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Abstract

Research in adversarial learning follows a cat and mouse game between attackers
and defenders where attacks are proposed, they are mitigated by new defenses,
and subsequently new attacks are proposed that break earlier defenses, and so on.
However, it has remained unclear as to whether there are conditions under which
no better attacks or defenses can be proposed. In this paper, we propose a game-
theoretic framework for studying attacks and defenses which exist in equilibrium.
Under a locally linear decision boundary model for the underlying binary classifier,
we prove that the Fast Gradient Method attack and a Randomized Smoothing
defense form a Nash Equilibrium. We then show how this equilibrium defense can
be approximated given finitely many samples from a data-generating distribution,
and derive a generalization bound for the performance of our approximation.

1 Introduction

Neural network classifiers have been shown to be vulnerable to additive perturbations to the input,
which can cause an anomalous change in the classification output. There are several attack methods
to compute such perturbations for any input instance which assume access to the model gradient
information, e.g., Fast Gradient Sign Method [12] and Projected Gradient Method [24]. In response
to such additive attacks, researchers have proposed many additive defense methods with varying
levels of success, e.g., Randomized Smoothing [7]. However, it has been later discovered that a lot
of these defenses are in turn susceptible to further additive attacks handcrafted for the particular
defenses. This back and forth where attacks are proposed breaking previous defenses and then further
defenses are proposed mitigating earlier attacks has been going on for some time in the community
and there are several open questions to be answered. Can all defenses be broken, or do there exist
defenses for which we can get provable guarantees? Similarly, does there always exist a defense
against any attack, or are there attacks with provable performance degradation guarantees? Do there
exist scenarios under which attackers always win, and similarly scenarios where defenders always
win? Are there conditions under which an equilibrium between attacks and defenses exist?

In this work, we answer some of these questions in the affirmative in a binary classification setting
with locally linear decision boundaries. Specifically, we find a pair of attack A and defense D such
that if the attacker uses A, then there is no defense which can perform better than D, and vice versa.
Our approach can be seen as a novel way to obtain both provable attacks and provable defenses,
complementing recent advances on certifiable defenses in the literature ([37, 4, 15, 9, 35, 14, 19, 22]).

To summarize, our contributions are as follows:

1. We introduce a game-theoretic framework for studying equilibria of attacks and defenses on an
underlying binary classifier. In order to do so, we first specify the capabilities, i.e., the changes the
attacker and defender are allowed to make to the input, the amount of knowledge the attacker and
the defender have about each other, and formalize the strategies that they can follow.
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2. We show that the Fast Gradient Method attack and a Randomized Smoothing defense 1 form a
Nash Equilibrium under the assumption of a zero-sum game with locally linear decision boundary
for the underlying binary classifier and full knowledge of the data-generating distribution.

3. We propose an optimization-based method to approximate the optimal defense given access
to a finite training set of n independent samples and we derive generalization bounds on the
performance of this finite-sample approximation. Our bounds show that the approximation
approaches the optimal defense at a fast rate of O(

√
log n/n) with the number of samples n.

The rest of the paper is organized as follows: In Section 2 we describe the proposed game theoretic
setup. In Section 3 we state our main result showing the existence of an optimal attack and defense.
This is followed by Section 4 where we propose an optimization method to approximate the optimal
defense, and provide some experiments validating our methods and models. Section 4 presents a
generalization analysis showing that the proposed approximation approaches the optimal defense at a
fast rate. Finally we conclude in Section 6 by putting our work into perspective with related work.

2 A Game Theoretic Setup for Additive Adversarial Attacks and Defenses

We will denote a random variable with an upper-case letter, e.g., X , and a realization of a random
variable with a lower-case letter, e.g., x. We will consider a binary classification task with data
distribution pX defined over the input space X ⊂ Rm. The true decision boundary corresponding
to the discrete labels {−1,+1} will be defined by the zero-contour of a classifier f : X → R, i.e.,
{x : f(x) = 0}, and the label of each data point x ∈ X will be given by sgn(f(x)).

