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Abstract

Recurrent neural networks are the foundation of many sequence-to-sequence mod-
els in machine learning, such as machine translation and speech synthesis. With
applied quantum computing in its infancy, there already exist quantum machine
learning models such as variational quantum eigensolvers which have been used
e.g. in the context of energy minimization tasks. Yet, to date, no viable recurrent
quantum network has been proposed.

In this work we construct the first quantum recurrent neural network (QRNN)
with demonstrable performance on non-trivial tasks such as sequence learning and
integer digit classification. The QRNN cell is built from parametrized quantum
neurons, which, in conjunction with amplitude amplification, creates a nonlinear
activation of polynomials of its inputs and cell state, and allows the extraction of
a probability distribution over predicted classes at each step.

To study the model’s performance, we provide an implementation in pytorch,
which allows the relatively efficient optimization of parametrized quantum cir-
cuits with tens of thousands of parameters, and which demonstrates that the model
does not appear to suffer from the vanishing gradient problem that plagues many
existing quantum classifiers and classical RNNs. We establish a QRNN training
setup by benchmarking optimization hyperparameters, and analyse suitable net-
work topologies for simple memorisation and sequence prediction tasks from El-
man’s seminal paper (1990). We then proceed to evaluate the QRNN on MNIST
classification, by feeding the QRNN each image pixel-by-pixel; with a network
utilizing only 12 qubits we reach a test set accuracy over 95% when discriminat-
ing between the digits ‘0’ and ‘1°.

1 Introduction

Optimizing recurrent neural networks for long sequences is a challenging task: applying the same
RNN cell operator iteratively often suffers from the well-studied vanishing or exploding gradients
problem, which results in poor training performance [ ]. While long short-term memories or
gated recurrent units (LSTMs and GRUs) with their linear operations acting on the cell state have
been proposed as a way of circumventing this problem, they too are typically limited to capturing
about 200 tokens of context, and e.g. start to ignore word order with increasing sequence lengths
(more than 50 tokens away) [ ; ; ].

This failure of existing recurrent models to capture very long sequences surely played a role in
the advent of alternative, non-recurrent models applicable to sequence-to-sequence tasks, such as
transformer-type architectures with self-attention. Yet while these alternatives often outperformg
LSTMs, they feature a fixed-width context window that does not easily scale with the sequence
length; extensions thereof are an active field of research [ ; ; ].

Beyond training modifications such as truncated backpropagation [ ] which attempt to miti-
gate the vanishing gradient problem for recurrent neural networks directly, there have been numerous
proposals to parametrize recurrent models in a way which limits or eliminates gradient decay, by en-
suring the transfer operation at each step preserves the gradient norm; examples include orthogonal
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[ ; ] or unitary recurrent neural networks [ ; ; ]. Yet how to pick
an parametrization for the RNN cell that is easy to compute, allows efficient training, and performs
well on real-world tasks? This is a challenging question [ ].

In this work, we propose a recurrent neural network model which is motivated by the emergent field
of quantum computation. The interactions of any quantum system can be described by a Hermitian
operator H, which, as a solution to the Schrédinger equation, creates the system’s time evolution
under the unitary map U = exp(—itH) [ ]. The axioms of quantum mechanics thus dictate that
any quantum algorithm made up of a sequence of individual unitary quantum gates of the form of
U, is intrinsically unitary. This means that a parametrized quantum circuit serves a prime candidate
for a unitary recurrent network.

Such parametrized quantum circuits have already found their way into other realms of quantum ma-
chine learning, one prominent example being variational quantum eigensolvers (VQE), which can
serve as a variational ansatz for a quantum state, much akin to how a feed-forward network with
a final softmax layer serves as parametrization for a probablhty distribution [ ; ;

; ]. VQEs have been deployed successfully e.g. in the context of minimizing energy
eigenvalue problems within condensed matter physics [ ], or as generative adversarial net-
works to load classical probability distributions into a quantum computer [ ].

To date, classical recurrent models that utilize quantum circuits as sub-routines (i.e. where no quan-
tum information is propagated) [ ], early work on analysing Hopfield networks on quantum
states [ ], or running classical Hopfield networks by a quantum-accelerated matrix inversion
method [ ] have been proposed; yet neither of them have the features we seek: a concrete
quantum recurrent neural network with a unitary cell that allows to side-step the problem of gradient
decay, and can ideally be implemented and trained on current classical hardware—and potentially
on emerging quantum devices in the short-to-mid term.

