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Abstract

We investigate neural network representations from a probabilistic perspective.
Specifically, we leverage Bayesian nonparametrics to construct models of neural
activations in Convolutional Neural Networks (CNNs) and latent representations in
Variational Autoencoders (VAEs). This allows us to formulate a tractable complex-
ity measure for distributions of neural activations and to explore global structure of
latent spaces learned by VAEs. We use this machinery to uncover how memoriza-
tion and two common forms of regularization, i.e. dropout and input augmentation,
influence representational complexity in CNNs. We demonstrate that networks
that can exploit patterns in data learn vastly less complex representations than
networks forced to memorize. We also show marked differences between effects
of input augmentation and dropout, with the latter strongly depending on network
width. Next, we investigate latent representations learned by standard β-VAEs and
Maximum Mean Discrepancy (MMD) β-VAEs. We show that aggregated poste-
rior in standard VAEs quickly collapses to the diagonal prior when regularization
strength increases. MMD-VAEs, on the other hand, learn more complex posterior
distributions, even with strong regularization. While this gives a richer sample
space, MMD-VAEs do not exhibit independence of latent dimensions. Finally, we
leverage our probabilistic models as an effective sampling strategy for latent codes,
improving quality of samples in VAEs with rich posteriors.

1 Introduction

Neural networks that differ only in initial parameter values converge to different minima of the cost
function. This observation raises a following question: is this variability simply a manifestation of
a numerical leeway afforded by model overparametrization or, perhaps, a manifestation of a more
fundamental discord in ways neural networks take to make predictions? This question is not only
important from a practical perspective – e.g. in efforts to pinpoint and interpret factors behind specific
network responses – but is also fundamental to our understanding of information processing in neural
models. Recently, Raghu et al. [2017] Morcos et al. [2018] and Kornblith et al. [2019] showed that
under suitable similarity metric neural representations do in fact share some common structure. Yet,
their work is limited to finding representational similarity between pairs of converged networks.
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In this article we aim to go beyond pairwise similarities and characterize neural representations from
a probabilistic perspective. Specifically, we focus on two goals: characterizing sets of representations
that are effectively reachable by convolutional networks and uncovering structure in latent spaces
learned by variational autoencoders. To construct such characterizations we adopt Dirichlet Process
Gaussian Mixture Models (DP-GMMs) as density models for deep representations. We then leverage
tractable quantities in DP-GMMs to compare neural models with respect to the sets of representations
they learn. Our main contributions are: (1) we propose probabilistic models for neural representations
and use them to characterize sets of learned representations, (2) we show that memorizing nets learn
vastly more complex representations than network trained on real data, (3) we demonstrate markedly
different effects of two common forms of regularization on the complexity of learned representations
and (4) we characterize latent spaces learned by β-VAEs and MMD-VAEs, demonstrating marked
differences in representational capacity of their aggregated posteriors.

2 Dirichlet Process Mixture Model for neural representations

Our main idea in this work is to investigate neural representations using nonparametric mixture
models. These flexible density models naturally adapt to the complexity of the underlying data
distribution. We therefore leverage them as a principled way to quantify and compare complexity
of representations learned by neural networks and to investigate latent representations in generative
models. The specific nonparametric model we decided to use in this work, namely DP-GMM, was
chosen because certain quantities of interest to us – e.g. when studying independence of dimensions
in latent codes – are tractable in this model. Furthermore, it is consistent in total variation for
distributions that are in the KL support of the prior and – assuming that the approximated density is
sufficiently smooth – has near minimax contraction rate [Ghosal and Van der Vaart, 2017, sections
7.2 and 9.4].

We use DP-GMM to model representations learned by kernels in convolutional neural networks and
to capture distributions of latent codes in variational autoencoders. In the latter case we take a learned
inference distribution qφ(z | x) and construct a model for the aggregated posterior:

qφ(z) =

∫
x

qφ(z | x)p (x) dx. (1)

Therefore, the set of observations in DP-GMM is simply the set of latent codes inferred for test
images.