We will define a two-player, single-shot, simultaneous, zero-sum game between an attacker A and a
defender D. In this setting the attacker and defender are allowed to simultaneously make additive
perturbations a(x) and d(x), respectively, for a given a data point x, i.e., both A and D submit their
perturbation at the same time and the perturbed point is x+a(x)+d(x). The size of each perturbation
is limited to be at most ε in `2 norm, i.e., for all x ∈ X , a(x), d(x) ∈ V , where V := {v : ‖v‖2 ≤ ε}.
The score uA assigned to A is determined by whether the label of the data point x has changed under
a locally linear approximation of f around x after both the perturbations a(x) and d(x) are applied:

uA(x, a(x), d(x)) =

{
+1 if sgn(fL(x)) 6= sgn(fL(x+ a(x) + d(x)))

−1 otherwise.
(1)

In the above, fL(x′) = f(x)+∇f(x)>(x′−x) is a linear approximation of f in the 2ε neighbourhood
of x. Similarly, the score uD assigned to D is defined as the negative of the utility assigned to A, i.e.,
uD(x, a, d) = −uA(x, a, d) for all (x, a, d), thus making the game zero-sum.

ǫ

ǫ

Figure 1: The decision boundary is given by the dashed line. In
order for our locally linear modeling assumption to hold, data-
points should lie anywhere except in the red regions, i.e., within
2ε distance to a half-plane intersection. The green shaded regions
show the geometry of the robust sets R(x), which follows from
Lemma 1. Observe that R(x) becomes larger as x moves farther
away from the decision boundary.

Note that the locally linear model as-
sumption holds whenever the data dis-
tribution places no mass in regions of
space that are less than 2ε distance
away from curved parts of the deci-
sion boundary. Concretely, for a neu-
ral network with ReLU activations,
the assumption holds whenever none
of the data points lie very close to
the intersection of 2 or more hyper-
planes which make up the classifica-
tion boundaries. This is reasonable
as such regions form a set of measure
zero in the input space. We refer the
reader to Sec. E of the Appendix for
a more detailed discussion about the
validity of such locally-flat boundary
assumptions for deep neural networks.

A deterministic strategy for the at-
tacker consists of choosing a function

1Note that our randomized smoothing defense does not sample from an isotropic gaussian distribution.
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a : X → V which dictates the perturbation a(x) that is made by A for the point x ∈ X . Hence, the
action space, i.e., the set of all deterministic strategies that can be followed by the attacker, is the
function set AA = {a|a : X → V }.
A deterministic strategy for the defender consists of the set of all constant functions, i.e., functions
which take the same perturbation direction for each point x ∈ X . Hence the action space AD for
the defender consists of the function set AD = {dv|v ∈ V, dv : X → V s.t. ∀x ∈ X , dv(x) = v}.
Since each deterministic strategy for the defender can be uniquely with a point v ∈ V , the reader can
think of AD as V for ease of understanding. The reasons for constraining the set of strategies for the
defender are twofold: first, we want to model existing literature in adversarial attacks where defenders
typically follow a single strategy (e.g., smooth input, quantize input) agnostic of the test data point.
Second, this restriction captures the fact that defenders are typically given the adversarially perturbed
input x+ a(x) and are expected to fix it without knowing the original label or original data point x
(and hence have to use a strategy that is agnostic to the relation between the data point and its label).

In reality, attackers and defenders can choose even randomized strategies, where the function a or d
is sampled according to some probability density on the set of allowed deterministic strategies. Such
a randomized strategy sA for the attacker is specified by a density pA ∈ P(AA), where we define
P(AA) to be the set of all probability densities over AA. Similarly, a randomized strategy sD for the
defender is specified by a density pD ∈ P(AD). Given a pair of strategies (sA, sD), we define the
utility function of the attacker, ūA : P(AA)× P(AD)→ R as follows:

ūA(sA, sD) = E
x∼pX ,a∼pA,d∼pD

uA(x, a(x), d(x)) (2)

Note that since the game is zero-sum, the corresponding utility function ūD for the defender is just
the negative of that for the attacker. To complete the setup, we specify that both the attacker and
defender have perfect knowledge about the (possibly randomized) strategy that the other follows,
and have access to the linear approximation fL around any data point x. In summary, we have a
white-box evasion attack scenario and aim to analyze preprocessing attacks and defenses (i.e. they
preprocess the input before they are fed to the classifier) that make additive perturbations to the input.

