying
the generator and implicitly, the copula. For simplicity we will assume that the network contains
L hidden layers with the `-th layer being of width H`. For convenience, the widths of the input
and output layers are written as H0 = 1 and HL+1 = 1. Layer ` has outputs of size H`, denoted
by {ϕnn}`,i where i ∈ {1, . . . , H`}. Structurally, {ϕnn} looks similar to a standard feedforward
network, with the additional characteristic that outputs for each layer is a convex combination of
a finite number of negative exponentials (in inputs t). Specifically, our network has the following
representation.
{ϕnn}0,1(t) = 1 (Input layer)

{ϕnn}`,i(t) = exp(−B`,i · t)
H`−1∑
j=1

A`,i,j{ϕnn}`−1,j(t) ∀` ∈ [L], i ∈ [H`] (Hidden layers)

{ϕnn}(t) = {ϕnn}L+1,1(t) =

HL∑
j=1

AL+1,1,j{ϕnn}L,j(t) (Output layer)

Each A` is a non-negative matrix of dimension H` × H`−1 with each row lying on the H`−1-
dimension probability simplex, i.e.,

∑H`−1

j=1 A`,i,j = 1. Each B` is a non-negative vector of size H`.
Each unit in layer ` is formed by taking a convex combination of units in the previous layer, followed
by multiplying this by some negative exponential of the form exp(−βt), where the latter is analogous
to the ‘bias’ term commonly found in feedforward networks. When L = 1, we get that {ϕnn}(t) is
equal to a convex combination of negative exponentials with rates of decay and weighting given by
B and A respectively. A graphical representation of {ϕnn} is shown in Figure 1.
Theorem 2. {ϕnn}(t) is a completely monotone function with domain [0,∞) and range [0, 1].

Proof. (Sketch) Since sums of exponentials are ‘closed’ under addition and multiplications of sums
of exponentials, {ϕnn} remains a convex combination of negative exponentials when L > 1.

It follows from Theorem 2 that {ϕnn} is a valid generator for all d ≥ 2. To ensure that B is strictly
positive and A lies on the probability simplex, we perform the following reparameterization. Let
Φ = {ΦA,ΦB} be the network weights underlying parameters A and B. By setting B = exp(ΦB),
A`,i,j = softmax(ΦA,`,i)j and optimizing over Φ, we ensure that the required constraints are satisfied.

3.2 Extracting probabilistic quantities from {ϕnn}

With {ϕnn}, we are now in a position to evaluate the copula C using Equation (2). This requires
the computation of {ϕnn}−1(ui), which has no simple closed form. However, we may compute
this inverse efficiently using Newton’s root-finding method, i.e., by solving for t in the equation
{ϕnn}(t)−ui = 0. The k-th iteration of Newton’s method involves computing the gradient {ϕnn}′(tk)
and taking a suitable step. The gradient of {ϕnn} is readily obtained using auto-differentiation libraries
such as PyTorch [28] and typically involves a ‘backward’ pass through the network. Empirically, root
finding typically takes fewer than 50 iterations, i.e., computing {ϕnn}−1(u) requires an effectively
constant number of forward and backward passes over {ϕnn}.
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3.3 Training ACNet by minimizing negative log-likelihood

Suppose we are given a dataset D of size m, {x1, · · ·xm}, where each xj is a d-dimensional feature
suitably normalized to [0, 1]d. We want to fit ACNet to D by minimizing the negative log-likelihood
−
∑m

j=1 log
(
p(xj1, · · · , xjd)

)
via gradient descent. The density function for a single point may be

obtained by differentiating C over each of its parameters once,

p(u1, · · · , ud) =
∂(d)C(u1, . . . , ud)

∂u1, . . . , ∂ud
=

ϕ(d)(ϕ−1(u1) + · · ·+ ϕ−1(ud)))∏d
i=1 ϕ

′(ϕ−1(ui))
. (3)

Gradient descent and backpropagation requires us to provide derivatives of p with respect to the
network parameters Φ. This requires taking derivatives of the expression in Equation (3) with respect
to Φ. In general, automatic differentiation libraries such as PyTorch [28] allow for higher derivatives
to be readily computed by repeated application of the chain rule. This process typically requires
the user to furnish (often implicitly) the gradients of each constituent function in the expression.
However, automatic differentiation libraries do not have the built-in capability to compute gradients
(given {ϕnn}) both with respect to inputs u and network weights Φ of {ϕnn}−1, the latter of which is
required for optimization of Φ via gradient descent.