When modelling representations learned by CNN kernels, or neurons’ representations, we use a
construction similar to the one employed in Raghu et al. [2017], Morcos et al. [2018]. Consider a
single convolutional kernel k in a CNN layer. To construct a representation of the feature learned
by k, we take a fixed sequence of input images [x1,x2, . . . ,xl] and calculate a sequence of kernel
responses: [k(x1), k(x2), . . . , k(xl)]. These responses form a volume with shape l × h× w, where
h and w are height and width of the layer output, respectively. We then perform an average pooling
across spatial dimensions, obtaining an l × 1 vector ak that can be interpreted as a fingerprint of the
feature learned by k, i.e. a neuron’s representation:

ak = [avg_pool(k(x1)), avg_pool(k(x2)), . . . , avg_pool(k(xl))] . (2)

We repeat this procedure for every kernel in the given layer, using same input sequence in each case.
However, unlike recent works on similarity of neural representations [Raghu et al., 2017, Morcos
et al., 2018, Kornblith et al., 2019], we do not seek to find a transformation between two sets of
neuron representations (i.e. between a pair of conv layers) that maximizes their similarity. We instead
treat each learned representation ak as a realization of a random variable that follows the distribution
of representations learned in the given network layer. Under this interpretation we train multiple
networks with identical architectures and hyper-parameter values, but different random initializations.
Finally, we pool together representations learned by these networks1. Given n trained networks and
a convolutional layer with m kernels, the set of DP-GMM observations therefore consist of n ·m
representations: {a1,a2, . . . ,an·m}.
There are two important aspects to our setup for convolutional networks. On the technical side, it
is invariant with respect to the ordering of kernels in convolutional layers – any information about

1Separately for each layer and using same sequence of input images in each case.
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initial ordering of kernels in a conv layer is lost in the set of observations modelled by DP-GMM.
More importantly, this setup does not attempt to model a set of representations learned by a specific
network instance. Rather, we want to capture the distribution of representations that are effectively
reachable by a given layer in a certain network architecture and under certain training regime. This
can be seen as capturing a restricted form of the notion of effective capacity formalized in Arpit et al.
[2017]. That is, we can compare different networks and training regimes with respect to the sets of
representations that are effectively learned under stochastic gradient descent.2.

In the following sections we outline the DP-GMM formulation used in this work and explain how we
employ it to quantify representational complexity in CNNs and investigate latent spaces in VAEs.

2.1 Generative model

Let D = {x1,x2, . . . ,xN} be a dataset of N samples from some unknown D-dimensional probabil-
ity distribution. To construct a density model for this distribution, we postulate a following generative
model for x:

α ∼ Gamma(1, 1),

G | α ∼ DP (NIW (θ0), α),

µk,Σk ∼ G,
x | µk,Σk ∼ N (µk,Σk).

(3)

Shortly, observations are assumed to come from a mixture of Gaussian components. Component
parameters have a Dirichlet Process prior with concentration α (also uncertain, i.e. a model parameter
with Gamma(1, 1) prior). G in this formulation stands for a random measure over components
and their parameters. The base distribution in the Dirichlet Process, i.e. prior over the component
mean µk and covariance Σk, is chosen to be a Normal-inverse-Wishart (NIW) distribution with
hyper-parameters θ0:

p(µk,Σk) = NIW (µk,Σk | θ0), θ0 = {m0, ν0, κ0,S0} . (4)

We explain the choice of these hyper-parameters in Appendix A.

We use the Chinese Restaurant Process (CRP) as a constructive definition of the Dirichlet Process
prior. Shortly, CRP describes a process of either assigning an observation to an existing component
or creating a new component for it. In particular, let ci ∈ c = {c1, c2, . . . , cN} be a component for
the observation xi and assume that vector of component assignments for other observations, denoted
by c−i = c \ {ci}, is known. Then the probability ci = k | c−i under CRP is given by:

p(ci = k | c−i, α) =

{
Nk,−i

α+N−1 if component k exists,
α

α+N−1 if k is a new component,

where Nk,−i is the number of observations already assigned to the k-th component. This mechanism
effectively puts a prior on the number of mixture components, making it a model parameter. The
choice of NIW prior over component parameters is also significant. NIW is a conjugate prior to the
multivariate Normal likelihood, which greatly simplifies the model.

