
Table A: Additional Ex-
periments (real data).

DATA MIXUP MIXUP-MAN

REGRESSION (MSE)
BH 0.134 ± 0.019 0.130 ± 0.023

WQ 0.717 ± 0.030 0.712 ± 0.028

FB 0.329 ± 0.184 0.387 ± 0.316

BC 0.339 ± 0.025 0.325 ± 0.039

SP 0.208 ± 0.040 0.282 ± 0.023

CM 0.333 ± 0.025 0.386 ± 0.031

CLASSIFICATION (AUROC)
CC 0.763 ± 0.008 0.772 ± 0.007

PD 0.814 ± 0.018 0.808 ± 0.009

BC 0.719 ± 0.020 0.728 ± 0.013

LV 0.586 ± 0.041 0.571 ± 0.025

SH 0.904 ± 0.015 0.916 ± 0.011

RP 0.798 ± 0.016 0.804 ± 0.018

We thank all the reviewers for their valuable suggestions and feedback. We kindly appeal1

to all the reviewers that they will reconsider and improve their scores, because as shown2

again in the new results provided in this rebuttal our method achieved the best performance3

in comparison to all the benchmarks across the real-world datasets. We believe our work4

presents a valuable and general regularization method for supervised learning models.5

[[Reviewer 1]] � Strength of empirical results: We would like to point out that the benefit6

of our method is not only (the magnitude of) the improved performance; we also show that7

our method is consistently providing the best regularization (across every dataset - both8

synthetic and real-data). For example, in the encircled portion of Figure A in this response,9

our method consistently achieved the best MSE in comparison to all the benchmarks across10

the real-world datasets. This consistency is not seen in the other benchmark regularizers,11

which exhibit higher variance in their average rank across all the datasets. This notion is12

also conveyed in the synthetic experiments in Figure 3 and for real-data (classification and13

regression) in Figure 5 in the original manuscript. � Experiments with Mixup: We appreciate the recommendation14

for additional benchmarks. We have conducted the recommended experiments for Mixup and Manifold Mixup and15

show that CASTLE still outperforms the other benchmarks as shown in Table A (please compare with CASTLE in16

Table 3 in the original manuscript) and Figure A for the real datasets.17

[[Reviewer 2]] � Notation clarification: You are assuming correctly - V (W ) is the `1 norm in our methodology. We18

will clarify this in the revised manuscript. � Generalization bounds: The primary goal of our method is improving19

out-of-sample prediction performance which we use a generalization bound as justification. We did not prove the20

consistency of using a reconstruction loss and a norm-based regularizer in DAG learning which has already been proven21

in [49] and [50], respectively. � CNN Limitations: We agree with you and will clarify the limitations of our method as22

we did for CNNs in the Broader Impact statement. � Additional results: We reinforce the superiority of our proposed23

method by providing additional results in Table A and Figure A in the response to Reviewer 1.24

Figure A: Comparison in terms of av-
erage rank (in terms of MSE - lower is
better). CASTLE has the best and most
stable performance across all datasets.

[[Reviewer 3]] � Experimental hyperparameters: As mentioned in lines25

255-256, we performed a grid-search over a wide range of hyperparameters.26

We believe that this is fairly done for each benchmark, as we conducted the27

same grid-search for our model that we did for the other benchmark methods28

(lines 257-258) and applied early stopping for each. The performance gain29

from our regularizer is not due to improper hyperparameter tuning. � L230

missing: Table 2 contains L2 regularization. � Definition of W: We are31

not defining W twice. The adjacency matrix can be represented by a matrix32

containing negative values - see NOTEARS [39] and Non-parametric DAGs33

[40]. Because of this, we can embed the adjacency matrix in the input layers,34

W’s, of the proposed neural network (Section 3.3). � Prediction using35

causal parents: Each feature is constructed using every other feature based36

on the DAG structure embedded in the neural network input layers. When37

a DAG is learned, the parent features (non-zero weights W) are obligated to construct each child (see Figure 2 and38

lines 166-168). � Variable u: In Def. 1, each variable ui is specific for a feature Xi in the DAG, they are not hidden39

confounders, but the random noise to generate the feature Xi. � Causal neighbors: Consider the case where a variable40

is just noise, and therefore does not have any causally adjacent nodes (neighbors). Reconstruction methods, such as41

SAE, naively (and inefficiently) learns to reconstruct noise variables that have no causal implications on the target42

variable. Through DAG learning, our method does not reconstruct these variables as the input weight matrices get43

forced to zero (see Figures 3, 6, and 7). � Sibling variables: We mean the function generating the sibling variables44

may share the some similarities. We will elaborate this point with concrete examples in the revised submission. �45

X vs X: We define the random variables as X and the corresponding data matrix as X. This is standard notation in46

machine learning. � Regularization terms: The description of the regularization terms is given in lines 162-168. We47

will describe them in more detail in the revised paper. � Layer size: We provided the layer size in Section 4 on line48

264. � Acyclicity constraint: Starting on line 165, we introduce and describe Theorem 1 from [39]. We describe49

Theorem 1 by saying, “the graph given by W is a DAG if and only if RW = 0.” � Writing quality: Although the50

other reviewers have positively acknowledged our exposition, we will work to improve the writing quality.51

[[Reviewer 4]] � Scalability: For a typical dataset with hundreds of features or less, the computational training time52

does not differ significantly between the regularizers. For example, on simulated data, an experimental run with53

200 features, 2000 samples, and 200 epochs had an average training time of ∼55s and ∼64s for SAE and CASTLE,54

respectively, on an Intel i7-6850K CPU at 3.60GHz. We will incorporate a computational complexity analysis of our55

method as well as a demonstration of the computational trade-offs between our method and improved performance in56

the revised manuscript. � Notations: We will correct the suggested typos in the revision.57