To overcome this, we write a wrapper allowing for inverses of 1-dimensional functions to be computed
via Newton’s method. When given a function ϕ(u; Φ) parameterized by Φ, our wrapper computes
ϕ−1(u; Φ) and provides the derivatives ∂ϕ−1(u;Φ)

∂u and ∂ϕ−1(u;Φ)
∂Φ . The analytical expressions for

both derivatives are shown below, with derivations deferred to the appendix.

∂ϕ−1(u; Φ)

∂u
= 1

/
∂ϕ(t; Φ)

∂t

∂ϕ−1(u; Φ)

∂Φ
= −∂ϕ(t; Φ)

∂Φ

/
∂ϕ(t; Φ)

∂t

Here, the derivatives are evaluated at t = ϕ−1(u; Φ). By supplying these derivatives to an automatic
differentiation library, ϕ−1(u; Φ) can be computed in a fully differentiable fashion, allowing for
computation of higher order derivatives and nested application of the chain rule to be done seamlessly.
Consequently, Equation (3) and its derivatives may be easily computed without any further manual
specification of gradients. Our implementation employs PyTorch [28] for automatic differentiation.

3.4 Interpretation of network weights

According to Bernstein’s theorem (Theorem 1), {ϕnn} is the Laplace transform of some non-negative
random variable M . Interestingly, the network structure of ACNet allows us to obtain an analytical
representation of the distribution M . Since {ϕnn} is the sum of negative exponentials, M is a discrete
distribution with support given by the decay rates of {ϕnn}. However, the structure of ACNet allows
us to go further by implicitly describing a Markov reward model governing the mixing variable M .

Take the structure of ACNet as directed acyclic graph with reversed edges and consider a random
walk starting from the output. The sampler begins with a reward of 0. The probability of transition
from the j-th node in layer `− 1 to the i-th node of layer ` is A`,i,j . When this occurs, it accumulates
a reward of B`,i. The process terminates when we reach the input node, where the realization of M
is the total reward accumulated throughout. Details can be found in the appendix.

The above interpretation has two consequences. First, the size of the support of M is upper bounded
by the number of possible paths that the Markov model possesses, which is typically exponential
in L. This shows that deeper nets allow for distributions with an exponentially larger support of M
compared to shallow nets. Second, this hierarchical representation gives an efficient sampler for M ,
which can be exploited alongside the algorithm of [25] (see Section 2.2) to give an efficient sampling
algorithm for U . More details may be found in the appendix.

3.5 Obtaining probabilistic quantities from ACNet

In Section 3.3, we trained ACNet by minimizing the log-loss ofD, where the likelihood p(u1, . . . , ud)
was obtained by repeated differentiation of the copula C (Equation (3)). Many other probabilistic
quantities are often of interest, with applications in both inference and training.

Scenario 1 (Inference). Consider the setting where one utilizes surveys to study the correlation
between one’s age and income. Some natural inference problem follow, such as: given the age of a
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respondent, how likely is it that his income lies below a certain threshold, i.e., P (U1 ≤ u1|U2 = u2).
Similarly, one could be interested in conditional densities p(u1|u2) in order to facilitate conditional
sampling using MCMC or for visualization purposes. We want our learned model to be able to answer
all such queries efficiently without modifying its structure for each type of query.

Scenario 2 (Training with uncertain data). Now, consider a related scenario where for respondents
sometimes only report the range of their age and incomes (e.g., age is in the range 21-25), even
though underlying quantities are inherently continuous. To complicate matters, the dataset D is
the amalgamation of multiple studies, each prescribing a different partition of ranges, i.e., D has
rows containing a range of possible values for each respondent, i.e.,

((
u1, u1

)
,
(
u2, u2

))
, where

ui ≤ Ui ≤ ui. Our goal is to learn a joint distribution which respects this ‘uncertainty’ in D.2

To the best of our knowledge, no existing deep generative model is able to meet the demands of both
scenarios. It turns out that many of these quantities may be obtained from C using relatively simple
operations. Suppose without loss of generality that one has observed that the first k ∈ [d] random
variables XK = {X1, · · · , Xk} ⊆ X and obtain values xK = (x1, · · · , xk). We want to compute the
posterior distribution of the next d−k unobserved variables XK̄ = X\XK = {Xk+1, · · · , Xd} with
xK̄ analogously denoting their values. Then, the conditional distribution P(XK̄ ≤ xK̄ |XK = xK) is
the distribution function given that XK takes values xK . We have the following expression

P(XK̄ ≤ xK̄ |XK = xK) =

∫ xK̄

−∞
p(xK , z)/p(xK)dz =

∂F (xK , xK̄)