In the following section, we will further assume both A and D have access to the full data-generating
distribution pX in order to derive the optimal attack and defense strategy. We will show later that this
assumption is not needed in practice by constructing an approximation given finitely many samples
from pX . We will then prove that this approximation approaches the true optimum at a fast rate.

3 A Characterization of Optimal Attack and Defense Strategies

In this section, we will show in Theorem 1 that the FGM attack and Randomized Smoothing defense
exist in a Nash Equilibrium, i.e., if A follows the strategy defined by the FGM attack then D cannot
do better than following a randomized smoothing strategy, and vice-versa. In order to show this, we
will first establish in Lemma 2 that the FGM attack is the best response to any defense in our setting,
and then show in Lemma 3 that randomized smoothing is a best response to FGM. Together, these
lemmas would lead to our main result. Before stating our results, we begin by defining the robust set.
Definition 1 (Robust set). The robust set R(x) = {v : v ∈ V s.t. ∀v′ ∈ V uA(x, v′, v) = −1} of a
point x ∈ X is the subset of allowed perturbations v ∈ V such that if the defender plays v at x, then
the attacker always gets an utility of −1, i.e., the least possible utility, no matter what she plays.

Lemma 1 shows thatR(x) is the intersection of a half-plane with V , as illustrated by the green shaded
regions in Fig. 1. Observe that when x is far from the decision boundary, the robust set is equal to V .
Lemma 1 (Geometry of the robust set). For any x ∈ X , the robust set R(x) is given by

R(x) = {v : sgn(f(x))(f(x) +∇f(x)>v)− ε‖∇f(x)‖ ≥ 0} ∩ {v : ‖v‖2 ≤ ε}. (3)

Interestingly, the proof of the lemma shows that for a fixed x, in order for v to achieve uA(x, v′, v) =
−1 for all v′ ∈ V , it is sufficient to ensure that uA(x, v′, v) = −1 when v′ is chosen according to
the Fast Gradient Method (FGM). The FGM attack was proposed in [12] and makes the additive
perturbation aFGM(x) = −ε sgn(f(x))‖∇f(x)‖2∇f(x). Note that the original attack was called Fast Gradient
Sign Method, as it was derived for `∞ bounded perturbations. The same attack for `2 bounded
perturbations is called the FGM attack. Since this attack does not involve any randomness, the
strategy sFGM followed by the attacker in our framework places probability 1 on the function aFGM.
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Lemma 2 (FGM is a best-response to any defense). For any strategy sD ∈ P(AD) played by the
defender D, the strategy sFGM ∈ P(AA) played by the attacker A achieves the largest possible utility
against sD, i.e., ūA(sFGM, sD) ≥ ūA(sA, sD) for all sA ∈ P(AA).

Having established the optimality of the FGM attack, we now turn our attention to finding an optimal
defense strategy. To that end, we define an instance of the Randomized Smoothing defense proposed
in [7] that will be shown to be a best-response to FGM. For any perturbation v ∈ V , we define φ(v)
to be the measure of the set of points in X whose robust sets cointain v:

φ(v) =

∫
X
1[R(x) 3 v]pX(x)dx (4)

To define sSMOOTH we need to specify the probability distribution pSMOOTH ∈ P(AD). The idea is
to sample uniformly from the set of maximizers of φ, i.e., V ∗ = {v∗ : φ(v∗) ≥ φ(v), ∀v ∈ V }.
Accordingly, our defense strategy sSMOOTH samples from a uniform distribution over the set of
functions F ∗ = {dv∗ : v∗ ∈ V ∗} ⊆ AD, where recall dv : X → V is the constant function defined
as ∀x ∈ X dv(x) = v.
Lemma 3 (Randomized Smoothing is a best-response to FGM). The strategy sSMOOTH achieves
the largest possible utility for the defender against the attack sFGM played by the attacker, i.e., for any
defense sD ∈ P(AD) we have ūD(sFGM, sSMOOTH) ≥ ūD(sFGM, sD).