We employ Collapsed Gibbs Sampling (CGS) [Neal, 2000] to estimate posterior over DP-GMM
parameters given D. CGS samples from the posterior by iteratively assigning observations to
components. That is, given an observationxi, CGS samples a component ci from p(ci | c−i,xi, α,θ),
where θ are the parameters of the NIW posterior distributions over means and covariances. However,
thanks to the conjugate prior on the component parameters, p(ci | c−i,xi, α,θ) does not depend
on µk and Σk, as they can be marginalized out. This marginalization greatly reduces sampling
variance [Liu et al., 1994]. That said, parameters for a given component can be easily recovered by
sampling from the NIW posterior (see Appendix A for details):

p(µk,Σk | D, c) = NIW (µk,Σk | θk), θk = {mk, νk, κk,Sk}. (5)

2Arpit et al. [2017] define effective capacity of a learning algorithm as a set of all hypotheses that can
be effectively constructed by that algorithm. This definition considers a hypothesis effectively learnable if
there exists a dataset on which it is learned by that algorithm. Obviously, we quantify complexity of learned
representations on some chosen but representative learning tasks.
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An outcome of one CGS iteration is an assignment of observations to components. Collectively
these iterations form a Markov chain that approximates the posterior distribution over DP-GMM
parameters. In turn, this posterior induces a posterior predictive distribution for previously unseen
observations: p(x∗ | D), which can be seen as the model’s view of the underlying data distribution.
The posterior predictive given specific component assignments ct (i.e. given a specific Gibbs sampling
step):

p(x∗ | D, ct) =

∫
p(x∗ | µ,Σ, ct)p(µ,Σ | D, ct)dµdΣ

has a closed form solution (see Appendix B for details). The posterior predictive p(x∗ | D) is an
expectation over component assignments and can approximated by sampling steps from the Markov
chain:

p(x∗ | D) =

∫
p(x∗ | D, c)p(c)dc ≈ 1

T

T∑
t=1

p(x∗ | D, ct). (6)

3 Quantifying complexity and structure of posterior distributions

We use DP-GMM posterior predictive distributions to compare neural networks with respect to
their representational complexity. To this end, we approximate a relative entropy between the
posterior predictive p(x∗ | D) and a chosen least assumption distribution m(x∗), i.e. the Kullback-
Leibler (KL) divergenceDKL(p || m). From an information theory point of view, this relative entropy
can be seen as a measure of inefficiency of approximating the posterior predictive with m(x∗).
Alternatively, DKL(p || m) can be seen as an information gain from observing many samples
from p(x∗ | D) while assuming m(x∗) prior. The measure obviously depends on the choice
of m(x∗). We pick m(x∗) to be the maximum differential entropy distribution that captures mean of
the data and variance in each dimension. That is, we choose the least assumption distribution to be a
multivariate Gaussian with the mean and the diagonal covariance matrix estimated from D.3

We do not have a closed-form expression for the relative entropy DKL(p || m). Fortunately, we can
easily draw samples from the posterior predictive p(x∗ | D) by first sampling a step from the CGS
chain and then sampling from the posterior predictive given the component assignment (Eqn. 6). This
gives us a Monte Carlo approximation to the relative entropy:

DKL(p || m) ≈ 1

TS

T∑
t=1

S∑
s=1

[log p(x∗st | D, ct)− logm(x∗st)] , x∗st ∼ p(x∗ | D, ct). (7)

When modelling aggregated posteriors in VAEs we are also interested to what extent dimensions in
the latent code are independent. To gauge the degree of dependency between latent dimensions, we
estimate the total correlation between dimensions in posterior predictive. That is, we approximate
the KL divergence between the full posterior predictive p(z∗ | D) and its dimensions-independent
version:

pind(z
∗ | D) =

D∏
i=1

p(z∗i | D). (8)

Note that pind(z∗ | D) is simply a product of marginals distribution. Again, KL divergence between p
and pind has no closed-form solution. However, note that posterior predictive density p(z∗ | D, c)
is a mixture of Student’s t-distributions. Because marginals of a Student’s t-distribution are also
Student’s t-distributions, p(z∗i | D, c) can be expressed as a simple mixture:

p(z∗i | D, c) =

K∑
k=1

αk

∫
St (z∗ | µk,Σk, νk) dz∗−i =

K∑
k=1

αkSt
(
z∗i | µik,Σiik , νk

)
. (9)

We can leverage this density to approximate DKL(p || pind) with samples from the Markov chain:

DKL(p || pind) ≈
1

TS

T∑
t=1

S∑
s=1

[log p(z∗st | D, ct)− log pind(z
∗
st | D, ct)] , z∗st ∼ p(z∗ | D, ct).