In this work we construct such a quantum recurrent neural network (QRNN), which features demon-
strable performance on real-world tasks such as sequence learning and handwriting recognition. Its
RNN cell utilizes a highly-structured parametrized quantum circuit that deviates significantly from
circuits used in the VQE setting. Its fundamental building block is a novel type of quantum neuron
to introduce a nonlinearity, and in conjunction with a type of fixed-point amplitude amplification,
allows the introduction of measurements (which are projectors, and not unitary operations) such that
the overall evolution nonetheless remains arbitrarily close to unitary.

With an implementation in pytorch, we repeat several of the learning tasks first proposed in El-
man’s seminal paper “Finding Structure in Time” [ ], which we utilize to assess suitable model
topologies such as the size of the cell state and structure of the parametrized RNN cell, and for
benchmarking training hyperparameters for well-established optimizers such as Adam, RMSProp
and SGD. As a next step, we evaluate the QRNN on MNIST classification, and find that feeding
images pixel-by-pixel allows a discrimination of pairs of digits with up to 98.6% accuracy. Using
modern data augmentation techniques the QRNN further achieves a test set performance on all digits
of ~ 95%. In order to demonstrate that the model indeed captures the temporal structure present
within the MNIST images, we use the QRNN as a generative model, successfully recreating hand-
written digits from an input of “0” or “1”. As a final experiment, we assess whether the gradient
quality decays for long input sequences. In a task of recognizing base pairs in a DNA string, we
found that even for sequences of 500 bases training performance remains unaffected.

Although its performance is yet to compete with state-of-the-art scores e.g. on the MNIST dataset,
our proposal is the first quantum machine learning model capable of working with training data as
high-dimensional as images of integer digits, and it is the first variational quantum algorithm capable
of being trained with thousands of parameters.

2 Recurrent Quantum Neural Networks

2.1 A Primer in Quantum Computation

A quantum system on n qubits lives on the n-fold tensor product Hilbert space H = (C?)®? with
resulting dimension 2¢. A quantum state is a unit vector 1) € #, which in the context of quantum
computation is commonly denoted in bra-ket notation |¢)) € H; its conjugate transpose with ()| =



4)T; then the inner product ([1)) = ||| denotes the square of the 2-norm of v. |¢))¢)| then
denotes the outer product, resulting in a rank 2 tensor. Computational basis states are given by |0) =
(1,0), |1) = (0, 1), and composite basis states are defined by e.g. |01) = |0) ® |1) = (0, 1,0, 0).

A quantum gate is then a unitary operation U on H; if the operation acts non-trivially only on a
subset S C [n] of qubits, then U € SU(2!51); to act on H we extend U to act as identity on the rest
of the space, i.e. Ug ® 1)\ s. This trivial extension is generally omitted, and one denotes where
the gate acts in a quantum circuit as e.g. fig. 1: the first gate R(6) denotes a single-qubit unitary
acting on the second qubit from the bottom, and depending on the parameter 6. The line with the
dot extending from the gate denotes a “controlled” operation, which if the control e.g. only acts on
a single qubit itself denotes the block-diagonal unitary map |0)0| @ 1 + |1}1| @ R(#) = 1 & R(6);
it means “if the control qubit is in state |1) apply R(#)“. This statement on basis states extends
linearly to ‘H. Sequences of gates are calculated as matrix products, and circuits such as fig. | are
read left-to-right. As shown in fig. 2, depending on the degree of the employed neurons the number
of parameters can be tuned to grow linearly up to exponentially in the number of qubits used in the
hidden state; and as seen in fig. 3 also linearly in the number of stages employed.

Single-qubit projective measurements (the only kind we need) are given by a hermitian 2 X 2 matrix
P, such as M |1)(1] = diag(0, 1); the complementary outcome is then M+ = 1 — M. In the circuit
they are denoted by meters. Given a quantum state |¢), the post-measurement state is M |¢)) /p
with probability p = || M |¢)) ||2. This is also the post-selection probability to guarantee a measure-

ment outcome M; this probability can be amplified close to 1 using ~ +/1/p rounds of amplitude
amplification ([ ], and see suppl. mat. for a more extensive discussion).

