# On the Similarity between the Laplace and Neural Tangent Kernels 

## - Supplementary Material -

Amnon Geifman ${ }^{1}$<br>Meirav Galun ${ }^{1}$<br>David Jacobs ${ }^{2}$<br>Ronen Basri ${ }^{1}$<br>${ }^{1}$ Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel<br>${ }^{2}$ Department of Computer Science, University of Maryland, College Park, MD

## A Formulas for NTK

We begin by providing the recursive definition of NTK for fully connected (FC) networks with bias initialized at zero. The formulation includes a parameter $\beta$ that when set to zero the recursive formula coincides with the formula given in [1] for bias-free networks.

The network model. We consider a $L$-hidden-layer fully-connected neural network (in total $L+1$ layers) with bias. Let $\mathbf{x} \in \mathbb{R}^{d}$ (and denote $d_{0}=d$ ), we assume each layer $l \in[L]$ of hidden units includes $d_{l}$ units. The network model is expressed as

$$
\begin{aligned}
\mathbf{g}^{(0)}(\mathbf{x}) & =\mathbf{x} \\
\mathbf{f}^{(l)}(\mathbf{x}) & =W^{(l)} \mathbf{g}^{(l-1)}(\mathbf{x})+\beta \mathbf{b}^{(l)} \in \mathbb{R}^{d_{l}}, \quad l=1, \ldots L \\
\mathbf{g}^{(l)}(\mathbf{x}) & =\sqrt{\frac{c_{\sigma}}{d_{l}}} \sigma\left(\mathbf{f}^{(l)}(\mathbf{x})\right) \in \mathbb{R}^{d_{l}}, \quad l=1, \ldots L \\
f(\theta, \mathbf{x}) & =f^{(L+1)}(\mathbf{x})=W^{(L+1)} \cdot \mathbf{g}^{(L)}(\mathbf{x})+\beta b^{(L+1)}
\end{aligned}
$$

The network parameters $\theta$ include $W^{(L+1)}, W^{(L)}, \ldots, W^{(1)}$, where $W^{(l)} \in \mathbb{R}^{d_{l} \times d_{l-1}}, \mathbf{b}^{(l)} \in \mathbb{R}^{d_{l} \times 1}$, $W^{(L+1)} \in \mathbb{R}^{1 \times d_{L}}, b^{(L+1)} \in \mathbb{R}, \sigma$ is the activation function and $c_{\sigma}=1 /\left(\mathbb{E}_{z \sim \mathcal{N}(0,1)}\left[\sigma(z)^{2}\right]\right)$. The network parameters are initialized with $\mathcal{N}(0, I)$, except for the biases $\left\{\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(L)}, b^{(L+1)}\right\}$, which are initialized with zero.

The recursive formula for NTK. The recursive formula in [9] assumes the bias is initialized with a normal distribution. Here we assume the bias is initialized at zero, yielding a sightly different formulation, which can be readily derived from [9]'s formulation.
Given $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{d}$, we denote the NTK for this fully connected network with bias by $\boldsymbol{k}^{\mathrm{FC}}{ }_{\beta}(\mathrm{L}+1)(\mathbf{x}, \mathbf{z}):=\Theta^{(L)}(\mathbf{x}, \mathbf{z})$. The kernel $\Theta^{(L)}(\mathbf{x}, \mathbf{z})$ is defined using the following recursive definition. Let $h \in[L]$ then

$$
\begin{equation*}
\Theta^{(h)}(\mathbf{x}, \mathbf{z})=\Theta^{(h-1)}(\mathbf{x}, \mathbf{z}) \dot{\Sigma}^{(h)}(\mathbf{x}, \mathbf{z})+\Sigma^{(h)}(\mathbf{x}, \mathbf{z})+\beta^{2} \tag{1}
\end{equation*}
$$

where

$$
\begin{gathered}
\Sigma^{(0)}(\mathbf{x}, \mathbf{z})=\mathbf{x}^{T} \mathbf{z} \\
\Theta^{(0)}(\mathbf{x}, \mathbf{z})=\Sigma^{(0)}(\mathbf{x}, \mathbf{z})+\beta^{2} .
\end{gathered}
$$

and we define

$$
\begin{aligned}
\Sigma^{(h)}(\mathbf{x}, \mathbf{z}) & =c_{\sigma} \mathbb{E}_{(u, v) \backsim N\left(0, \Lambda^{(h-1)}\right)}(\sigma(u) \sigma(v)) \\
\dot{\Sigma}^{(h)}(\mathbf{x}, \mathbf{z}) & =c_{\sigma} \mathbb{E}_{(u, v) \backsim N\left(0, \Lambda^{(h-1)}\right)}(\dot{\sigma}(u) \dot{\sigma}(v)) \\
\Lambda^{(h-1)} & =\left(\begin{array}{ll}
\Sigma^{(h-1)}(\mathbf{x}, \mathbf{x}) & \Sigma^{(h-1)}(\mathbf{x}, \mathbf{z}) \\
\Sigma^{(h-1)}(\mathbf{z}, \mathbf{x}) & \Sigma^{(h-1)}(\mathbf{z}, \mathbf{z})
\end{array}\right) .
\end{aligned}
$$

Now, let

$$
\begin{equation*}
\lambda^{(h-1)}(\mathbf{x}, \mathbf{z})=\frac{\Sigma^{(h-1)}(\mathbf{x}, \mathbf{z})}{\sqrt{\Sigma^{(h-1)}(\mathbf{x}, \mathbf{x}) \Sigma^{(h-1)}(\mathbf{z}, \mathbf{z})}} \tag{2}
\end{equation*}
$$

By definition $\left|\lambda^{(h-1)}\right| \leq 1$, and for ReLU activation we have $c_{\sigma}=2$ and

$$
\begin{align*}
& \Sigma^{(h)}(\mathbf{x}, \mathbf{z})=c_{\sigma} \frac{\lambda^{(h-1)}\left(\pi-\arccos \left(\lambda^{(h-1)}\right)\right)+\sqrt{1-\left(\lambda^{(h-1)}\right)^{2}}}{2 \pi} \sqrt{\Sigma^{(h-1)}(\mathbf{x}, \mathbf{x}) \Sigma^{(h-1)}(\mathbf{z}, \mathbf{z})}  \tag{3}\\
& \dot{\Sigma}^{(h)}(\mathbf{x}, \mathbf{z})=c_{\sigma} \frac{\pi-\arccos \left(\lambda^{(h-1)}\right)}{2 \pi} \tag{4}
\end{align*}
$$

The parameter $\beta$ allows us to consider a fully-connected network either with $(\beta>0)$ or without bias ( $\beta=0$ ). When $\beta=0$, the recursive formulation is the same as existing derivations, e.g., [9]. Finally, the normalized NTK of a FC network with $L+1$ layers, without bias, is given by $\frac{1}{L+1} \boldsymbol{k}^{\mathrm{FC}_{0}(\mathrm{~L}+1)}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.

NTK for a two-layer FC network on $\mathbb{S}^{d-1}$. Using the recursive formulation above, for points on the hypersphere $\mathbb{S}^{d-1}$ NTK for a two-layer FC network with bias initialized at 0 , is as follows. Let $u=\mathbf{x}^{T} \mathbf{z}$, with $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$. Then,

$$
\begin{aligned}
\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(\mathbf{x}, \mathbf{z}) & =\Theta^{(1)}(\mathbf{x}, \mathbf{z}) \\
& =\Theta^{(0)}(\mathbf{x}, \mathbf{z}) \dot{\Sigma}^{(1)}(\mathbf{x}, \mathbf{z})+\Sigma^{(1)}(\mathbf{x}, \mathbf{z})+\beta^{2} \\
& =\left(u+\beta^{2}\right) \frac{\pi-\arccos (u)}{\pi}+\frac{u(\pi-\arccos (u))+\sqrt{1-u^{2}}}{\pi}+\beta^{2}
\end{aligned}
$$

Rearranging, we get

$$
\begin{equation*}
\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(\mathbf{x}, \mathbf{z})=\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(u)=\frac{1}{\pi}\left(\left(2 u+\beta^{2}\right)(\pi-\arccos (u))+\sqrt{1-u^{2}}\right)+\beta^{2} \tag{5}
\end{equation*}
$$

## B NTK on $\mathbb{S}^{d-1}$

This section provides a characterization of NTK on the hypersphere $\mathbb{S}^{d-1}$ under the uniform measure. The recursive formulas of the kernels are given in Appendix A.
Lemma 1. Let $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z}), \mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$, denote the NTK kernels for $F C$ networks with $L \geq 2$ layers, possibly with bias initialized with zero. This kernel is zonal, i.e., $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z})=\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}\left(\mathbf{x}^{T} \mathbf{z}\right)$.