(10)
3Both are maximum likelihood estimates.
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To approximate divergences in Eqn. 7 and 10 we perform 2, 000 CGS steps. Next, we throw away
the first 1, 000 steps and thin the remaining part of the chain by taking every 20-th Gibbs step. We
then calculate mean, minimum and maximum KL divergence across remaining Gibbs steps. In each
step we take 105 samples from the posterior predictive.

4 Representational complexity in Convolutional Networks

Experimental setup. First, we employ DP-GMMs to investigate representational complexity in
CNNs that can exploit patterns in data and networks that are forced to memorize random labels. We
also compare models with different depths, widths and regularization techniques. To this end, we
train several CNN architectures on CIFAR-10 and Mini-ImageNet datasets4. Each network is trained
with ground-truth labels and with a variant of the dataset in which labels were randomly permuted
(further referred to as memorizing nets). All memorizing nets are trained on the same fixed random
permutation of labels. Furthermore, when fitting true labels we train networks with no additional
regularization, with image augmentation, with dropout and with both regularizers. See Appendix C
for details on the datasets, network architectures and training hyper-parameters.

For each combination of a CNN architecture, label set and regularization, we train 50 networks
starting from different random initializations and pool together their kernel representations (Section 2).
One important choice when constructing CNN representations is the number of input images used
to calculate kernel responses (Eqn. 2). On one hand, vector of kernel activations should form a
distinct fingerprint of the learned feature. On the other hand, difficulty of estimating DP-GMM
parameters increases with the dimensionality of representations. In practice we first collect kernel
responses over the entire test part of the dataset. Assuming l test images, a layer with m kernels
and n trained networks, we obtain an An·m×l matrix with kernel representations. We then reduce
the dimensionality of representations (l) by performing a Singular Value Decomposition of A and
keeping only d right-singular vectors with the largest singular values. We found that retaining up to 80
singular vectors is sufficient to uncover differences in posterior distributions of kernel representations.
We retain equal number of singular vectors when comparing layers trained under different scenarios.
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Figure 1: Relative entropies of posterior predictive distributions for CNN representations. Results are
reported for true and randomly permuted labels, including dropout and image augmentation in the
former case. In each case we report mean, minimum and maximum relative entropy across averaged
Gibbs steps. In plot title, CNN AxB refers to a CNN with depth A and width B in the final conv layer.

Representational complexity. Results from CNN experiments are collected in Fig. 1. Additional
results are reported in Appendix C. First, we observe that networks than can exploit patterns in data
learn vastly less complex representations than networks forced to memorize, even though in principle
both are perfectly capable of memorizing training examples [Zhang et al., 2017]. This finding
supports conclusions drawn in [Arpit et al., 2017]. However, we also observe large differences in

4While Mini-ImageNet is typically used for few-shot learning, in this work we use the provided labels to
train plain image classification nets.

5



effects of dropout compared to image augmentation or no regularization: dropout typically increases
representational complexity. The extent of this increase depends on the network width, with narrow
dropout nets learning representations with complexity more akin to that of memorizing nets. Dropout
experiments also illustrate that low representational complexity is not a necessary prerequisite for
generalization: while representations in dropout nets are highly sensitive to network initialization,
they still form solutions that generalize. Finally, we observe increased representational complexity
in middle layers of deep but narrow nets, when trained with no regularization (CNN 11x128 and
CNN 11x192 in Appendix C). This is remedied by image augmentation, which behaves consistently
across evaluated architectures.

5 Latent space structure in variational autoencoders

Variational autoencoders learn a variational posterior (or inference) distribution qφ(z | x) and a
generative distribution pθ(x | z), by maximizing:

Lβ(x,θ,φ) = Eqφ(z|x) [log pθ(x | z)]− βf(qφ(z | x), p(z)) (11)

under a suitable divergence measure f(q, p) between the posterior q and prior p. In the standard VAE
model f(q, p) corresponds to the KL divergence, and β = 1. In such settings objective in Eqn. 11 is
equivalent to the evidence lower bound on intractable data likelihood [Kingma and Welling, 2014].
Recently, however, there is an increasing interest in alternative formulations. Higgins et al. [2017]
and Burgess et al. [2018] investigated VAEs with β > 1 and observed that such β-VAEs tend to learn
disentangled latent codes z, i.e. codes where individual dimensions capture semantically meaningful
properties of observations. Chen et al. [2017] suggests thatDKL can be a too restrictive regularization
and may cause the model to learn uninformative latent codes. Zhao et al. [2017, 2019] studied VAEs
with an alternative regularization, namely Maximum Mean Discrepancy (MMD) divergence [Gretton
et al., 2012]. MMD was also investigated by Tolstikhin et al. [2018] in the context of Wasserstein
autoencoders. Shortly, given a positive-definite kernel k : Z × Z → R, MMD between two
probability distributions P and Q on Z is a distance between their kernel mean embeddings. MMD
has an unbiased estimator [Gretton et al., 2012] that easily integrates with gradient-based training:

MMDk(PZ , QZ) ≈ 1

n(n− 1)

n∑
i,j=1
i 6=j

[
k(zpi , z

p
j ) + k(zqi , z

q
j )
]
− 2

n2

n∑
i,j=1

k(zpi , z
q
j ), (12)

where {zpi }ni=1, {zqi }ni=1 are samples from P and Q, respectively.

In this section we leverage DP-GMMs to investigate aggregated posteriors (Eqn. 1) learned by VAEs
across a range of β values for both standard DKL and MMD regularizations. This gives us a view
into the structure of the latent spaces in these models. Additional results are reported in Appendix D.
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Figure 2: Relative entropies (left) and total correlations (right) in posterior predictive distributions for
latent codes in β-VAEs and MMD-VAEs across a range of β values. In each case we report mean,
minimum and maximum estimate across averaged Gibbs steps.

Experimental setup. All experiments were carried out on CelebA [Liu et al., 2015] and Anime5

datasets consisting of images of human and animated character faces, respectively. Training protocols
and network architectures follow those in Tolstikhin et al. [2018], particularly we learn latent codes
with d = 64 dimensions and use inverse multiquadratics kernel in MMD-VAEs. See Appendix D for
more details on dataset preparation and training hyper-parameters.

5https://github.com/Mckinsey666/Anime-Face-Dataset
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β-VAE MMD-VAE

β = 0.01 β = 30. β = 1. β = 1000.

Figure 3: Samples generated with latent codes drawn from either the joint predictive density p(z∗)
(top) or product of marginals density pind(z∗) (bottom) for VAEs trained on CelebA dataset.

After training a given model, we sample latent codes for the entire test part of the respective dataset
and estimate a DP-GMM model for the set of sampled codes: Dz = {z1, z2, . . . ,zn}. This gives
us a CGS trace from which we can recover the posterior predictive p(z∗ | Dz) over the latent space
learned by this particular VAE. We use this inferred distributions as proxies to investigate aggregated
posteriors. For notational simplicity we will drop conditioning on Dz in the analysis below, and
simply write p(z∗) for the DP-GMM posterior predictive.

5.1 Latent space learned by β-VAEs and MMD-VAEs

We explore latent representations learned by VAEs in two ways. First, we quantify complexity of
learned representations via relative entropies in posterior predictive distributions (Eqn. 7). Next,
in order to investigate the degree of dependency between latent dimensions, we approximate total
correlations between dimensions in posterior predictive densities (Eqn. 10).

Effects of β regularization on the aggregated posterior. Fig. 2 (left) shows relationship be-
tween β value and the complexity of latent representations learned by standard β-VAEs and MMD-
VAEs. This result demonstrates that β has particularly strong regularizing effect on the aggregated
posterior in standard β-VAEs: distribution of latent codes in this model rapidly simplifies as β coeffi-
cient grows. For β > 10, aggregated posterior becomes almost indistinguishable from a diagonal
multivariate normal distribution with mean and variance estimated from Dz (i.e. the lest-assumption
distribution in the construction of relative entropy). In other words, posterior in β-VAEs with strong
regularization collapses to the prior. Regularization is much weaker under MMD divergence, where
relative entropies indicate rich latent space even with large β values (β = 1000).

Independence of latent dimensions. β-VAEs were observed to learn disentangled representations
when trained with large β values [Higgins et al., 2017]. Here we leverage posterior predictive p(z∗)
to investigate influence of large β on the covariance structure of the aggregated posterior qφ(z).
Fig. 2 (right) demonstrates that latent dimensions in standard β-VAEs decorrelate with increasing β
value: joint predictive density over latent codes becomes indistinguishable from its product of
marginals approximation. This agrees with the disentanglement phenomenon observed in these
models. MMD-VAEs, on the other, hand keep their latent codes relatively correlated, even with
strong regularization.