∂x1 · · · ∂xk

/
∂F (xK , 1)

∂x1 · · · ∂xk
,

where the last equality follows from
∫ xK̄

−∞ p(xK , z)dz = ∂
∂w

∫ xK

−∞
∫ xK̄

−∞ p(w, z)dwdz = ∂F (xK ,xK̄)
∂x1···∂xk

.
Many interesting quantities such as conditional densities p(xK̄ |xK) may be expressed in terms
of F in a similar fashion, using simple arithmetic operations and differentiation. Crucially, these
expressions remain differentiable and may be evaluated efficiently. Since these derivations apply for
any cumulative distribution F , they hold for any copula C as well. We list some of these commonly
used probabilistic quantities and their relationship to C in the appendix.

4 Experiments

Here, we first empirically demonstrate the efficacy of ACNet in fitting both synthetic and real-world
data. We then end off by applying ACNet to Scenario 2 of Section 3.5, and show that ACNet can
be used to fit data even when the data exhibits uncertainty in measurements. The goal of these
experiments is not to serve as comparison against neural density estimators (which typically model
joint densities and not joint distribution functions), but rather as an alternative to frequently used
parametric copula. Experiments are conducted on a 3.1 GHz Intel Core i5 with 16 GB of RAM. We
utilize the PyTorch [28] framework for automatic differentiation. We use double precision arithmetic
as the inversion of ϕ requires numerical precision. When using Newton’s method to compute ϕ−1,
we terminate when the error is ≤ 1e− 10. For all our experiments we use ACNet with L = 2 and
H1 = H2 = 10, i.e., 2 hidden layers each of width 10. The network is small but sufficient for our
purpose since {ϕnn} is only 1-dimensional. ΦA and ΦB were initialized in the range [0, 1] and (0, 2)
uniformly at random. We use stochastic gradient descent with a learning rate of 1e− 5, momentum
of 0.9, and a batch size of 200. No hyperparameter tuning was performed.

4.1 Learning known Archimedean copulas

To verify that ACNet is able to learn commonly used Archimedean copulas, we generate synthetic
datasets from the Clayton, Frank and Joe copulas. These copulas exhibit different tail dependencies
(see Figure 2a). For example, the Clayton copula has high lower tail-dependence but no upper-tail
dependency, which makes it useful for modelling quantities such stock prices, for example, two
companies involved in the same supply chain are likely to perform poorly simultaneously, but one
company performing well does not imply the other will. These copula are governed by a single
parameter, which are chosen to be 5, 15, and 3 respectively. For each copula, we generate 2000 train
and 1000 test points and train ACNet for 40k epochs. We compare the resultant learned distribution
(Figure 2b) with the ground truth (Figure 2a). Testing losses are compared in Table 5. From Figure 2

2Unlike usual settings, we are not adding or assuming a known noise distribution but rather, assume that our
data is known to a lower precision.
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(a) Ground truth
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(b) Learned copula using ACNet

Figure 2: Top to bottom: Learning Clayton, Frank and Joe copulas using ACNet. Plots from left to
right: (i) joint distributions, (ii) log densities, and (iii) samples drawn from the respective distributions.
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Figure 3: Left to right: Learning the Clayton copula after 0, 100, 200, 500, 1000 and 5000 epochs.

and Table 5, we can see that ACNet is able to learn all 3 copula accurately by the end of training, and
the contours of the log-likelihood match the ground truth almost exactly. Figure 3 shows how the
learned density changes as the number of training epochs increases for the case of the Clayton copula.
We can see that as the number of training samples increases, the ‘tip’ at the lower tail of the copula
becomes sharper, i.e., ACNet learns the lower tails of the distribution more accurately.

4.2 Experiments on real-world data

To demonstrate the efficacy of ACNet, we applied ACNet to 3 real-world datasets. As a preprocessing
step, we normalize the data by scaling each dimension to the range [0, 1] based on their ordinal
ranks. This ensures that the empirical marginals are approximately uniform. Train and test sets are
split based on a 3:1 ratio. We normalize both train and test sets independently. This was done to
avoid leakage of information from the train to the test set, which could occur if train and test sets
were normalized together. In practice, we observe no significant difference in these two methods of
normalization. Because real-world data tends to contain a small number of outliers, we inject into the
training set points uniformly chosen from [0, 1]2. This is akin to a form of regularization and helps to
prevent ACNet from overfitting. We inject 1 point for every 100 points in the training set. We repeat
each experiment 5 times with different train/test splits and report the average test loss.