Note that Lemma 2 is a stronger result than we need for our further analysis, and we will only be
using the following implication of Lemma 2:
Corollary 2.1 (FGM is a best-response to Randomized Smoothing). The strategy sFGM ∈
P(AA) played by the attacker A achieves the largest possible utility against sSMOOTH, i.e.,
ūA(sFGM, sSMOOTH) ≥ ūA(sA, sSMOOTH) for all sA ∈ P(AA).

As a consequence of Corollary 2.1 and Lemma 3 we have established our main result, as follows:
Theorem 1 ((FGM, Randomized Smoothing) form a Nash Equilibrium). Neither player
gains utility by unilaterally deviating when A plays sFGM and D plays sSMOOTH, i.e., ∀sA ∈
P(AA), sD ∈ P(AD), we have ūA(sFGM, sSMOOTH) ≥ ūA(sA, sSMOOTH) and ūD(sFGM, sSMOOTH) ≥
ūD(sFGM, sD).

Implications. At this point we will pause to note some implications of Theorem 1.

1. Theoretical insight: First, Theorem 1 gives us a new theoretical insight into randomized-smoothing.
Specifically, one should select the smoothing distribution according to the classifier f to obtain
an optimal defense, instead of sampling from the rotationally symmetric Gaussian distribution,
which completely ignores the effect of the classifier.

2. Provable attacks: Second, Theorem 1 shows that in some settings some attacks are optimal in the
sense that they will perform better than any alternative regardless of the defense that is employed.
This motivates the study of provable attacks, something that has been largely ignored by the
community which focusses a lot on provable defenses.

3. Winner takes all: Third, we see from the proofs of Lemmas 2 and 3 that the equilibrium utility
obtained by the equilibrium attacker is 1− 2φ(v∗), which shows that whenever the classification
boundaries are such that φ(v∗) = 0, the attacker will always win, i.e., obtain a utility of 1 over the
entire dataset. Similarly, the utility obtained by the equilibrium defender is 2φ(v∗)− 1, meaning
that the defender wins completely whenever the classification boundaries are such that φ(v∗) = 1.
Relating this to the widely used metric robust accuracy, the above is a characterization of cases
where the robust accuracy obtained by the best possible defense is 0% and 100% respectively.

As we saw in this section, we need access to the full data-generating distribution pX in order to
compute ssmooth, which is an unreasonable assumption in practice. Hence, in the following section we
will demonstrate how one can approximate ssmooth given access to finitely many samples from pX .

4 Approximation Properties: How to compute the optimal defense?

As we saw in Section 3, the optimal defense relies on the knowledge of the subset of perturbation
directions that maximize φ, V ∗, which in turns depends on the distribution pX of the input data.
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Given n i.i.d. samples X1, X2, . . . , Xn ∼ pX , we define the finite-sample approximation of φ as:

φn(v) =
1

n

n∑
i=1

1[v ∈ R(Xi)]. (5)

A straightforward modification of the proof of Lemma 3 shows that the same result can be obtained
even if psmooth places all its mass on a single element of V ∗. That is, an optimal defense can also be
achieved by a deterministic strategy. Hence, our goal will now be to solve the following problem:

v∗n = max
v

φn(v) subject to ‖v‖2 ≤ ε. (6)

Recall from Lemma 1 that the robust set at xi can be written as R(xi) = {v ∈ V : c>i v + bi ≥ 0},
where ci = sgn(f(xi))∇f(xi) and bi = |f(xi)| − ε‖∇f(xi)‖. Therefore, we obtain the following
equivalent version of Eq. (6):

max
v

1

n

n∑
i=1

1[c>i v + bi ≥ 0] subject to ‖v‖2 ≤ ε. (7)