To further illustrate how β regularization affects coupling between latent dimensions, we also sampled
VAE observations with latent codes drawn either from a joint posterior predictive p(z∗) or a product
of marginals density pind(z∗) (Eqn. 8). Samples from MMD-VAEs and standard β-VAEs trained
with small β often degrade when dependence between latent dimensions is dropped (Fig. 3). In a
strongly regularized β-VAE samples from the joint and the product of marginals distributions are
indistinguishable, but a simplistic latent space translates to low sample fidelity and diversity. Overall,
our results show that disentanglement in β-VAEs comes at the cost of reduced representational
capacity.
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β = 1 β = 1000

Figure 4: MMD-VAE samples generated with latent codes drawn from either the prior p(z) (top) or
DP-GMM posterior predictive p(z∗ | c) (bottom). Results for models trained on CelebA dataset.

5.2 Improving samples from VAEs with rich posteriors

Results presented above show that aggregated posteriors in MMD-VAEs diverge significantly from
the prior. This suggests that sampling in MMD-VAEs can be improved by drawing latent codes from
an approximation to qφ(z), rather than the prior p(z). In fact, posterior predictive given component
assignments p(z∗ | c) is a natural choice for such approximation. First, it admits an efficient ancestral
sampling, where we first sample a component and then the latent code. Second, given flexibility of
DP-GMMs, we may expect that after initial burn-in period mixtures in the chain will be well adapted
to qφ(z). Figure 4 compares this sampling scheme with a standard sampling from the prior. Clearly,
sampling latent codes from a mixture p(z∗ | c) significantly improves quality of image samples.
Note also that large β term only partially remedies issues with samples generated from the prior. We
could also sample from the full posterior predictive by first sampling a step from the Markov chain.
This could further improve sample diversity at the cost of storing more posterior parameters.

6 Related work

Several recent works explored similarity of representations learned by neural networks. Raghu et al.
[2017] construct neurons’ representations as vectors of their responses over a fixed set of inputs. This
differs from a typical notion of a neural representation understood as a vector of activations in a
network layer given a single input example. They show that representations learned by networks
trained from different initializations exhibit similarity in canonical directions. A follow up work by
Morcos et al. [2018] proposes an alternative way to subsume correlation in canonical directions. They
study similarity of neural representations in memorizing and learning networks, compare similarity
of representations in wide and narrow networks and investigate training dynamics in RNNs. More
recently, Kornblith et al. [2019] proposed a kernel-based similarity index that more reliably captures
correspondence between network representations. This allowed them, among others, to pinpoint
depth-related pathologies in convolutional networks. The main difference between these works and
our approach is that we do not seek to construct a similarity score for pairs of layer representations.
We instead investigate distributions of neural representations learned across many trained networks
and study aggregated posteriors in deep generative models. Rather than focusing mainly on network
similarity, our goal is to compare networks with respect to the complexity of effectively learnable
representations or structure of the learned latent space. This requires a more flexible tool than a
similarity score, which in our case is a nonparametric mixture model. A work more akin to ours was
presented by Montavon et al. [2011], whose aim was to verify whether successive network layers
construct representations that are increasingly good at solving the underlying task. Still, their analysis
sheds no light on the complexity of the set of representations that can be effectively reached by a
specific network architecture and training regime.

Our work also touches on the effects of memorization on learned representations. Zhang et al.
[2017] demonstrate that neural networks easily memorize random assignment of labels and random
input examples. An immediate conclusion from this work is that priors encoded in current network
architectures are not a factor that could prevent memorization. If so, then is the observed efficacy of
neural networks actually due to learning patterns in data? Arpit et al. [2017] compare how memorizing
networks and networks trained on real data fit input examples. They demonstrate that the latter fit
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simple examples first. They also show that memorizing networks have more complex decision
boundaries. Wilson and Izmailov [2020] demonstrate that memorization of images with random
labels can be replicated with Gaussian processes. They then discuss generalization from a perspective
of priors over functions that are encoded by composing model architectures with priors over their
parameters. They argue that for CNNs these prior distributions concentrate on functions that exploit
patterns in data, and attribute memorization to non-zero prior density for random label assignments.
In particular, they demonstrate that a simple CNN with random weights induce a covariance structure
in MNIST images that correlates with ground-truth labels. We contribute to this line of research by
demonstrating that the set of representations that are effectively constructed by memorizing networks
is more complex than the set of representations constructed by networks that learn on true data. This
shows that CNNs that can exploit patterns in data converge do different solutions than memorizing
nets, despite no difference in architecture, regularization or training hyper-parameters.