Boston Housing. We model the negative dependencies between per capita crime rate and the
median value of owner occupied homes in Boston [11]. Since Archimedean copulas with completely
monotone generators can only model positive dependencies, we insert an additional preprocessing
step where we flip the data along the vertical line at 0.5. This dataset has 506 samples.

(INTC-MSFT) This data comprises five years of daily log-returns (1996-2000) of Intel (INTC) and
Microsoft (MSFT) stocks, and was analysed in [26]. The dataset comprises 1262 samples.

(GOOG-FB). We collected daily closing prices of Google (GOOG) and Facebook (FB) from May
2015 to May 2020. The data was collected using Yahoo Finance and comprises 1259 samples.

For each of the datasets, we trained ACNet based on the processed data. The learned distributions are
illustrated in Figure 4. Furthermore, we compare the performance of ACNet with the Clayton, Frank
and Gumbel copula and report the test log-loss of ACNet with the best fit amongst the 3 parametric
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(a) Top: Data after preprocessing. Bottom: Samples
from the best-fit parametric model.
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(b) Learned using ACNet. Top: contour lines for log
densities. Bottom: Samples from learned copula.

Figure 4: Experiments for (i) Boston housing, (ii) (INTC-MSFT) and (iii) (GOOG-FB) datasets.

Ground Truth ACNet

Clayton -0.9416 -0.9171
Joe -0.5111 -0.4919
Frank -0.8985 -0.8759

Figure 5: Testing loss over synthetic datasets.

Best Parametric ACNet

Boston (Clayton) -0.2929 -0.2742
INTC-MSFT (Frank) -0.1947 -0.1995
GOOG-FB (Clayton) -0.9334 -0.9558

Figure 6: Testing loss over real-world datasets.
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Figure 7: Learning the Clayton copula for noise parameters λ = 0.1, 0.25, 0.5 respectively. Left:
Contour plots for log-densities. Right: Samples from ACNet after training.

copula (Table 6) 3. The parametric copula were similarly trained by gradient descent.4 Qualitatively,
we observe that reasonable models were learnt for the first two datasets. For example, in the Boston
housing dataset, we are able to model the higher dependence in the left tail of the distribution, and the
higher testing loss is likely due to overfitting of the small dataset. In the last dataset, while ACNet is
unable to exactly learn the copula, it is both qualitatively and quantatively better than the parametric
Archimedean copulas, which are unable to model the ‘two-phased’ nature exhibited by this dataset.

4.3 Training and inference on other probabilistic quantities

Here, we demonstrate the effectiveness in applying ACNet to learning joint distributions in the
presence of uncertainty in data (see Section 3.5). We use the same synthetic dataset of Section 4.1.
For each datapoint, instead of observing the tuple (u1, u2), we observe

((
u1, u1

)
,
(
u2, u2

))
, where

ui ≤ Ui ≤ ui. The upper and lower bounds of ui are chosen randomly such that ui − ui and ui − ui

are uniformly chosen from [0, λ], where λ is a ‘noise‘ parameter associated with the experiment.
Note each entry has its own associated uncertainty. Fitting ACNet simply involves running gradient
descent to minimize the negative log probabilities − log

(
P
(
U1 ∈

[
u1, u1

]
∧ Ud ∈

[
u2, u2

]))
.

We experiment with λ = 0.1, λ = 0.25, λ = 0.5. Results are reported in Figure 7. In all cases,
ACNet is able to learn a reasonable rendition of the Clayton copula. As expected, when λ increases,
we begin to see the inability to model the strong correlations in the lower tails. This is expected, since
the uncertainty limits the degree to which we can observe strong lower tail dependencies.

4.4 Practical considerations and limitations of ACNet

Experiments when d > 2. Here, we show that ACNet is capable of fitting distributions with more
than 2 dimensions. We use the GAS dataset [34], which comprises readings from chemical sensors

3We report the best performing model, with and without regularization.
4There are multiple ways of training parametric copula—for example, by matching concordance measures

such as Kendall’s Tau and Spearman’s Rho. We do not consider these alternative fitting methods here.
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Figure 8: Left to right: (i)-(iii) Normalized training data for dimensions (0, 1), (0, 2) and (1, 2).
(iv)-(vi) joint distributions, log-densities and samples drawn from the trained network.

used in simulations for drift compensation. To simplify the situation, we use features 0, 4 and 7 from
a single sensor during the second month (see [34] for details) and perform normalization for each
feature in a similar fashion Section 4.2, yielding a dataset comprising 445 readings. The network
architecture and train/test split are identical to Section 4.2.