Observe that the objective in (7) takes values in {0, 1
n ,

2
n , . . . , 1} and it is equal to 1 iff there is a v

with ‖v‖ ≤ ε such that c>i v + bi ≥ 0 for all i = 1, . . . , n. Trivially, this happens if bi ≥ 0 for all
i = 1, . . . , n, in which case we can choose v = 0, meaning that no defense is needed. By inspection,
we see that bi ≥ 0 when |f(xi)| is large, meaning that the classifier is confident about its prediction,
and ‖∇f(xi)‖ is small, meaning that the response of the classifier is not very sensitive to input
perturbations. This is very consistent with our intuition that defenses are needed when the classifier is
not very confident (small |f(xi)|) or its response is sensitive to input perturbations (large ‖∇f(xi)‖).
To solve the optimization problem in (7), consider the case where there is a single sample, i.e., n = 1.
In this case, if the half-spaceH = {v : c>1 v+b1 ≥ 0} does not intersect the hypersphereB(0, ε), then
any v∗ ∈ V is a solution to (7) with φ(v∗) = 0. Else, if H intersects the hypersphere, a solution
is given by the projection of the origin onto H, which gives φ(v∗) = 1 (see left panel of Fig. 2 for
illustration). When n = 2, there are up to two hyperplanes, which divide the space into at most
4 regions. When no half-space intersects the hypersphere, any v∗ ∈ V is an optimal solution and
φ(v∗) = 0. When only one half-space intersects the hypersphere, as before an optimal solution is
given by the projection of the origin onto the half-space, which gives φ(v∗) = 1/2. When both
half-spaces intersect the hypersphere, but the half-spaces intersect each other outside the hypersphere,
v∗ can be the projection of the origin onto either half-space. It is only when both half-spaces intersect
inside the hypersphere we have φ(v∗) = 1 and a maximizer is given by the projection of the origin
onto the intersection of both half-spaces (see right panel of Fig. 2 for illustration). However, as n
increases, the number of regions grows exponentially in n, rendering such a direct region-enumeration
intractable. We thus follow an optimization-based approach to find an approximate maximizer of (7).
More specifically, we use projected gradient descent on v with the constraint set ‖v‖2 ≤ ε to solve
the optimization problem in (7) and obtain v̂∗n. Additionally, as the gradients of the indicator function
are not very useful, we use the relaxation 1[α ≥ 0] ≥ min(max(0, α), 1) and optimize the RHS.

Table 1: Mean (Variance) of the approximate accuracy
computed over binary classifications tasks on MNIST
and FMNIST corresponding to

(
10
2

)
pairs of classes.

Attack Defense MNIST (%) FMNIST (%)

- - 99.9 (0.0) 99.9 (0.1)
FGM - 53.3 (10.0) 47.4 (5.1)
FGM SMOOTH 71.2 (14.2) 67.4 (9.0)
PGD - 71.9 (12.0) 74.7 (7.3)
PGD SMOOTH 94.0 (4.0) 90.3 (8.5)

Our experiments are conducted on the MNIST
and FMNIST datasets restricted to two classes.
We train a 4-layer convolutional neural network
with ReLU activation functions for this binary
classification task. The classification results are
shown in Table 1, from which we can draw two
main conclusions: (1) If the defender uses the
equilibrium defense, then the attacker gets the
most reduction in approximate accuracy 2 when
using the equilibrium attack, as using any other
attack improves the performance of the defended
classifier. A similar statement holds from the

2Approximate Accuracy is defined as the accuracy of the model obtained by linearizing the decision boundary
in a 2ε-ball around data-points, thus satisfying our modelling assumption. A detailed description, as well as
more experimental details can be found in Sec. D of the Appendix.
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other side. (2) The equilibrium defense SMOOTH leads to significant gains in approximate accuracy
against both FGM and PGD, in agreement with our result that SMOOTH is optimal when the decision
boundaries satisfy our model.

5 Generalization Properties of the Approximation to the Optimal Defense

In the previous section, we saw how to practically approximate the optimal defense as v∗n given
access to a finite number of samples drawn i.i.d. from the data distribution pX . But how good is this
approximation? In this section, we derive generalization bounds showing that φ(v∗n) approaches φ(v∗)
at a fast rate w.r.t. n. Before proceeding, we review some necessary results from learning theory.