Statements such as “entangling gate” are non-essential to understand the workings of the recurrent
model: all quantum recurrent neural networks within this proposal are executable on classical hard-
ware where the “hidden state” on n qubits is represented by an array of size 2", and the set of
parameters is given by the collection of all parameterized quantum gates used throughout, resulting
in matrices with parametrized entries. To execute a QRNN classically, we use a series of matrix-
vector multiplications for gates, and matrix-vector multiplications with successive renormalization
of the state to have norm 1 for measurement and postselection operations. When executed on quan-
tum hardware the matrix multiplications come “for free”, and the hidden state on n qubits which
takes exponential memory classically can be stored on ~ n qubits alone; we discuss the incurred
caveats more in due course (see also suppl. mat., section 3).

2.2 Parametrized Quantum Gates

Typical VQE quantum circuits are very dense, in the sense of alternating parametrized single-qubit
gates with entangling gates such as controlled-not operations. This has the advantage of compressing
a lot of parameters into a relatively compact circuit. On the other hand, while it is known that
such circuits form a universal family, their high density of entangling gates and lack of correlation
between parameters results in highly over-parametrized models that are hard to train on classification
tasks for inputs larger than a few bits [ 1.

In this work, we construct a highly-structured parametrized quantum circuit where few parameters
are re-utilized over and over. It is built mainly from a novel type of quantum neuron which rotates its
target lane according to a non-linear activation function applied to polynomials of its binary inputs
(egs. (2) and (3); figs. 1, 2 and 5 in section 2.3). These neurons are combined in section 2.4 to form a
structured RNN cell, as shown in fig. 3. The cell is a combination of an input stage that, at each step,
writes the current input into the cell state. This is followed by multiple work stages that compute
with input and cell state, and a final output stage that creates a probability density over possible
predictions. Applying these QRNN cells iteratively on the input sequence as shown in fig. 3 results
in a recurrent model much like traditional RNNs.

During training we perform quantum amplitude amplification (see [ ]) on the output lanes, to
ensure that the we measure the correct token from the training data at each step. While measurements
are generally non-unitary operations, the amplitude amplification step ensures that the measurements
during training are as close to unitary as we wish.

While the resulting circuits are comparatively deep as compared to a traditional VQE circuit, they
require only as many qubits as the input and cell states are wide.



‘ > pt!' T TTTTTTTTTTTTTTTTTT T ! |l’> lln
€T VA ® Py 1
i L2 o —{n | —n
0) — R(6) f—g— R(-0) | 0
1 1 0 Py
0) — ,—T—‘IY : 10) L —
L |0) i
Figure 1: Quantum neuron by [ ]; left a first order neuron, right a second order application.
Recursive iteration yields higher-order activation functions, respectively. The purple meter indicates
a postselection (using fixed-point amplitude amplification) as described in [ ].

2.3 A Higher-Degree Quantum Neuron

The strength of classical neural networks emerges through the application of nonlinear activation
functions to the affine transformations on the layers of the network. In contrast, due to the nature of
quantum mechanics, any quantum circuit will necessarily be a linear operation.

However, this does not mean that no nonlinear behaviour occurs anywhere within quantum mechan-
ics: a simple example is a single-qubit gate R(0) := exp(iY#) for the Pauli matrix Y [ ,
eq. 4.1.1], which acts like

(0 —i cos@ sind
R(0) = exp (10 <i O>) - (—sin9 COSG) ’

i.e. as a rotation within the two-dimensional space spanned by the computational basis vectors of a
single qubit, {|0) ,|1)}.! While the rotation matrix itself is clearly linear, we note that the amplitudes
of the state—cos 6 and sin #—depend non-linearly on the angle §. If we raise the rotation to a
controlled operation cR(i, §;) conditioned on the i™ qubit of a state |x) for z € {0,1}", one can
derive the map

R(6y)cR(1,6;) - cR(n,0,) |x)[0) = |z) (cos(n)[0)+sin(n) [1)) forn= 90+29ixi. (1)

i=1

This corresponds to a rotation by an affine transformation of the basis vector |x) with z =
(1,...,2,) € {0,1}", by a parameter vector § = (6y,61,...,0,). This operation extends lin-
early to superpositions of basis and target states; and due to the form of R(#) all newly-introduced
amplitude changes are real-valued.’