Our results demonstrate that disentanglement in standard β-VAEs comes with a simplistic aggregated
posterior, which translates to reduced fidelity and diversity of samples. Gao et al. [2019] investigate
learning of disentangled representations in a Correlation Explanation (CorEx) framework [Steeg and
Galstyan, 2014]. Their basic idea is to learn a parametrized probability distribution pθ (x, z) which
jointly maximizes the total correlation in x that is explained by the latent code z and minimizes total
correlation in the latent code itself. Gao et al. formulate a variational lower bound to CorEx and
show that under certain assumptions it is equivalent to ELBO in VAEs. From this perspective, β
regularization controls the contribution of mutual information between observations and latent
dimensions to the optimization objective. Gao et al. also propose to improve samples in their model
by drawing latent codes from a factorial approximation to the aggregated posterior. Our empirical
results for standard β-VAEs are compatible with Gao et al. findings. That said, our framework
can also be used to investigate aggregated posteriors in VAEs with non-standard divergences, such
as MMD-VAEs. In these models a factorial approximation to the aggregated posterior yields poor
samples, which we remedy by approximating the posterior with a Gaussian mixture.

While in this work we compare distributions of neural representations via relative entropies, one
could argue that the number of components in a posterior distribution is itself a useful proxy to
representational complexity. For example, sample complexity of learning a Gaussian mixture is
linear (up to a poly-logarithmic factor) in the number of components [Ashtiani et al., 2018]. Note,
however, that Dirichlet Process prior is not a suitable tool for recovering component counts in
mixture distributions. Dirichlet Process is a prior on infinite mixtures and will not concentrate on a
finite number of components in the infinite data limit [Miller and Harrison, 2013, 2014]. One can
obtain consistency for the number of components with a suitable prior on finite mixtures [Miller and
Harrison, 2018]. Still, analysis of component counts comes with caveats. It assumes that observations
actually come from a finite mixture and that the form of the components’ distribution is know – a
fairly strong assumptions for a complex generative process behind neural representations. For these
reasons we draw our conclusions from predictive densities, not component counts.

7 Conclusions

We presented a Bayesian Nonparametrics framework for investigating neural representations. The
main strength of this probabilistic approach is that it allows us to investigate representations that are
effectively reachable by gradient-based training, rather than quantifying only the theoretical model
complexity. We used it to compare complexity of representations learned by CNNs and to explore
structure of latent spaces learned by VAEs. Our results show marked differences between memorizing
networks and networks that learn on true data, as well as between two form of regularization, namely
dropout and image augmentation. Finally, we showed marked differences between standard β-VAEs
and MMD-VAEs with respect to their ability to represent diverse image features in the latent space.

Our complexity analysis may have direct applications in development of latent variable generative
models. First, it enables model comparison with respect to the capacity of the learned latent space.
Second, we show that Gaussian mixtures can be used to improve samples from models with rich
posteriors. Our results may also have immediate applications in interpretability research. A number
of interpretation methods attempt explanation by capturing semantics of network units [Gilpin et al.,
2018]. However, we uncover cases, such as dropout nets, where learned representations are sensitive
to network initialization, raising doubts whether capturing semantics of network units is useful in
these settings.
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8 Broader Impact

This work have direct applications in deep generative models. Probabilistic models of latent spaces
may inform development of architectures and training methods that improve sample fidelity and
control over sample semantics. While generative modelling have many positive applications – e.g.
in computer aided art and conversational systems – any work on generative models may potentially
be used to produce deceptive and fraudulent content. This work also adds to the evidence that
convolutional networks excel at exploiting patterns in data. However, it is important to recognize
that our results do not speak to the issue of biases that may be inherited from training examples.
In particular, undue trust in data-driven systems – including neural networks – runs the risk of
reinforcing biases and prejudice existing in training data.
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