Proof. See Appendix $D$.

To prove the next theorem, we recall several results on the the arithmetics of RKHS, following [8, 15].

## B. 1 RKHS for sums and products of kernels.

Let $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be kernels with RKHS $\mathcal{H}_{\boldsymbol{k}_{1}}$ and $\mathcal{H}_{\boldsymbol{k}_{2}}$, respectively. Then,

1. Aronszajn's kernel sum theorem. The RKHS for $\boldsymbol{k}=\boldsymbol{k}_{1}+\boldsymbol{k}_{2}$ is given by $\mathcal{H}_{\boldsymbol{k}_{1}+\boldsymbol{k}_{2}}=$ $\left\{f_{1}+f_{2} \mid f_{1} \in \mathcal{H}_{\boldsymbol{k}_{1}}, f_{2} \in \mathcal{H}_{\boldsymbol{k}_{2}}\right\}$
2. This yields the kernel sum inclusion. $\mathcal{H}_{\boldsymbol{k}_{1}}, \mathcal{H}_{\boldsymbol{k}_{2}} \subseteq \mathcal{H}_{\boldsymbol{k}_{1}+\boldsymbol{k}_{2}}$
3. Norm addition inequality. $\left\|f_{1}+f_{2}\right\|_{\mathcal{H}_{k_{1}+k_{2}}} \leq\left\|f_{1}\right\|_{\mathcal{H}_{k_{1}}}+\left\|f_{2}\right\|_{\mathcal{H}_{k_{2}}}$
4. Norm product inequality. $\left\|f_{1} \cdot f_{2}\right\|_{\mathcal{H}_{\boldsymbol{k}_{1} \cdot k_{2}}} \leq\left\|f_{1}\right\|_{\mathcal{H}_{\boldsymbol{k}_{1}}} \cdot\left\|f_{2}\right\|_{\mathcal{H}_{\boldsymbol{k}_{2}}}$
5. Aronszajn's inclusion theorem. $\mathcal{H}_{\boldsymbol{k}_{1}} \subseteq \mathcal{H}_{\boldsymbol{k}_{2}}$ if and only if $\exists s>0$, such that $\boldsymbol{k}_{1} \ll s^{2} \boldsymbol{k}_{2}$, where the latter notation means that $s^{2} \boldsymbol{k}_{2}-\boldsymbol{k}_{1}$ is a positive definite kernel over $\mathcal{X}$.

## B. 2 The decay rate of the eigenvalues of NTK

Theorem 1. Let $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$. With bias initialized at zero and $\beta>0$ :

1. $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}$ can be decomposed according to

$$
\begin{equation*}
\boldsymbol{k}^{\mathrm{FC}_{\boldsymbol{\beta}}(\mathrm{L})}(\mathbf{x}, \mathbf{z})=\sum_{k=0}^{\infty} \lambda_{k} \sum_{j=1}^{N(d, k)} Y_{k, j}(\mathbf{x}) Y_{k, j}(\mathbf{z}) \tag{6}
\end{equation*}
$$

with $\lambda_{k}>0$ for all $k \geq 0$ and into $Y_{k, j}$ are the spherical harmonics of $\mathbb{S}^{d-1}$, and
2. $\exists k_{0}$ and constants $C_{1}, C_{2}, C_{3}>0$ that depend on the dimension $d$ such that $\forall k>k_{0}$
(a) $C_{1} k^{-d} \leq \lambda_{k} \leq C_{2} k^{-d}$ if $L=2$, and
(b) $C_{3} k^{-d} \leq \lambda_{k}$ if $L \geq 3$.

We split the theorem into the next two lemmas. The first lemma handles NTK of two-layer FC networks with bias, and the second lemma handles NTK for deep networks.
Lemma 2. Let $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$ and $\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}\left(\mathbf{x}^{T} \mathbf{z}\right)$ as defined in 5 with $\beta>0$. Then, $\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}$ decomposes according to (6) where $\lambda_{k}>0$ for all $k \geq 0$ and $\exists k_{0}$ such that $\forall k \geq k_{0}$

$$
C_{1} k^{-d} \leq \lambda_{k} \leq C_{2} k^{-d}
$$

where $C_{1}, C_{2}>0$ are constants that depend on the dimension $d$.
Proof. To prove the lemma we leverage the results of [3, 5]. First, under the assumption of the uniform measure on $\mathbb{S}^{d-1}$, we can apply Mercer decomposition to $\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(\mathbf{x}, \mathbf{z})$, where the eigenfunctions are the spherical harmonics. This is due to the observation that $\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(\mathbf{x}, \mathbf{z})$ is positive and zonal in $\mathbb{S}^{d-1}$. It is zonal by Lemma 1 and positive, since $\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}$ can be decomposed as

$$
\begin{aligned}
\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(u) & =\frac{1}{\pi}\left(\left(2 u+\beta^{2}\right)(\pi-\arccos (u))+\sqrt{1-u^{2}}\right)+\beta^{2} \\
& =\frac{1}{\pi}\left(2 u(\pi-\arccos (u))+\sqrt{1-u^{2}}\right)+\frac{1}{\pi} \beta^{2}(\pi-\arccos (u))+\beta^{2} \\
& :=\kappa\left(\mathbf{x}^{T} \mathbf{z}\right)+\beta^{2} \kappa_{0}\left(\mathbf{x}^{T} \mathbf{z}\right)+\beta^{2}
\end{aligned}
$$

where $\kappa\left(\mathbf{x}^{T} \mathbf{z}\right)$ is the NTK for a bias-free, two-layer network introduced in [5] and $\kappa_{0}\left(\mathbf{x}^{T} \mathbf{z}\right)$ is known to be the zero-order arc-cosine kernel [6]. By kernel arithmetic, this yields another kernel and this means that $\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}$ is a positive kernel.
Furthermore, according to Proposition 5 in [5]

$$
\kappa\left(\mathbf{x}^{T} \mathbf{z}\right)=\sum_{k=0}^{\infty} \mu_{k} \sum_{j=1}^{N(d, k)} Y_{k, j}(\mathbf{x}) Y_{k, j}(\mathbf{z})
$$

where $Y_{k, j}, j=1, \ldots, N(d, k)$ are spherical harmonics of degree $k$, and the eigenvalues $\mu_{k}$ satisfy $\mu_{0}, \mu_{1}>0, \mu_{k}=0$ if $k=2 j+1$ with $j \geq 1$ and otherwise, $\mu_{k}>0$ and $\mu_{k} \sim C(d) k^{-d}$ as $k \rightarrow \infty$, with $C(d)$ a constant depending only on $d$. Next, following Lemma 17 in [5] the eigenvalues of $\kappa_{0}\left(\mathbf{x}^{T} \mathbf{z}\right)$, denoted $\eta_{k}$ satisfy $\eta_{0}, \eta_{1}>0, \eta_{k}>0$ if $k=2 j+1$, with $j \geq 1$ and behave asymptotically as $C_{0}(d) k^{-d}$. Consequently, $\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}=\kappa+\beta^{2} \kappa_{0}+\beta^{2}$, and since both $\kappa$ and $\kappa_{0}$ have the spherical
harmonics as their eigenfunctions, their eigenvalues are given by $\lambda_{k}=\mu_{k}+\beta^{2} \eta_{k}>0$ for $k>0$ and $\lambda_{0}=\mu_{0}+\beta^{2} \eta_{0}+\beta^{2}>0$, and asymptotically $\lambda_{k} \sim \tilde{C}(d) k^{-d}$, where $\tilde{C}(d)=C(d)+\beta^{2} C_{0}(d)$.
To conclude, this implies that $\exists k_{0}, C_{1}(d)>0$ and $C_{2}(d)>0$, such that for all $k \geq k_{0}$ it holds that