This cosine transformation of the amplitudes by a controlled operation is already non-linear; yet
a sin function is not particularly steep, and also lacks a sufficiently “flat” region within which the
activation remains constant, as present e.g. in a rectified linear unit. Cao et al. [ ] proposed a
method for implementing a linear map on a set of qubits which yields amplitudes that feature such
steeper slopes and plateaus, much like a sigmoidal activation function. The activation features an
order parameter ord > 1 that controlls the steepness, as shown in fig. 5; the circuit which gives rise
to such an activation amplitude is shown in fig. 1. On pure states this quantum neuron gives rise to a

rotation by an angle f(0) = arctan(tan(ﬂ)zord), where ord > 1 is the order of the neuron. Starting
from an affine transformation 7 for the input bitstring x; as given in eq. (1), this rotation translates
to the amplitudes

1 tan(n)2”"

cos(f(n)) = T tan(y) and  sin(f(n)) = T 1 tan(n)22

2

emerging from normalising the transformation |0) —— Cos(t‘))zord 0) + sin(@)zord |1) as can be

easily verified. For ord = 1, the circuit is shown on the left in fig. 1; for ord = 2 on the right.
Higher orders can be constructed recursively.

ISigns and factors in the exponent are convention; in [ , eq. 4.5] the form given is exp(—iY6/2).
2Complex amplitudes are not necessary for the power of quantum computing.
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Figure 2: Degree d = 2 controlled rotation for quantum neuron shown in fig. 1, on n = 4 input
neurons; the controlled rotations are Ry := R(6;) for I C [n] with |I| < d. The quantum neuron

thus carries a parameter vector 6 € RP for D = ¢ (7).

This quantum neuron is a so-called repeat-until-success (RUS) circuit, meaning that the ancilla that
is measured (purple meter in fig. 1) indicates whether the circuit has been applied successfully. When
the outcome is zero, the neuron has been applied. When the outcome is one, a (short) correction cir-
cuit reverts the state to its initial configuration. Started from a pure state (e.g. |z) for z € {0,1}", as
above) and repeating whenever a 1 is measured, one obtains an arbitrarily-high success probability.

Unfortunately this does not work for a control in superposition, such as a state (|z) + |y))/v/2, for
x # y two bit-strings of length n. In this case, the amplitudes within the superposition will depend
on the history of success. Using a technique called fixed-point oblivious amplitude amplification
[ ; ], one can alleviate this issue, and essentially post-select on measuring outcome 0
while preserving unitarity of the operation to arbitarily high accuracy. This comes at the cost of
performing multiple rounds of these quantum circuits (and their inverses), the number of which will
depend on the likelihood of measuring a zero (i.e. success) in first place. This naturally depends
on the parameters of the neuron, #, and the input state given. We emphasise that by choosing the
individual postselection probabilities large enough, the overall likelihood of succeeding does not
shrink exponentially in the number of quantum neurons used. In the following we will thus simply
assume that the approximate postselection is possible, and carefully monitor the overhead due to the
necessary amplitude amplification in our empirical studies in section 4; we found that in general the
postselection overhead remained mild, and tended to converge to zero as learning progressed. An
analytical estimate on how this postselection probability shrinks is given in the suppl. mat..

The specific activation function this quantum neuron gives rise to is depicted in fig. 5. We point out
that other shapes of activation functions can readily be implemented in a similar fashion [ ].

In this work, we generalize this quantum neuron by increasing the number of control terms. More
concretely, 1 as given in eq. (1) is an affine transformation of the boolean vector z = (z1,...,z,)
for z; € {0,1}. By including multi-control gates—with their own parametrized rotation, labelled
by a multiindex 6; depending on the qubits ¢ € I that the gate is conditioned on—we obtain the
possibility to include higher degree polynomials, namely

77/290+29i£i+2291‘j$i$]‘+...: Z@]Hl‘i, 3)
i=1

i=1 j=1 IC[n) i€l
lI|<d

where d labels the degree of the neuron; for d = 2 and n = 4 an example of a controlled rotation
that gives rise to this higher order transformation 7’ on the bit string x; is shown in fig. 2. In this
fashion, higher degree boolean logic operations can be directly encoded within a single conditional
rotation: an AND operation between two bits x1 and x5 is simply x1x5.