Learning theory review. A function h : Rm×. . .×Rm → R is said to satisfy the bounded difference
assumption if for all 1 ≤ i ≤ n there exists finite ci ∈ R such that:

sup
x1,x2,...,xi,...xn,x′i∈Rm

|h(x1, x2, . . . , xi, . . . , xn)− h(x1, x2, . . . , x
′
i, . . . , xn)| ≤ ci. (8)

In other words, the bounded difference assumption states that h changes by at most a finite amount if
any of the individual inputs are changed, while keeping all others constant. Now, let h be a function
satisfying the bounded difference assumption, and X1, . . . , Xn ∼ pX be i.i.d. random variables.
Then, h satisfies the following useful property called the McDiarmid’s inequality, which shows that
that the function values of h are tightly concentrated around the mean:

Pr
[
|h(X1, . . . , Xn)− E

X1,...,Xn∼pX

h(X1, . . . , Xn)| > ε
]
≤ exp

{ −2ε2∑
i c

2
i

}
. (9)

Next we need some results from Vapnik-Chervonenkis Theory. Let X1, . . . , Xn ∼ pX be i.i.d.
random variables each taking values in Rm. Let B be a family of subsets of Rm. Let B ∈ B be
any subset in the family. Define µ as µ(B) = Pr[X1 ∈ B]. Further, given a particular realization
x1, . . . , xn of X1, . . . Xn, define the finite-sample approximation µn as µn(B) = 1

n

∑n
i=1 1[Xi ∈

B]. In other words, µ(B) is the probability that a sample from pX lies in B, and µn(B) estimates
this probability using n samples from D. Taking h(x1, . . . , xn) = supB∈B |µn(B) − µ(B)| in
McDiarmid’s inequality, we observe that ci = 1

n and we get the following:

Pr
[∣∣∣ sup

B∈B
|µn(B)− µ(B)| − E

X1,...,Xn∼pX

sup
B∈B
|µn(B)− µ(B)|

∣∣∣ > ε
]
≤ exp

{
− 2nε2

}
. (10)

In other words, we see that the maximum inaccuracy incurred in estimating Pr[X1 ∈ B] from finite
samples is tightly concentrated around the mean. The final piece we need from VC theory is an upper
bound on this mean inaccuracy:

E
X1,...,Xn∼pX

sup
B∈B

∣∣∣µn(B)− µ(B)
∣∣∣ ≤ 2

√
2 logSB(n)

n
, (11)

where SB(n) is the shatter coefficient for the family B, which is defined as follows:

SB(n) = sup
x1,x2,...,xn∈Rm

∣∣∣{{x1, x2, . . . , xn} ∩B : B ∈ B
}∣∣∣. (12)

In the above, each of the terms being considered in the supremum counts the number of distinct
intersections with members of B. For illustration, say we are working in R2, and let B be the family
of subsets generated by taking each rectangle r in the plane and considering Br to be the points
contained in r. Now given any 3 points {x1, x2, x3} in the plane, we can find rectangles r such that
{x1, x2, x3} ∩Br equals each of the 8 possible subsets {}, {x1}, {x2}, {x1, x2}, . . . , {x1, x2, x3}.
This shows that SB(3) ≥ 8 (which implies SB(3) = 8 as SB(n) ≤ 2n).

In other words, the shatter coefficient at n equals the largest p such that n points can be broken into
p subsets by members of B. Hence, SB(n) ≥ p implies there exists at least one such example of
x1, . . . , xn that can be broken into p subsets. On the other hand, SB(n) < p + 1 implies that for
every choice of n points, they cannot be broken into p+ 1 or more distinct sets by members in B.

Generalization bound. We will now apply the above literature to our setup. Going forward, we
will think of n as being the size of the entire training data that is available to us. Recall that in our
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setting, we are given a fixed base classifier f . Given f , and a sample x1, . . . , xn, we know the robust
sets R(x1), R(x2), . . . , R(xn). For each direction that can be taken by the defender, i.e., v ∈ V , we
define Bv to be the subset of X for which v is a robust direction as:

Bv = {x ∈ X : v ∈ R(x)}. (13)
Now we can define the family of subsets B = {Bv : v ∈ V }. With this definition, we can see that φ
corresponds to µ, and φn corresponds to µn as:

φ(v) := µ(Bv) = Pr[X1 ∈ Bv] = Pr[v ∈ R(X1)] (14)

φn(v) :=

n∑
i=1

1[v ∈ R(xi)] = µn(Bv). (15)