$$
C_{1} k^{-d} \leq \lambda_{k} \leq C_{2} k^{-d}
$$

and also, unless $\beta=0$, for all $k \geq 0$

$$
\lambda_{k}>0
$$

Next, we prove the second part of Theorem 1 that relates to deep FC networks with bias, $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}$, i.e. we prove the following lemma.
Lemma 3. Let $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$ and $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}\left(\mathbf{x}^{T} \mathbf{z}\right)$ as defined in Appendix $A$ Then

1. $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}$ decomposes according to (6) with $\lambda_{k}>0$ for all $k \geq 0$
2. $\exists k_{0}$ such that $\forall k>k_{0}$ it holds that $C_{3} k^{-d} \leq \lambda_{k}$ in which $C_{3}>0$ depends on the dimension $d$
3. $\mathcal{H}^{\mathrm{FC}_{\beta}(\mathrm{L}-1)} \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(\mathrm{L})}$

Proof. Following Lemma 1 it holds that $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}$ is zonal, and therefore can be decomposed according to (6). In order to prove the lemma we look at the recursive formulation of the NTK kernel, i.e.,

$$
\begin{equation*}
\boldsymbol{k}^{\mathrm{FC}_{\beta}(1+1)}=\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{l})} \dot{\Sigma}^{(l)}+\Sigma^{(l)}+\beta^{2} \tag{7}
\end{equation*}
$$

Now, following Lemma 17 in [5] all of the eigenvalues of $\dot{\Sigma}^{(l)}$ are positive, including $\lambda_{0}>0$. This implies that the constant function $g(\mathbf{x}) \equiv 1 \in \mathcal{H}_{\dot{\Sigma}^{(l)}}$.
Now, we use the norm multiplicity inequality in Sec. B.1 and show that $\mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}} \boldsymbol{\beta}^{(1)}} \subseteq \mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}} \boldsymbol{\beta}^{(1)} \cdot \dot{\Sigma}^{(l)}}$. Let $f \in \mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}_{\beta}(1)}}$, i.e., $\|f\|_{\mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}}}^{\boldsymbol{\beta}}(\mathrm{l})}<\infty$. We showed that $1 \in \mathcal{H}_{\dot{\Sigma}^{(l)}}$. Therefore, $\|f \cdot 1\|_{\mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}_{\beta^{(1)} \cdot \dot{\Sigma}^{(l)}}}} \leq, ~} \leq$ $\|f\|_{\mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}}}^{\beta^{(1)}}}\|1\|_{\mathcal{H}_{\dot{\Sigma}^{(l)}}}<\infty$, implying that $f \in \mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}_{\beta}(1)} \cdot \dot{\Sigma}^{(l)}}$.
Finally, according to the kernel sum inclusion in Sec. B.1, relying on the recursive formulation (7) we have $\mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}}{ }_{\beta}^{(1)}} \subseteq \mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}_{\boldsymbol{\beta}}(1)} \cdot \dot{\Sigma}^{(l)}} \subseteq \mathcal{H}_{\boldsymbol{k}^{\mathrm{FC}_{\beta}(1+1)}}$. Therefore,

$$
\begin{equation*}
\mathcal{H}^{\mathrm{FC}_{\beta}(2)} \subseteq \ldots \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(\mathrm{L}-1)} \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(\mathrm{L})} \tag{8}
\end{equation*}
$$

This completes the proof, by using Aronszan's inclusion theorem as follows. Since $H^{k^{F C(2)}} \subseteq$ $H^{k^{F C(L)}}$, then by Aronszajn's inclusion theorem $\exists s>0$ such that $\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)} \ll s^{2} \boldsymbol{k}^{\mathrm{FC}}{ }_{\beta}(\mathrm{L})$. Since the kernels are zonal on the sphere (with uniform distribution of the data) their corresponding RKHS share the same eigenfunctions, namely the spherical harmonics.
Therefore, for all $k \geq 0$ it holds

$$
s^{2} \lambda_{k}^{k^{\mathrm{FC}_{\beta}(\mathrm{L})}} \geq \lambda_{k}^{k^{\mathrm{FC}_{\beta}(2)}}>0
$$

and for $k \rightarrow \infty$ it holds that

$$
s^{2} \lambda_{k}^{\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}} \geq \lambda_{k}^{\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}} \geq \frac{C_{1}}{k^{d}}
$$

completing the proof.

## C Laplace Kernel in $\mathbb{S}^{d-1}$

The Laplace kernel $\boldsymbol{k}(\mathbf{x}, \mathbf{y})=e^{-\bar{c}\|\mathbf{x}-\mathbf{y}\|}$ restricted to the sphere $\mathbb{S}^{d-1}$ is defined as

$$
\begin{equation*}
K(\mathbf{x}, \mathbf{y})=\boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{y}\right)=e^{-c \sqrt{1-x^{T} y}} \tag{9}
\end{equation*}
$$

where $c>0$ is a tuning parameter. We next prove an asymptotic bound on its eigenvalues.
Theorem 2. Let $\mathbf{x}, \mathbf{y} \in \mathbb{S}^{d-1}$ and $\boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{y}\right)=e^{-c \sqrt{1-\mathbf{x}^{T} \mathbf{y}}}$ be the Laplace kernel, restricted to $\mathbb{S}^{d-1}$. Then $\boldsymbol{k}$ can be decomposed as in (6) with the eigenvalues $\lambda_{k}$ satisfying $\lambda_{k}>0$ for all $k \geq 0$ and $\exists k_{0}$ such that $\forall k>k_{0}$ it holds that:

$$
B_{1} k^{-d} \leq \lambda_{k} \leq B_{2} k^{-d}
$$

where $B_{1}, B_{2}>0$ are constants that depend on the dimension $d$ and the parameter $c$.
Our proof relies on several supporting lemmas.
Lemma 4. ([]7] Thm 1.14 page 6) For all $\alpha>0$ it holds that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} e^{-2 \pi\|\mathbf{x}\| \alpha} e^{-2 \pi i \mathbf{t} \cdot \mathbf{x}} d \mathbf{x}=c_{d} \frac{\alpha}{\left(\alpha^{2}+\|\mathbf{t}\|^{2}\right)^{(d+1) / 2}} \tag{10}
\end{equation*}
$$

where $c_{d}=\Gamma\left(\frac{d+1}{2}\right) /\left(\pi^{(d+1) / 2}\right)$
Lemma 5. Let $f(\mathbf{x})=e^{-c\|\mathbf{x}\|}$ with $\mathbf{x} \in \mathbb{R}^{d}$. Then, its Fourier transform $\Phi(\mathbf{w})$ with $\mathbf{w} \in \mathbb{R}^{d}$ is $\Phi(\mathbf{w})=\Phi(\|\mathbf{w}\|)=C\left(1+\|\mathbf{w}\|^{2} / c^{2}\right)^{-(d+1) / 2}$ for some constant $C>0$.