2.4 QRNN Cell

The quantum neuron defined in section 2.3 will be the crucial ingredient in the construction of our
quantum recurrent neural network cell. Much like for classical RNNs and LSTMs, we define such a
cell which will be applied successively to the input presented to the network. More specifically, the
cell is comprised of in- and output lanes that are reset after each step, as well as an internal cell state
which is passed on to the next iteration of the network.
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Figure 3: Quantum recurrent neural network cell. Each controlled quantum neuron cNé» is imple-
mented as explained in section 2.3 and fig. 1 and comes with its own parameter vector 0%, where we
draw the control lanes from the rotation inputs as depicted in fig. 2, with ancillas omitted for clarity.
The Rj- are extra rotations with a separate parameter set qu
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Figure 4: Quantum recurrent neural network, by applying the same QRNN cell constructed in sec-
tion 2.4 iteratively to a sequence of input words inj,...,inz. All input and ancilla qubits used
throughout can be reused; we thus need H + I + ord qubits, where H is the cell state workspace
size, I the input token width (in bits), and ord the order of the quantum neuron activation, as ex-
plained in section 2.3.

2.5 Sequence to Sequence Model

In order to be able to apply the QRNN cell constructed in section 2.4, we need to iteratively apply it
to a sequence of input words iny, ing, . . ., iny. This is achieved as depicted in fig. 4.

The output lanes out; label a measured discrete distribution p; over the class labels (which we can
do by reading out the statevector weights if running a simulation on a classical computer; or by
repeated measurements on quantum hardware). This distribution can then be fed into an associated
loss function such as cross entropy or CTC loss.

3 Implementation and Training

We refer the reader to the suppl. mat. for a brief summary on how the overall procedure is assem-
bled from the depicted quantum circuits in figs. 1 to 4. We implemented the QRNN in pytorch,
using custom quantum gate layers and operations that allow us to extract the predicted distributions
at each step. As this is in essence a simulation of a quantum computation, we take the following
shortcuts: instead of truly performing fixed-point amplitude amplification for the quantum neurons
and output lanes during training, we postselect; as aforementioned, we kept track of the postselec-
tion probabilities which allows us to compute the overhead that would be necessary for amplitude
amplification. We further extract the output probability distribution instead of estimating it at every
step using measurements.

In our experiments we focus on character-level RNNs. Just like in the classical case, the sequence of
predicted distributions {p;} is fed into a standard nn.CrossEntropyLoss to minimize the distance
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Figure 6: Box whisker plot for parameter initialization of QRNN cell as described in section 4.2. In
the second row we chose only the runs with bias 4 = /4. Marked in blue is the chosen defaults.

to a target sequence. With pytorch’s autograd framework we are able to perform gradient-based
learning directly; on quantum hardware either gradient-free optimizers such as L-BFGS, NatGrad
would have to be utilized, or numerical gradients extracted [WGK20]. All experiments were exe-
cuted on 2-8 CPUs, and required between 5S00MB and 35GB of memory per core.

4 Empirical Results

4.1 Sequence Memorization

The first task we implement is whether the network can learn to reproduce the two sequences
44444. . 4 and 12312...3. For a QRNN with 5 stages and a workspace size of 5 (982 parame-
ters) this poses no problem, and—as aforementioned—the postselection overhead during training is
mild, and we present a plot in the supplementary material. With this setup, we benchmark optimizer
and learning rate hyperparameters; our findings are summarized in fig. 5.

We found the L-BFGS optimizer commonly used with VQE circuits highly numerically unstable,
resulting in many runs with NaNs; we thus excluded it from this experiment. SGD has a very narrow
window of good learning rates; RMSprop and Adam are less sensitive to this choice, with Adam
generally outperforming the former, which makes it our default choice for all following experiments.

4.2 Finding Structure in Time

In his 1990 paper, Elman describes two basic sequence learning tasks to evaluate structure in
time [EIm90]. The first task is that of learning XOR sequences, which are binary strings
S = 8189283 ...S8r such that each third digit is the XOR value of the preceding two, i.e. s3; =
S3i—1 P S3;—2; one example being s = 000011110011 101.