Given the base classifier f and the training data, we used an optimization algorithm to obtain the
maximizer of φn(v) in Section 4. We will assume for the purposes of this section that there is
no optimization error, i.e., our optimizer finds the best direction for the given training data, i.e.,
v∗n = arg maxv φn(v). We are interested in the difference between φ(v∗n) and φ(v∗) , i.e.:

φ(v∗)− φ(v∗n) =
(
φ(v∗)− φn(v∗n)

)
+
(
φn(v∗n)− φ(v∗n)

)
(16)

≤ |φ(v∗)− φn(v∗)|+ |φn(v∗n)− φ(v∗n)| (17)
≤ sup

v
|φ(v)− φn(v)|+ sup

v
|φn(v)− φ(v)| = 2 sup

v
|φ(v)− φn(v)|. (18)

In other words, we can get an upper bound on the quantity of interest by analysing supv |φ(v)−φn(v)|,
which is the largest inaccuracy we get due to estimating φ(v) from a finite number of samples. (10)
shows that this quantity is sharply concentrated at its mean, which can be upper bounded by (11) as:

E
X1,...,Xn∼pX

sup
v∈V

∣∣∣φn(v)− φ(v)
∣∣∣ ≤ 2

√
2 logSB(n)

n
. (19)

Hence, the problem boils down to getting an upper bound on SB(n). For families where we can
obtain a bound that is sub-exponential in n, we can see that the RHS converges to 0 as n becomes
large. Hence, we will now upper-bound the shatter coefficient SB(n) for our setting.

Recall that we approximate the base classifier f around each data point x using a linear approximation
fL(x′) = f(x) +∇f(x)>(x′ − x). We have seen that the robust set is the region enclosed between
a half-plane and the boundary of the set V (see Fig. 1 and Lemma 1).

x1ǫ
x2

ǫ

x3

ǫ

{}

Figure 2: We can compute an upper bound to SB by looking at the different regions formed by the robust sets
R(xi). The rightmost panel shows the superimposition of R(x1), R(x2), R(x3), showing the different subsets
formed.

We now want to upper-bound the maximum number of different partitions of {x1, x2, . . . , xn} that
can be formed by taking subsets specified by Bv for v ∈ V . Observe that overlaying all the robust
sets in V gives us a collection of regions, with the property that Bv ∪ {x1, x2, . . . , xn} is constant
when v is varied inside any region, as shown in Fig. 2.

This implies that an upper bound on SB(n) is equal to the number of distinct regions formed. When
we are in the 2-dimensional case, this is same as the number of regions formed by n lines in a plane,
which is known to be (n2 + n+ 2)/2 = O(n2). For higher dimensions m, the maximum possible
number of regions grows as O(nm). Thus the upper bound given by (19) reduces to:

E
X1,...,Xn∼pX

sup
v∈V

∣∣∣φn(v)− φ(v)
∣∣∣ ≤ 4

√
m log n

n
. (20)
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The above shows that as n gets larger, i.e., we take more and more samples (m is a constant), we
approach the best defense at a fast rate of O(

√
log n/n). This bound indicates that efficient learning

from finite samples is possible. This is corroborated by our experiments, which show even faster
rates. We thus believe that our generalization analysis can be sharpened by using recent advances in
PAC-Bayesian learning theory, as well as modern extensions to VC-Theory.

6 Conclusion, Related Work and Future Directions

In this paper, we have proposed a game theoretic framework under which adversarial attacks and
defenses can be studied. Under a locally linear assumption on the decision boundary of the underlying
binary classifier, we identified a pair of attack and defense that exist in a Nash Equilibrium in our
framework. We then gave an optimization procedure to practically compute the equilibrium defense
for any given classifier, and derived generalization bounds for its performance on unseen test data.

There has been a lot of work on the task of classification in the presence of an adversary who can
make additive perturbations to the input before passing it to the classifier. There is a huge body
of work on empirical attacks in the literature [25, 28, 26, 30, 18, 5, 29, 6, 16, 11, 34], as well as
empirically motivated work trying to mitigate the proposed attacks [25, 10, 40, 38, 33]. Here, we will
focus on classical game-theoretic approaches to the problem of adversarial classification, as well as
other recent defenses for which one can get theoretical guarantees on the performance under attack.