Proof. To calculate the Fourier transform we need to calculate the following integral

$$
\Phi(\mathbf{w})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{-c\|\mathbf{x}\|} e^{-i \mathbf{x} \cdot \mathbf{w}} d \mathbf{x}
$$

According to the Lemma 4, plugging $\alpha=\frac{c}{2 \pi}$ and $\mathbf{t}=\frac{\mathbf{w}}{2 \pi}$ into (10) yields

$$
\Phi(\mathbf{w})=c_{d} \frac{c}{\left(c^{2}+\|\mathbf{w}\|^{2}\right)^{(d+1) / 2}}=\frac{c_{d}}{c^{(d+1)}} \frac{1}{\left(1+\frac{\|\mathbf{w}\|^{2}}{c^{2}}\right)^{(d+1) / 2}}=C\left(1+\frac{\|\mathbf{w}\|^{2}}{c^{2}}\right)^{-(d+1) / 2}
$$

with $C=\frac{c_{d}}{c^{(d+1)}}>0$.

Lemma 6. ([]1] Thm. 4.1) Let $f(\mathbf{x})$ be defined as $f(\|\mathbf{x}\|)$ for all $\mathbf{x} \in \mathbb{R}^{d}$, and let $\Phi(\mathbf{w})=\Phi(\|\mathbf{w}\|)$ denote its Fourier Transform in $\mathbb{R}^{d}$. Then, its corresponding kernel on $\mathbb{S}^{d-1}$ is defined as the restriction $\boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{y}\right)=f(\|\mathbf{x}-\mathbf{y}\|)$ with $\mathbf{x}, \mathbf{y} \in \mathbb{S}^{d-1}$. By Mercer's Theorem the spherical harmonic expansion of $\boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{y}\right)$ is of the form

$$
\boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{y}\right)=\sum_{k=0}^{\infty} \lambda_{k} \sum_{j=1}^{N(d, k)} Y_{k, j}(\mathbf{x}) Y_{k, j}(\mathbf{y})
$$

Then, the eigenvalues in the spherical harmonic expansion $\lambda_{k}$ are related to the Fourier coefficients of $f, \Phi(t)$, as follows

$$
\begin{equation*}
\lambda_{k}=\int_{o}^{\infty} t \Phi(t) J_{k+\frac{d-2}{2}}^{2}(t) d t \tag{11}
\end{equation*}
$$

where $J_{v}(t)$ is the usual Bessel function of the first kind of order $v$.
Having, these supporting Lemmas, we can now prove Theorem 2
Proof. First, $\boldsymbol{k}(\cdot, \cdot)$ is a positive zonal kernel and hence can be written as

$$
\boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{y}\right)=\sum_{k=0}^{\infty} \lambda_{k} \sum_{j=1}^{N(d, k)} Y_{k, j}(\mathbf{x}) Y_{k, j}(\mathbf{y})
$$

Next, to derive the bounds we plug the Fourier coefficients, $\Phi(\omega)$, computed in Lemma5, into the expression for the harmonic coefficients, $\lambda_{k}$ 11), obtaining

$$
\lambda_{k}=C \int_{0}^{\infty} \frac{t}{\left(1+\frac{t^{2}}{c^{2}}\right)^{\frac{d+1}{2}}} J_{k+\frac{d-2}{2}}^{2}(t) d t
$$

Applying a change of variables $t=c x$ we get

$$
\begin{equation*}
\lambda_{k}=c^{2} C \int_{0}^{\infty} \frac{x}{\left(1+x^{2}\right)^{\frac{d+1}{2}}} J_{k+\frac{d-2}{2}}^{2}(c x) d x \tag{12}
\end{equation*}
$$

We next bound this integral from both above and below. To get an upper bound we observe that for $x \in[0, \infty) x^{2}<1+x^{2}$, implying that $x\left(1+x^{2}\right)^{-(d+1) / 2}<x^{-d}$, and consequently

$$
\lambda_{k}<c^{2} C \int_{0}^{\infty} x^{-d} J_{k+\frac{d-2}{2}}^{2}(c x) d x:=c^{2} C A(k, d, c)
$$

The above integral $A(k, d, c)$ was computed in [18] (Sec. 13.41 page 402 with $a:=c, \lambda:=d$, and $\mu=\nu:=k+(d-2) / 2)$ which gives

$$
\begin{equation*}
A(k, d, c)=\int_{0}^{\infty} x^{-d} J_{k+\frac{d-2}{2}}^{2}(c x) d x=\frac{\left(\frac{c}{2}\right)^{d-1} \Gamma(d) \Gamma\left(k-\frac{1}{2}\right)}{2 \Gamma^{2}\left(\frac{d+1}{2}\right) \Gamma\left(k+d-\frac{1}{2}\right)} \tag{13}
\end{equation*}
$$

Using Stirling's formula $\Gamma(x)=\sqrt{2 \pi} x^{x-1 / 2} e^{-x}\left(1+O\left(x^{-1}\right)\right)$ as $x \rightarrow \infty$. Consequently, for sufficiently large $k \gg d$

$$
\begin{align*}
\lambda_{k} & <c^{2} C A(k, d, c)=c^{2} C \frac{\left(\frac{c}{2}\right)^{d-1} \Gamma(d) \Gamma\left(k-\frac{1}{2}\right)}{2 \Gamma^{2}\left(\frac{d+1}{2}\right) \Gamma\left(k+d-\frac{1}{2}\right)} \\
& \sim c^{2} C \frac{\left(\frac{c}{2}\right)^{d-1} \Gamma(d)}{2 \Gamma^{2}\left(\frac{d+1}{2}\right)} \cdot \frac{\left(k-\frac{1}{2}\right)^{k-1} e^{-k+\frac{1}{2}}}{\left(k+d-\frac{1}{2}\right)^{k+d-1} e^{-k-d+\frac{1}{2}}}\left(1+O\left(k^{-1}\right)\right) \\
& =B_{2} k^{-d} \tag{14}
\end{align*}
$$

where $B_{2}$ depends on $c, C$ and the dimension $d$.
We use again the relation the derive a lower bound for $\lambda_{k}$. First, note that since $t, 1+t^{2}, J_{v}^{2}(t)$ are all non-negative for $t \in[0, \infty)$ and therefore

$$
\begin{aligned}
\lambda_{k} & \geq c^{2} C \int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{\frac{d+1}{2}}} J_{k+\frac{d-2}{2}}^{2}(c x) d x \geq c^{2} C \int_{1}^{\infty} \frac{1}{2^{\frac{d+1}{2}} x^{d}} J_{k+\frac{d-2}{2}}^{2}(c x) d x \\
& =\frac{C c^{2}}{2^{\frac{d+1}{2}}}\left(\int_{0}^{\infty} x^{-d} J_{k+\frac{d-2}{2}}^{2}(c x) d x-\int_{0}^{1} x^{-d} J_{k+\frac{d-2}{2}}^{2}(c x) d x\right) \\
& =\frac{C c^{2}}{2^{\frac{d+1}{2}}} \int_{0}^{\infty} x^{-d} J_{k+\frac{d-2}{2}}^{2}(c x) d x\left(1-\frac{\int_{0}^{1} x^{-d} J_{k+\frac{d-2}{2}}^{2}(c x) d x}{\int_{0}^{\infty} x^{-d} J_{k+\frac{d-2}{2}}^{2}(c x) d x}\right) \\
& =\frac{C c^{2}}{2^{\frac{d+1}{2}}} A(k, d, c)\left(1-\frac{B(k, d, c)}{A(k, d, c)}\right)
\end{aligned}
$$

where $B(k, d, c):=\int_{0}^{1} x^{-d} J_{k+\frac{d-2}{2}}^{2}(c x) d x$. The first integral, $A(k, d, c)$, was shown in 14) to converge asymptotically to $B_{2} k^{-d}$. To bound the second integral, $B(k, d, c)$, we use an inequality from [18] (Section 3.31, page 49), which states that for $v, t \in \mathbb{R}, v>-\frac{1}{2}$,

$$
\left|J_{v}(t)\right| \leq \frac{2^{-v} t^{v}}{\Gamma(v+1)}
$$

This gives an upper bound for $B(k, d, c)$

$$
B(k, d, c)=\int_{0}^{1} x^{-d} J_{k+\frac{d-2}{2}}^{2}(c x) d x \leq \int_{0}^{1} x^{-d} \frac{2^{-2\left(k+\frac{d-2}{2}\right)}(c x)^{2\left(k+\frac{d-2}{2}\right)}}{\Gamma^{2}\left(k+\frac{d}{2}\right)} d x \leq \frac{\left(\frac{c}{2}\right)^{2\left(k+\frac{d-2}{2}\right)}}{\Gamma^{2}\left(k+\frac{d}{2}\right)}
$$