Due to the simplicity of the test, we use a QRNN with workspace size 4 and a single work stage
to explore which parameter initialization converges to a validation loss threshold of 1072 first. As
shown in fig. 3, there are two groups of parameters: those for the neurons, and those for the single-



Digit Set  Method Data Augmentation Accuracy [%)]

{0,1} QRNN (12 qubits) none 98.6 £ 0.4
(3,6} VQE (17 qubits) [ ] ambiguous samples removed 98
’ QRNN (12 qubits) none 90.8 £ 0.7
{even, odd}  VQE (10 qubits) [ 1t none 82
uRNN [ ] none 95.1
LSTM [ ] none 98.2
full MNIST EXPRNN [ ] none 98.7
QFD (> 200 qubits) [ 1¥  PCA, slow feature analysis 98.5
QRNN (10 qubits) PCA, t-SNE 94.6 + 0.4

Table 1: Classification of MNIST using QRNNs on 12 qubits (workspace size 8, 2 stages, neuron
degree 2; 1212 parameters) with input presented pixel-by-pixel; resp. t-SNE augmented classifi-
cation using 10 qubits (workspace size 6, 2 stages, neuron degree 3; 1292 parameters). ') Image
data prepared in superposition, i.e. as a state o< ), v; |[i), where v; € [0,1] is the pixel value at
position ¢ in the image. This model is thus at most as powerful as a linear discriminator and al-
ways performs worse than logistic regression. ) The paper exploits a well-known quantum speedup
in performing sparse linear algebra [ ], and extensively depends on quantum random ac-
cess memory (QRAM), recently shown to allow “de-quantization” of claimed exponential quantum
speedups [ ]. The authors do not explicitly state a qubit count, so it is lower-bounded from the
number of qubits required for the QRAM alone.

qubit unitaries within the work stages. Each quantum neuron as depicted in fig. 2 and eq. (3) itself
comprises two parameter sets: a bias gate Ry with angle 6, and the weights (all other parameters).
Choosing to initialize each of them with a normal distribution with mean p and width o, we have
four parameter group hyperparameters: bias p, bias o, weights o (the mean is already captured in
the bias gate), and unitaries o (for which we chose the mean to be zero by default).

Our findings and choices for the default initialisation are collected in fig. 6. The most influential
meta parameter is the bias ;4 = 7/2—which, as shown in fig. 5, places the initial polynomial 7 at
the steepest slope of the activation function, which results in a large initial gradient.

The second task described in [ ] is that of learning the structure of a sentence made up of the
three words “ba”, “dii” and “guuu”; an example being “ba dii ba guuu dii”. Having seen the letter ‘d’,
the network thus has to remember that the next two letters to predict are “ii”, and so on. We chose
this slightly more difficult task to assess how the QRNN topology influence convergence speed. We
found that the neuron order ord = 2 performs best, which results in an activation function with
relatively steep flanks, but a not-too-small derivative around its extrema. The other parameters are
discussed in the supplementary material.

4.3 MNIST Classification

To test whether we can utilize our QRNN setup to classify more complex examples, we assess
its performance on integer digit classification, using the MNIST dataset (55010 : 5000 : 10000
train:validate:test split; images cropped to 20 x 20 pixels first, then downscaled to size 10 x 10).
While this is a rather untypical task for a recurrent network, there exist baselines both for a compar-
ison with a classical RNN, as well as with quantum classifiers.

We choose two “scanlines” across each image: one left-to-right, top-to-bottom; the other one top-to-
bottom, left-to-right. This means that two bits of data are presented at each step. The output labels
are then simply binary values of the numbers 0 to 9, which have to be written to the output at the
last steps of the sequence (in little Endian order). We found that pairs of digits such as ‘0’ and ‘1’
(arguably the easiest ones) could be discriminated with > 98% success probability; but even more
complicated pairs like ‘3’ and ‘6" could be distinguished with > 90% likelihood.

In addition to classifying digits by presenting images pixel-by-pixel, we also used 2D and 3D t-SNE
clustering as data augmentation in a first step. The RNN was then presented with each coordinate,



R SHEIAL
PR 15 T ]
e i |52 1[5 TP

5 10 50 100 500
sequence length

Figure 7: Left: Expected number of training steps to reach a validation loss 0.5 x 10~%. Shown

are QRNN (red; 2 work stages, cell state size 6, 1965 parameters), RNN (blue; 2 layers, hidden

layer size 80, and a final linear layer; 20808 parameters) and LSTM (green; 2 layers, hidden layer

size 40, and a final linear layer; 21448 parameters) for DNA sequence recognition task described in

section 4.5. Right: QRNN-generated handwritten digits ‘0’ and ‘1°, as explained in section 4.4. The
QRNN topology is the same as for MNIST classification, with 1212 free parameters (section 4.3).

discretized to 2, 5 and 8 bits of precision. While the preprocessing step drastically improved clas-
sification performance, it still falls far short from state-of-the-art scores on MNIST. We summarize
our findings and a comparison with existing literature in table 1.