Adversarial classification has been studied in the context of email spam detection, where we have a
dataset (X ,Y), and the adversary is allowed to modify the positive (spam) examples in the dataset (i.e.,
data poisoning attack) by replacing (x, y) by (x′, y) where y = 1, incurring a cost of modification
c(x, x′) according to a cost function c. The defender is allowed to choose a classifier h, which
classifies any x ∈ X into two classes, i.e., spam or not spam. [8] studied a single shot non-zero
sum game with this setup, where the defender always chooses the naïve Bayes classifier given the
attacked dataset (X ′,Y). [8] set up an integer linear program to compute the best-response of the
attacker, and give algorithms to compute the solutions efficiently. [17, 32] have studied similar setups
in a sequential setting (called a Stackelberg game), where the attacker goes first and submits the
perturbed dataset X ′ to the defender, who then learns the classifier having observed X ′. [17] showed
that the Stackelberg equilibrium can be approximated using optimization techniques, and provide
analyses for various classification losses. [41] analyzed the same setting where the classifier is now
an SVM classifier, and showed that the min max optimization problem arising from the analysis of
the Nash Equilibrium of the game can be solved efficiently. [13] approached the problem from a
PAC-learning perspective, showing that under certain separability assumptions on the cost function
c one can efficiently learn a classifier that attains low error on the attacked training set, as well as
maximizes the defender’s utility.

A related line of work called adversarial hypothesis testing deals with modifications to the distribution
pX from which the data is sampled instead of modifying the dataset per sample. The utility of the
defender now has an additional negative term corresponding to a discrepancy function between the
original pX and the modified distribution q. The defender now has to determine whether a given
sample of n points came from pX or q, and the defender’s utility consists of a tradeoff between the
Type-I and Type-II errors in this situation. [39] proved that mixed-strategy Nash equilibria exist in
this setting, characterized them, and proved convergence properties of the classification error. [3, 2]
study Nash Equilibria for a similar setting, where the defender is now a learner who has to output the
weights of a classifier that predicts which distribution the input was sampled from.

Our work differs from past literature as our defender plays an additive perturbation, instead of giving
a classifier. In line with practice, we consider the base classifier fixed and provided to us to attack or
defend. Additionally, we focus on the case of an attacker that can perform additive perturbations.

Finally, our work links to a recent line of work on certifiable defenses for neural networks (we refer
the reader to [7] for a nice review). We focus here on randomized certifiable defenses. [19] gave
lower bounds on the robust accuracy of a randomized-smoothing defense via differential-privacy
analyses. Subsequently, [23, 7, 21] sharpened the analysis and presented alternative techniques to
obtain near-optimal smoothing guarantees for Gaussian smoothed classifiers. Our work complements
these proof techniques in the literature as we use geometry of the robust sets as our primary tool to
analyze the equilibria, and their optimization and generalization properties.
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There are several directions for future work. The first direction would be to extend our results to
accommodate locally curved decision boundaries. We suspect that for even further extensions to base
classifiers having arbitrarily complex decision boundaries, the style we use to show our generalization
results would not yield useful bounds, and we would have to resort to more sophisticated tools to
show convergence to the optimal defense. The second direction would be to improve the optimizer of
φn, and obtain guarantees on the optimization error.

Broader Impact

At a high level, this work aims to provide a way to characterize adversarial attacks and defenses that
might be best for each other, in a game theoretic sense where the attacker cannot decrease the robust
accuracy further when the defense is fixed, and the defender cannot increase the robust accuracy
further when the attack is fixed. The technical contributions are novel geometry-flavored proof
techniques that can be used to analyze provable attacks and defenses, and a game-theoretic framework
to study such equilibria. Machine learning systems are increasingly being used in security-critical
applications, like healthcare and automated driving: our work can be used to find guarantees on the
worst accuracy a defended classifier can have under any attack. This is a step towards safe machine
learning, where the ultimate goal is to be able to construct classifiers whose performance cannot be
degraded by an adversary on most data-points with high probability.
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