Applying Stirling's formula we obtain $B(k, d, c) \leq O\left(\frac{\left(\frac{c e}{2}\right)^{2\left(k+\frac{d}{2}\right)}(k+d)}{\left(k+\frac{d}{2}\right)^{2\left(k+\frac{d}{2}\right)}}\right)$, which implies that as $k$ grows, $\frac{B(k, d, c)}{A(k, d, c)} \rightarrow 0$. Therefore, asymptotically for large $k$

$$
\lambda_{k} \geq \frac{C c^{2}}{2^{\frac{d+1}{2}}} A(k, d, c)\left(1-\frac{B(k, d, c)}{A(k, d, c)}\right) \geq \frac{C c^{2}}{2^{\frac{d+1}{2}}} A(k, d, c)
$$

from which we conclude that $\lambda_{k}>B_{1} k^{-d}$, where the constant $B_{1}$ depends on $c, C$, and $d$. We have therefore shown that there exists $k_{0}$ such that $\forall k>k_{0}$

$$
B_{1} k^{-d} \leq \lambda_{k} \leq B_{2} k^{-d}
$$

Finally, to show that $\lambda_{k}>0$ for all $k \geq 0$ we use again (11) in Lemma which states that

$$
\lambda_{k}=\int_{0}^{\infty} t \Phi(t) J_{k+\frac{d-2}{2}}^{2}(t) d t
$$

Note that in the interval $(0, \infty)$ it holds that $t>0$ and $\Phi(t)>0$ due to Lemma 5. Therefore $\lambda_{k}=0$ implies that $J_{k+\frac{d-2}{2}}^{2}(t)$ is identically 0 on $(0, \infty)$, contradicting the properties of the Bessel function of the first kind. Hence, $\lambda_{k}>0$ for all $k$.

## C. 1 Proof of main theorem

Theorem 3. Let $\mathcal{H}^{\mathrm{Lap}}$ denote the RKHS for the Laplace kernel restricted to $\mathbb{S}^{d-1}$, and let $\mathcal{H}^{\mathrm{FC}_{\beta}(\mathrm{L})}$ denote the NTK corresponding to a FC network with L layers with bias, restricted to $\mathbb{S}^{d-1}$, then $\mathcal{H}^{\mathrm{Lap}}=\mathcal{H}^{\mathrm{FC}_{\beta}(2)} \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(\mathrm{L})}$.

Proof. Let $\lambda_{k}^{\mathrm{Lap}}, \lambda_{k}^{\mathrm{FC}_{\beta}(2)}$, and $\lambda_{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}$ denote the eigenvalues of the three kernel, $\boldsymbol{k}^{\mathrm{Lap}}, \boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}$, and $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}$ in their Mercer's decomposition, i.e.,

$$
\boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{z}\right)=\sum_{k=0}^{\infty} \lambda_{k} \sum_{j=1}^{N(d, k)} Y_{k, j}(\mathbf{x}) Y_{k, j}(\mathbf{z})
$$

Denote by $k_{0}$ the smallest $k$ for which Theorems 1 and 2 hold simultaneously. We first show that $\mathcal{H}^{\text {Lap }} \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(2)}$. Let $f(\mathbf{x}) \in \mathcal{H}^{\text {Lap }}$, and let $f(\mathbf{x})=\sum_{k=0}^{\infty} \sum_{j=0}^{N(d, k)} \alpha_{k, j} Y_{k, j}(\mathbf{x})$ denote its spherical harmonic decomposition. Then $\|f\|_{\mathcal{H}^{\text {Lap }}}<\infty$ implies, due to Theorem 2 that

$$
\sum_{k=k_{0}}^{\infty} \sum_{j=0}^{N(d, k)} \frac{1}{B_{2}} k^{d} \alpha_{k, j}^{2} \leq \sum_{k=k_{0}}^{\infty} \sum_{j=0}^{N(d, k)} \frac{\alpha_{k, j}^{2}}{\lambda_{k}^{\mathrm{Lap}}}<\infty
$$

Combining this with Theorem 1, and recalling that $\lambda_{k}^{\mathrm{FC}_{\beta}(2)}>0$ for all $k \geq 0$ ), we have

$$
\sum_{k=k_{0}}^{\infty} \sum_{j=0}^{N(d, k)} \frac{\alpha_{k, j}^{2}}{\lambda_{k}^{\mathrm{FC}}(2)} \leq \sum_{k=k_{0}}^{\infty} \sum_{j=0}^{N(d, k)} \frac{1}{C_{1}} k^{d} \alpha_{k, j}^{2}=\frac{B_{2}}{C_{1}} \sum_{k=k_{0}}^{\infty} \sum_{j=0}^{N(d, k)} \frac{1}{B_{2}} k^{d} \alpha_{k, j}^{2}<\infty,
$$

implying that $\|f\|_{\mathcal{H}^{\mathrm{FC}}(2)}^{2}<\infty$, and so $\mathcal{H}^{\mathrm{Lap}} \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(2)}$. Similar arguments can be used to show that $\mathcal{H}^{\mathrm{FC}_{\beta}(2)} \subseteq \mathcal{H}^{\mathrm{Lap}}$, proving that $\mathcal{H}^{\mathrm{FC}_{\beta}(2)}=\mathcal{H}^{\mathrm{Lap}}$. Finally, following the inclusion relation (8) the theorem is proved.

## D NTK in $\mathbb{R}^{d}$

In this section we denote $r_{x}=\|\mathbf{x}\|, r_{z}=\|\mathbf{z}\|$ and by $\hat{\mathbf{x}}=\mathbf{x} / r_{x}, \hat{\mathbf{z}}=\mathbf{z} / r_{z}$. We first prove Theorem 4 and as a consequence Lemma 7 is proved.
Theorem 4. Let $\boldsymbol{k}^{\mathrm{FC}_{0}(\mathrm{~L})}(\mathbf{x}, \mathbf{z}), \boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z}), \mathbf{x}, \mathbf{z} \in \mathbb{R}^{d}$, denote the NTK kernel with $L$ layers without bias and with bias initialized at zero, respectively. It holds that (1) Bias-free $\boldsymbol{k}^{\mathrm{FC}_{0}(\mathrm{~L})}$ is homogeneous of order 1. (2) Let $\boldsymbol{k}^{\mathrm{Bias}(\mathrm{L})}=\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}-\boldsymbol{k}^{\mathrm{FC} C_{0}(\mathrm{~L})}$. Then, $\boldsymbol{k}^{\mathrm{Bias}(\mathrm{L})}$ is homogeneous of order 0.

Lemma 7. Let $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z}), \mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$, denote the NTK kernels for $F C$ networks with $L \geq 2$ layers, possibly with bias initialized with zero. This kernel is zonal, i.e., $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z})=\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}\left(\mathbf{x}^{T} \mathbf{z}\right)$.