4.4 QRNNs as Generative Models

Instead of classifying digits, QRNNSs can also be used as generative models. With a O or 1 presented
to the QRNN at the first step, we train it to generate handwritten digits. As shown in fig. 7, the
network indeed learns the global structure of the two digits.

4.5 Long Sequence Tests

To assess our claims of high-quality gradients even in a situation of long sequences, we set up a
test set consisting of gene sequences made up of the bases GATC; a single U is then inserted at a
random position within the first half of the string, and the task of the network is to identify the base
following after the U, similar to the arguably more challenging “copying memory” task described in
[ ]. For instance, the label to identify for the sequence ¢ AGAUATTCAGAAT’ is ‘A’. We repeat
this classification task for multiple sequence lengths and several initial seeds, and stop after the
validation loss is below a threshold of 5 x 10

Using the number of steps required to reach the threshold as a metric of success, we found that a
QRNN with a workspace size of six, two work stages, and activation degree 3 (resulting in 1956
parameters) retains trainability even in a situation of string lengths of 500 bases. In contrast, as
shown in fig. 7, an RNN (2 layers, hidden size 80; 20808 parameters) and LSTM (2 layers, hidden
size 40; 21448 parameters) show a clear increase in convergence time, or fail to converge within the
set limit of 16000 steps.

5 Conclusion

Many more benchmarks and baselines could be assessed and established; for instance the aforemen-
tioned copy task described in [ ], addition, or the Penn Treebank. With our selection we strived
to strike a balance between low-level and high-level tasks that fit within the memory constraints im-
posed by an intrinsically quantum model. While many existing proposals for recurrent models with
unitary or orthogonal constraints do not parametrize the entire Stiefel manifold, this is not the case
for our model. To see this we observe that in fig. 3 the parametrized single-qubit rotations are in-
terlaced with entangling gates (the neurons). It is straightforward to see that the work stages alone
already form a strict superset of existing VQE models. The latter are proven to be universal for
quantum computation [ ], and hence densely fill the entire Hilbert space SU(2") in the limit
of taking deeper and deeper circuits.



6 Broader Impact

Without doubt, existing recurrent models—even simple RNNs—outclass the proposed QRNN archi-
tecture in this paper in real-world learning tasks. In part, this is because we cannot easily simulate
a large number of qubits on classical hardware: the memory requirements necessarily grow expo-
nentially in the size of the workspace, for instance, which limits the number of parameters we can
introduce in our model—on a quantum computer this overhead would vanish, resulting in a linear
execution time in the circuit depth.

What should nevertheless come as a surprise is that the model does perform relatively well on non-
trivial tasks such as the ones presented here, in particular given the small number of qubits (usually
between 8 and 12) that we utilised. As qubit counts in real-world devices are severely limited—and
likely will be for the foreseeable future—Ilearning algorithms with tame system requirements will
certainly hold an advantage.

Moreover, while we motivate the topology of the presented QRNN cell given in fig. 3 by the action
of its different stages (writing the input; work; writing the output), and while the resulting circuits
are far more structured than existing VQE setups, our architecture is still simplistic as compared to
the various components of an RNN, let alone an LSTM. In all likelihood, a more specialized circuit
structure (such as going from an RNN to an LSTM) will outperform the “simple” quantum recurrent
network presented herein.

Beyond the exploratory aspect of our work, our main insights are twofold. On the classical side—as
discussed in the introduction—we present an architecture which can run on current hardware and
ML implementations such as pytorch; and which is a candidate parametrization for unitary recurrent
models that hold promise in circumventing gradient degradation for very long sequence lengths.
On the quantum side, we significantly advance the field of variational circuits for quantum machine
learning tasks; allowing ingestion of data of more than a few bits of size; demonstrate that models
with large parameter counts can indeed be evaluated and trained; and that classical baselines such as
MNIST classification are, indeed, within reach when using a more sophisticated model.

Finally, our work is the first recurrent and entirely quantum neural network presented to date. Vari-
ants of it might find application in conjunction with other quantum machine learning algorithms,
such as quantum beam search [ ]1in the context of language modelling. With a more near-term
focus in mind, modelling the evolution of quantum systems with noisy dynamics is a task currently
addressed using classical recurrent models [ ]. Due to the intrinsic capability of a QRNN to
keep track of a quantum state it holds promise to better capture the exponentially-growing phase
space dimension of the system to be modelled.
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