As before, we train ACNet by minimizing log-loss and compare our results against the Clayton,
Frank, and Gumbel copulas. The results are in Figure 8. We observe that ACNet is able to fit the data
reasonably despite the data not being entirely symmetric over the 3 dimensions. ACNet achieves a
test/train loss of -1.389 and -1.456, outperforming the Frank copula (the best performing parametric
copula), which obtained a test/train loss of -1.356 and -1.357. Similar to the Boston housing dataset,
ACNet overfits. This is unsurprising since the dataset is fairly small.

Generally, we do not recommend using ACNet with high dimensions. First, this often results in
numerical issues since training ACNet by minimizing the log-loss requires differentiating the copula
d times. Generally, we observe that ACNet faces numerical problems for d ≥ 5 even when employing
double precision. Second, high dimensional data is rarely symmetric unless there is some underlying
structure supporting this belief.

Failure cases. Not all datasets are well modelled by ACNet. Consider the POWER dataset [12]
(Figure 9), which contains measurements for electric power consumption in a single household. For
simplicity, we focus on the joint distribution of the power consumption between the kitchen and laun-
dry room. Clearly, the POWER dataset is unlike the previous distributions, as it posesses a high level
of ‘discreteness’. Since there are few appliances in each room and each active appliance consumes a
fixed amount of power, we would expect that each combination of active appliances would lead to a
distinct profile in power consumption. As seen from Figure 9, ACNet is unable to accurately fit this
distribution. It is worth noting however, that despite learning a distribution that appears qualitatively
different, ACNet still achieves a test loss of -0.221, which is significantly better than the uniform dis-
tribution and slightly superior to the Clayton copula, the best fit among the copula we compared with.
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Figure 9: Left: Normalized POWER
dataset. Right: Learned ACNet model.

Running times. ACNet’s generator is represented by a
neural network and is thus slower to train compared to
single-parameter copulas. However, performing training
is still feasible in practice. With our experimental setup,
we are able to train 15 minibatches each of size 200 in 1
second without utilizing a GPU. Furthermore, in all our
experiments, the network converges within 10 ·4 iterations.
For a training set with 2000 points, ACNet converges in
3-5 hours. Computational costs are split roughly evenly
between the forward and backward passes—the former involves solving for the inverse while the
latter involves taking 2 (or more) rounds of differentiation.

5 Conclusion

In this paper, we propose ACNet, a novel neural network architecture which learns completely
monotone generators of Archimedean copula. ACNet’s network weights can be interpreted as
parameters of a Markov reward process, leading to an efficient sampling algorithm. Using ACNet,
one is able to compute numerous probabilistic quantities, unlike existing deep models. Empirically,
ACNet is able to match or outperform common Archimedean copulas in fitting synthetic and real-
world data, and is also able to learn in the presence of uncertainty in data. Future work include
moving beyond completely monotone generators, learning hierarchical Archimedean copulas, as well
as developing methods to jointly learn marginals.
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6 Broader impact statement

Copulas have held the dubious honor of being partially responsible for the financial crisis of 2008
[23]. Back then, it was commonplace for analysts and traders to model prices of collateralized debt
obligations (CDOs) by means of the Gaussian copula [22]. Gaussian copulas were extremely simple
and gained popularity rapidly. Yet today, this method is widely criticised as being overly simplistic as
it effectively summarizes associations between securities into a single number. Of course, copulas
now have found a much wider range of applications, many of which are more grounded than credit
and risk modeling. Nonetheless, the criticism that Gaussian—or for that matter, any simple parametric
measure of dependency is too simple, still stands.

ACNet is one attempt to tackle this problem, possibly beyond financial applications. While still
retaining the theoretical properties of Archimedean copula, ACNet can model dependencies which
have no simple parametric form, and can alleviate some difficulties researchers have when facing the
problem of model selection. We hope that with a more complex model, the use of ACNet will be able
to overcome some of the deficiencies exhibited by Gaussian copula. Nonetheless, we continue to
stress caution in the careless or flagrant application of copulas—or the overreliance on probabilistic
modeling—in domains where such assumptions are not grounded.

At a level closer to machine learning, ACNet essentially models (a restricted set of) cumulative
distributions. As described in the paper, this has various applications (see for example, Scenario 2 in
Section 3 of our paper), since it is computationally easy to obtain (conditional) densities from the
distribution function, but not the other way round. We hope that ACNet will motivate researchers to
explore alternatives to learning density functions and apply them where appropriate.
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