To that end, we first prove the following supporting Lemma.
Lemma 8. For $\mathrm{x}, \mathrm{z} \in \mathbb{R}^{d}$ it holds that

$$
\Theta^{(L)}(\mathbf{x}, \mathbf{z})=r_{x} r_{z} \Theta^{(L)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=r_{x} r_{z} \Theta^{(L)}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)
$$

where $\Theta^{(L)}=\boldsymbol{k}^{\mathrm{FC}_{0}(\mathrm{~L}+1)}$, as defined in Appendix $A$

Proof. We prove this by induction over the recursive definition of $\boldsymbol{k}^{\mathrm{FC}} \mathrm{C}_{0}(\mathrm{~L}+1)=\Theta^{(L)}(\mathbf{x}, \mathbf{z})$. Let $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{d}$, then by definition

$$
\Theta^{(0)}(\mathbf{x}, \mathbf{z})=\mathbf{x}^{T} \mathbf{z}=r_{x} r_{z} \Theta^{(0)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=r_{x} r_{z} \Theta^{(0)}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)
$$

and

$$
\Sigma^{(0)}(\mathbf{x}, \mathbf{z})=\mathbf{x}^{T} \mathbf{z}=r_{x} r_{z} \Sigma^{(0)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=r_{x} r_{z} \Sigma^{(0)}\left(\hat{\mathbf{x}}^{T} \mathbf{z}\right)
$$

Assuming the induction hypothesis holds for $l$, i.e.,

$$
\Theta^{(l)}(\mathbf{x}, \mathbf{z})=r_{x} r_{z} \Theta^{(l)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=r_{x} r_{z} \Theta^{(l)}\left(\hat{\mathbf{x}}^{T} \mathbf{z}\right)
$$

and

$$
\Sigma^{(l)}(\mathbf{x}, \mathbf{z})=r_{x} r_{z} \Sigma^{(l)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=r_{x} r_{z} \Sigma^{(l)}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)
$$

we prove that those equalities are also true for $l+1$.
By the definition of $\lambda^{(l)}(2)$ and the induction hypothesis for $\Sigma^{(l)}$ we have that

$$
\lambda^{(l)}(\mathbf{x}, \mathbf{z})=\frac{\Sigma^{(l)}(\mathbf{x}, \mathbf{z})}{\sqrt{\Sigma^{(l)}(\mathbf{x}, \mathbf{x}) \Sigma^{(l)}(\mathbf{z}, \mathbf{z})}}=\frac{\Sigma^{(l)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})}{\left.\sqrt{\Sigma^{(l)}(\hat{\mathbf{x}}}, \hat{\mathbf{x}}\right) \Sigma^{(l)}(\hat{\mathbf{z}}, \hat{\mathbf{z}})}=\lambda^{(l)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=\lambda^{(l)}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)
$$

Plugging this result in the definitions of $\Sigma(3)$ and $\dot{\Sigma}$ (4), using the induction hypothesis we obtain

$$
\begin{align*}
& \Sigma^{(l+1)}(\mathbf{x}, \mathbf{z})=r_{x} r_{z} \Sigma^{(l+1)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=r_{x} r_{z} \Sigma^{(l+1)}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right) \\
& \dot{\Sigma}^{(l+1)}(\mathbf{x}, \mathbf{z})=\dot{\Sigma}^{(l+1)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=\dot{\Sigma}^{(l+1)}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right) \tag{15}
\end{align*}
$$

Finally, using the recursion formula $1 \beta(\beta=0)$ and the induction hypothesis for $\Theta^{(l)}$, we obtain

$$
\Theta^{(l+1)}(\mathbf{x}, \mathbf{z})=r_{x} r_{z} \Theta^{(l+1)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=r_{x} r_{z} \Theta^{(l+1)}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)
$$

A corollary of this Lemma is that $\boldsymbol{k}^{\mathrm{FC}_{0}(\mathrm{~L})}$ is homogeneous of order 1 in $\mathbb{R}^{d}$, proving the first part of Theorem 4 Also, it is homogeneous of order 0 in $\mathbb{S}^{d-1}$, proving Lemma 7 for $\beta=0$.
We next turn to proving the second part of Theorem 4, i.e., that $\boldsymbol{k}^{\mathrm{Bias}(\mathrm{L})}=\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}-\boldsymbol{k}^{\mathrm{FC}_{0}(\mathrm{~L})}$ is homogeneous of order 0 in $\mathbb{R}^{d}$. By rewriting the recursive definition of $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}$, shown in Appendix A, we can express $\boldsymbol{k}^{\operatorname{Bias}(\mathrm{L})}$ in the following recursive manner $\boldsymbol{k}^{\operatorname{Bias}(1)}=\beta^{2}$, and $\boldsymbol{k}^{\operatorname{Bias}(1+1)}=\boldsymbol{k}^{\operatorname{Bias}(1)} \dot{\Sigma}+\beta^{2}$. Therefore, $\boldsymbol{k}^{\operatorname{Bias}(\mathrm{L})}$ is homogeneous of order zero, since it depends only on $\dot{\Sigma}$, which is by itself homogeneous of order zero (15). This concludes Theorem 4
Finally, Lemma 7 is proved, since $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}=\boldsymbol{k}^{\mathrm{FC}_{0}(\mathrm{~L})}+\boldsymbol{k}^{\text {Bias(L) }}$, and when restricted to $\mathbb{S}^{d-1}$ both components are homogeneous of order 0 .

Theorem 5. Let $p(r)$ be a decaying density on $[0, \infty)$ such that $0<\int_{0}^{\infty} p(r) r^{2} d r<\infty$ and $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{d}$.

1. Let $\boldsymbol{k}_{0}(\mathbf{x}, \mathbf{z})$ be homogeneous of order 1 such that $\boldsymbol{k}_{0}(\mathbf{x}, \mathbf{z})=r_{x} r_{z} \hat{\boldsymbol{k}}_{0}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)$. Then its eigenfunctions with respect to $p\left(r_{x}\right)$ are given by $\Psi_{k, j}=a r_{x} Y_{k, j}(\hat{\mathbf{x}})$, where $Y_{k, j}$ are the spherical harmonics in $\mathbb{S}^{d-1}$ and $a \in \mathbb{R}$.
2. Let $\boldsymbol{k}(\mathbf{x}, \mathbf{z})=\boldsymbol{k}_{0}(\mathbf{x}, \mathbf{z})+\boldsymbol{k}_{1}(\mathbf{x}, \mathbf{z})$ so that $\boldsymbol{k}_{0}$ as in 1 and $\boldsymbol{k}_{1}$ is homogeneous of order 0 . Then the eigenfunctions of $\boldsymbol{k}$ are of the form $\Psi_{k, j}=\left(a r_{x}+b\right) Y_{k, j}(\hat{\mathbf{x}})$.

Proof. 1. Since $\hat{\boldsymbol{k}}_{0}$ is zonal, its Mercer's representation reads

$$
\hat{\boldsymbol{k}}_{0}(\hat{\mathbf{x}}, \hat{\mathbf{z}})=\sum_{k=0}^{\infty} \lambda_{k} \sum_{j=1}^{N(d, k)} Y_{k, j}(\hat{\mathbf{x}}) Y_{k, j}(\hat{\mathbf{z}})
$$

where the spherical harmonics $Y_{k, j}$ are the eigenfunctions of $\hat{\boldsymbol{k}}_{0}$. Consequently, as noted also in [5],

$$
\boldsymbol{k}_{0}(\mathbf{x}, \mathbf{z})=a^{2} \sum_{k=0}^{\infty} \lambda_{k} \sum_{j=1}^{N(d, k)} r_{x} Y_{k, j}(\hat{\mathbf{x}}) r_{z} Y_{k, j}(\hat{\mathbf{z}})
$$

The orthogonality of the eigenfunctions $\Psi_{k, j}(\mathbf{x})=a r_{x} Y_{k, j}(\hat{\mathbf{x}})$ is verified as follows. Let $\bar{p}(\mathbf{x})$ denote a probability density on $\mathbb{R}^{d}$ such that $\bar{p}(\mathbf{x})=p\left(r_{x}\right) / A\left(r_{x}\right)$, where $A\left(r_{x}\right)$ denotes the surface area of a sphere of radius $r_{x}$ in $\mathbb{R}^{d}$. Then,
$\int_{\mathbb{R}^{d}} \Psi_{k, j}(\mathbf{x}) \Psi_{k^{\prime}, j^{\prime}}(\mathbf{x}) \bar{p}(\mathbf{x}) d \mathbf{x}=a^{2} \int_{0}^{\infty} \frac{r_{x}^{d+1} p\left(r_{x}\right)}{A\left(r_{x}\right)} d r_{x} \int_{\mathbb{S}^{d-1}} Y_{k, j}(\hat{\mathbf{x}}) Y_{k^{\prime}, j^{\prime}}(\hat{\mathbf{x}}) d \hat{\mathbf{x}}=\delta_{k, k^{\prime}} \delta_{j, j^{\prime}}$,
where the rightmost equality is due to the orthogonality of the spherical harmonics and by setting

$$
a^{2}=\left(\int_{0}^{\infty} \frac{r_{x}^{d+1} p\left(r_{x}\right)}{A\left(r_{x}\right)} d r_{x}\right)^{-1}
$$

Clearly this integral is positive, and the conditions of the theorem guarantee that it is finite.
2. By the conditions of the theorem we can write

$$
\boldsymbol{k}(\mathbf{x}, \mathbf{z})=r_{x} r_{z} \hat{\boldsymbol{k}}_{0}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)+\hat{\boldsymbol{k}}_{1}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)
$$

where $\hat{\mathbf{x}}, \hat{\mathbf{z}} \in \mathbb{S}^{d-1}$. On the hypersphere the spherical harmonics are the eigenfunctions of $\boldsymbol{k}_{0}$ and $\boldsymbol{k}_{1}$. Denote their eigenvalues respectively by $\lambda_{k}$ and $\mu_{k}$, so that

$$
\begin{align*}
& \int_{\mathbb{S}^{d-1}} \boldsymbol{k}_{0}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right) \bar{Y}_{k}(\hat{\mathbf{z}}) d \hat{\mathbf{z}}=\lambda_{k} \bar{Y}_{k}(\hat{\mathbf{x}})  \tag{16}\\
& \int_{\mathbb{S}^{d-1}} \boldsymbol{k}_{1}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right) \bar{Y}_{k}(\hat{\mathbf{z}}) d \hat{\mathbf{z}}=\mu_{k} \bar{Y}_{k}(\hat{\mathbf{x}}), \tag{17}
\end{align*}
$$

where $\bar{Y}_{k}(\hat{\mathbf{x}})$ denote the zonal spherical harmonics. We next show that the space spanned by the functions $r_{x} \bar{Y}_{k}(\mathbf{x})$ and $\bar{Y}_{k}(\mathbf{x})$ is fixed under the following integral transform

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \boldsymbol{k}(\mathbf{x}, \mathbf{z})\left(\alpha r_{z}+\beta\right) \bar{Y}_{k}(\hat{\mathbf{z}}) \bar{p}(\mathbf{z}) d \mathbf{z}=\left(a r_{x}+b\right) \bar{Y}_{k}(\hat{\mathbf{x}}) \tag{18}
\end{equation*}
$$

$\alpha, \beta, a, b \in \mathbb{R}$ are constants. The left hand side can be written as the application of an integral operator $T(\mathbf{x}, \mathbf{z})$ to a function $\Phi_{\alpha, \beta}^{k}(\mathbf{z})=\left(\alpha r_{z}+\beta\right) \bar{Y}_{k}(\hat{\mathbf{z}})$. Expressing this operator application in spherical coordinates yields
$T(\mathbf{x}, \mathbf{z}) \Phi_{\alpha, \beta}^{k}(\mathbf{z})=\int_{0}^{\infty} \frac{p\left(r_{z}\right) r_{z}^{d-1}}{A\left(r_{z}\right)} d r_{z} \int_{\hat{\mathbf{z}} \in \mathbb{S}^{d-1}}\left(r_{x} r_{z} \boldsymbol{k}_{0}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)+\boldsymbol{k}_{1}\left(\hat{\mathbf{x}}^{T} \hat{\mathbf{z}}\right)\right)\left(\alpha r_{z}+\beta\right) \bar{Y}_{k}(\hat{\mathbf{z}}) d \hat{\mathbf{z}}$.
We use (16) and (17) to substitute for the inner integral, obtaining

$$
T(\mathbf{x}, \mathbf{z}) \Phi_{\alpha, \beta}^{k}(\mathbf{z})=\int_{0}^{\infty} \frac{p\left(r_{z}\right) r_{z}^{d-1}}{A\left(r_{z}\right)}\left(\lambda_{k} r_{x} r_{z}+\mu_{k}\right)\left(\alpha r_{z}+\beta\right) \bar{Y}_{k}(\hat{\mathbf{x}}) d r_{z}
$$

Together with 18), this can be written as

$$
T(\mathbf{x}, \mathbf{z}) \Phi_{\alpha, \beta}(\mathbf{z})=\Phi_{a, b}(\mathbf{x})
$$

where

$$
\binom{a}{b}=\left(\begin{array}{cc}
\lambda_{k} & 0 \\
0 & \mu_{k}
\end{array}\right)\left(\begin{array}{ll}
M_{2} & M_{1} \\
M_{1} & M_{0}
\end{array}\right)\binom{\alpha}{\beta}
$$

where $M_{q}=\int_{0}^{\infty} \frac{r_{z}^{q+d-1} p\left(r_{z}\right)}{A\left(r_{z}\right)} d r_{z}, 0 \leq q \leq 2$. By the conditions of the theorem these moments are finite. This proves that the space spanned by $\left\{r_{x} \bar{Y}(\hat{\mathbf{x}}), \bar{Y}(\hat{\mathbf{x}})\right\}$ is fixed under $T(\mathbf{x}, \mathbf{z})$, and therefore the eigenfunctions of $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z})$ take the form $\left(\bar{a} r_{x}+\bar{b}\right) \bar{Y}(\hat{\mathbf{x}})$ for some constants $\bar{a}, \bar{b}$.

The implication of Theorem 5 is that the eigenvectors of $\boldsymbol{k}^{\mathrm{FC}(\mathrm{L})}$ are the spherical harmonic functions, scaled by the norm of their arguments. With bias, $\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}$ has up to $2 N(d, k)$ eigenfunctions for every frequency $k$, of the general form $\left(a r_{x}+b\right) Y_{k, j}(\hat{\mathbf{x}})$ where $a, b$ are constants that differ from one eigenfunction to the next.

## E Experimental Details

## E. 1 The UCI dataSet

In this section, we provide experimental details for the UCI dataset. We use precisely the same pre-processed datasets, and follow the same performance comparison protocol as in [2].

NTK Specifications We reproduced the results of [2] using the publicly available code ${ }^{1}$, and followed the same protocol as in [2]. The total number of kernels evaluated in [2] are 15 and the SVM cost value parameter $\mathbf{C}$ is tuned from $10^{-2}$ to $10^{4}$ by powers of 10 . Hence, the total number of hyper-parameter combinations searched using cross-validation is $105(15 \times 7)$.

Exponential Kernels Specifications For the Laplace and Gaussian kernels, we searched for 10 kernel width values $(1 / c)$ from $2^{-2} \times \nu$ to $\nu$ in the $\log$ space with base 2 , where $\nu$ is chosen heuristically as the median of pairwise $l_{2}$ distances between data points (known as the median trick [7]). So, the total number of kernel evaluations is 10. For $\gamma$-exponential, we searched through 5 equally spaced values of $\gamma$ from 0.5 to 2 . Since we wanted to keep the number of the kernel evaluations the same as for NTK in [2], we searched through only three kernel bandwidth values $(1 / c)$ which are $1, \nu$ and \#features (default value in the sklearn packag ${ }^{2}$ ). So, the total number of kernel evaluations is $15(5 \times 3)$.
For a fair comparison with [2], we swept the same range of SVM cost value parameter $\mathbf{C}$ as in [2], i.e., from $10^{-2}$ to $10^{4}$ by powers of 10 . Hence, the total number of hyper-parameter search using cross-validation is $70(10 \times 7)$ for Laplace and $105(15 \times 7)$ for $\gamma$-exponential which is the same as for NTK in [2].

## E. 2 Large scale datasets

We used the experimental setup mentioned in [14] and the publicly available code ${ }_{3}^{3}$ [14] solves kernel ridge regression (KRR [16]) using the FALKON algorithm, which solves the following linear system

$$
\left(K_{n n}+\lambda n I\right) \alpha=\hat{\mathbf{y}},
$$

where $K$ is an $n \times n$ kernel matrix defined by $(K)_{i j}=K\left(x_{i}, x_{j}\right), \hat{\mathbf{y}}=\left(y_{1}, \ldots y_{n}\right)^{T}$, and $\lambda$ is the regularization parameter. Refer to [14] for more details.
In Table 1 , we provide the hyper parameters chosen with cross validation.

[^0]|  | MillionSongs [4] | SUSY 13 | HIGGS [13 |
| :--- | :---: | :---: | :---: |
| H- $\gamma$-exp. | $\gamma=1.4, \sigma=5, \lambda=1 e^{-6}$ | $\gamma=1.8, \sigma=5, \lambda=1 e^{-7}$ | $\gamma=1.6, \sigma=8, \lambda=1 e^{-8}$ |
| H-Laplace | $\sigma=3, \lambda=1 e^{-6}$ | $\sigma=4, \lambda=1 e^{-7}$ | $\sigma=8, \lambda=1 e^{-8}$ |
| NTK | $L=9, \lambda=1 e^{-9}$ | $L=3, \lambda=1 e^{-8}$ | $L=3, \lambda=1 e^{-6}$ |
| H-Gaussian | $\sigma=8, \lambda=1 e^{-6}$ | $\sigma=3, \lambda=1 e^{-7}$ | $\sigma=8, \lambda=1 e^{-8}$ |

Table 1: Hyper-parameters chosen with cross validation for the different kernels.

## E. 3 C-Exp: Convolutional Exponential Kernels

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)^{T}$ and $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)^{T}$ denote two vectorized images. Let $P$ denote a window function (we used $3 \times 3$ windows). Our hierarchical exponential kernels are defined by $\bar{\Theta}(\mathbf{x}, \mathbf{z})$ as follows:

$$
\begin{aligned}
\Theta_{i j}^{[0]}(\mathbf{x}, \mathbf{z}) & =x_{i} z_{j} \\
s_{i j}^{[h]}(\mathbf{x}, \mathbf{z}) & =\sum_{m \in P} \Theta^{[h]}\left(x_{i+m}, z_{j+m}\right)+\beta^{2} \\
\Theta_{i j}^{[h+1]}(\mathbf{x}, \mathbf{z}) & =K\left(s_{i j}^{[h]}(\mathbf{x}, \mathbf{z}), s_{i i}^{[h]}(\mathbf{x}, \mathbf{x}), s_{j j}^{[h]}(\mathbf{z}, \mathbf{z})\right) \\
\bar{\Theta}(\mathbf{x}, \mathbf{z}) & =\sum_{i} \Theta_{i i}^{[L]}(\mathbf{x}, \mathbf{z})
\end{aligned}
$$

where $\beta \geq 0$ denotes the bias and the last step is analogous to a fully connected layer in networks, and we set

$$
K\left(s_{i j}, s_{i i}, s_{j j}\right)=\sqrt{s_{i i} s_{j j}} \boldsymbol{k}\left(\frac{s_{i j}}{\sqrt{s_{i i} s_{j j}}}\right)
$$

where $\boldsymbol{k}$ can be any kernel defined on the sphere. In the experiments we applied this scheme to the three exponential kernels, Laplace, Gaussian and $\gamma$-exponential.

Technical details We used the following four kernels:
CNTK [1] $L=6, \beta=3$.
C-Exp Laplace. $L=3, \beta=3, \boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{z}\right)=a+b e^{-c \sqrt{2-2 \mathbf{x}^{T} \mathbf{z}}}$ with $a=-11.491, b=12.606, c=$ 0.048 .

C-Exp $\gamma-\mathbf{e x p o n e n t i a l . ~} L=8, \beta=3, \boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{z}\right)=a+b e^{-c\left(2-2 \mathbf{x}^{T} \mathbf{z}\right)^{\gamma / 2}}$ with $a=-0.276, b=$ $1.236, c=0.424, \gamma=1.888$.
C-Exp Gaussian. $L=12, \beta=3, \boldsymbol{k}\left(\mathbf{x}^{T} \mathbf{z}\right)=a+b e^{-c\left(2-2 \mathbf{x}^{T} \mathbf{z}\right)}$ with $a=-0.22, b=1.166, c=$ 0.435 .

We set $\beta$ in these experiments with cross validation in $\{1, \ldots, 10\}$. For each kernel $\boldsymbol{k}$ above, the parameters $a, b, c$ and $\gamma$ were chosen using non-linear least squares optimization with the objective $\sum_{u \in U}\left(\boldsymbol{k}(u)-\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(u)\right)^{2}$, where $\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}$ is the NTK for a two-layer network defined in (5) with bias $\beta=1$, and the set $U$ included (inner products between) pairs of normalized $3 \times 3 \times 3$ patches drawn uniformly from the CIFAR images. The number of layers $L$ is chosen by cross validation.
For the training phase we used 1-hot vectors from which we subtracted 0.1, as in [12]. For the classification phase, as in [10], we normalized the kernel matrices such that all the diagonal elements are ones. To avoid ill conditioned kernel matrices we applied ridge regression with a regularization factor of $\lambda=5 \cdot 10^{-5}$. Finally, to reduce overall running times, we parallelized the kernel computations on NVIDIA Tesla V100 GPUs.

## References

[1] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact computation with an infinitely wide neural net. In Advances in Neural Information Processing Systems, pages 8139-8148, 2019.
[2] Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli Yu. Harnessing the power of infinitely wide deep nets on small-data tasks. In International Conference on Learning Representations, 2020.
[3] Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of Machine Learning Research, 18(1):629-681, 2017.
[4] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song dataset. In Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR), 2011.
[5] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In Advances in Neural Information Processing Systems, pages 12873-12884, 2019.
[6] Youngmin Cho and Lawrence K Saul. Analysis and extension of arc-cosine kernels for large margin classification. arXiv preprint arXiv:1112.3712, 2011.
[7] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and Le Song. Scalable kernel methods via doubly stochastic gradients. In Advances in Neural Information Processing Systems, pages 3041-3049, 2014.
[8] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity. In Advances In Neural Information Processing Systems, pages 2253-2261, 2016.
[9] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in neural information processing systems, pages 8571-8580, 2018.
[10] Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev Arora. Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809, 2019.
[11] Francis J Narcowich and Joseph D Ward. Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM Journal on Mathematical Analysis, 33(6):1393-1410, 2002.
[12] Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many channels are gaussian processes. arXiv preprint arXiv:1810.05148, 2018.
[13] Peter Sadowski Pierre Baldi and Daniel Whiteson. Searching for exotic particles in high-energy physics with deep learning. Nature communications, 5, 2014.
[14] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel method. In Advances in Neural Information Processing Systems, pages 3888-3898, 2017.
[15] Saburou Saitoh and Yoshihiro Sawano. Theory of reproducing kernels and applications. Springer, 2016.
[16] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2001.
[17] Elias M Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces (PMS-32), volume 32. Princeton university press, 2016.
[18] George Neville Watson. A treatise on the theory of Bessel functions. Cambridge university press, 1966.


[^0]:    ${ }^{1}$ https://github.com/LeoYu/neural-tangent-kernel-UCI
    ${ }^{2}$ https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.rbf_ kernel.html
    https://github.com/LCSL/FALKON_paper

