
A Proof of Algorithm Properties

In this section, we study several important properties of gradient descent algorithm (GD) and
Nesterov’s accelerated gradient algorithm (NAG), which have already been summarized in Table 1 of
Section 3. To simplify the presentation, we shall focus on quadratic minimization problems as in
Section 2 and estimate the sharp dependence on the iteration number k.

More precisely, in the subsequent analysis, we shall fix the constants L ≥ µ > 0 and assume the
objective function is in the function class Qµ,L, which contains all µ-strongly convex and L-smooth
quadratic functions on Rd. Then, for any given f ∈ Qµ,L, the eigenvalue decomposition enables
us to represent the Hessian matrix of f , denoted by Q, as Q = UΛU>, where Λ is a diagonal
matrix comprising of the eigenvalues (λi)

d
i=1 of Q sorted in ascending order, i.e., µ ≤ λ1 ≤ . . . ≤

λd ≤ L, and U ∈ Rd×d is an orthogonal matrix whose columns constitute an orthonormal basis of
corresponding eigenvectors of Q. Moreover, we shall denote by Id the d× d identity matrix, and by
||A||2 the spectral norm of a given matrix A ∈ Rd×d.

We start with the GD algorithm. Let f ∈ Qµ,L, s ≥ 0 be the stepsize, and x0 ∈ Rd be the initial
guess. For each k ∈ N ∪ {0}, we denote by xk+1 the k + 1-th iterate generated by the following
recursive formula (cf. the output yk+1 of GDφ in Section 3):

xk+1 = xk − s∇f(xk). (21)

The following theorem establishes the convergence of Eq. 21 as k tends to infinity, and the Lipschitz
dependence of the iterates (xsk)k∈N in terms of the stepsize s (i.e., the sensitivity of GD). Similar
results can be established for general µ-strongly convex and L-smooth objective functions.
Theorem A.1. Let f ∈ Qµ,L admit the minimiser x∗ ∈ Rd, x0 ∈ Rd and for each s ≥ 0 let
(xsk)k∈N∪{0} be the iterates generated by Eq. 21 with stepsize s. Then we have for all k ∈ N, c0 > 0,
s, t ∈ [c0,

2
µ+L ] that

‖xsk − x∗‖2 ≤ (1− sµ)k‖x0 − x∗‖2, ‖xtk − xsk‖2 ≤ Lk(1− c0µ)k−1|t− s|‖x0 − x∗‖2. (22)

Proof. Let Q be the Hessian matrix of f and (λi)
d
i=1 be the eigenvalues of Q. By using the fact

that ∇f(x∗) = 0 and Eq. 21, we can obtain for all k ∈ N ∪ {0} and s ≥ 0 that xsk − x∗ =
(Id − sQ)(xsk−1 − x∗) = (Id − sQ)k(x0 − x∗).

Since the spectral norm of a matrix is invariant under orthogonal transformations, we have for all
s ∈ [c0,

2
µ+L ] that

‖Id − sQ‖2 = ‖Id − sΛ‖2 = max
i=1,...,d

|1− sλi| = max(|1− sµ|, |1− sL|)

≤ 1− sµ.
(23)

Hence, for any given k ∈ N ∪ {0}, the inequality that ‖xsk − x∗‖2 ≤ (‖Id − sQ‖2)k‖x0 − x∗‖2
leads us to the desired estimate for (‖xsk − x∗‖2)k∈N∪{0}.

Now let t, s ∈ [c0,
2

µ+L ] be given, by using the fact that d
dsx

s
k = k(Id − sQ)k−1Q(x0 − x∗) for all

s > 0, we can deduce from the mean value theorem that

‖xsk − xtk‖2 ≤
(

sup
r∈(c0,

2
µ+L )

‖ ddrx
r
k‖2
)
|t− s|

≤
(

sup
r∈(c0,

2
µ+L )

k(‖Id − rQ‖2)k−1‖Q‖2‖x0 − x∗‖2
)
|t− s|

≤ k

(
sup

r∈[c0,
2

µ+L ]

‖Id − rQ‖2

)k−1

L|t− s|‖x0 − x∗‖2,

which along with Eq. 23 finishes the proof of the desired sensitivity estimate.

The next theorem shows that Eq. 21 with stepsize s ∈ (0, 2
µ+L ] is Lipschitz stable in terms of the

perturbations of f . In particular, for a quadratic function f ∈ Qµ,L, we shall establish the Lipschitz
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stability with respect to the perturbations in the parameters of f . For notational simplicity, we assume
x0 = 0 as in Section 3, but it is straightforward to extend the results to an arbitrary initial guess
x0 ∈ Rd.
Theorem A.2. Let x0 = 0, for each i ∈ {1, 2} let fi ∈ Qµ,L admit the minimizer x∗,i ∈ Rd and
satisfy ∇fi(x) = Qix + bi for a symmetric matrix Qi ∈ Rd×d and bi ∈ Rd, for each i ∈ {1, 2},
s > 0 let (xsk,i)k∈N∪{0} be the iterates generated by Eq. 21 with f = fi and stepsize s, and let
M = min(‖x∗,1‖2, ‖x∗,2‖2). Then we have for all k ∈ N, c0 > 0, s ∈ [c0,

2
µ+L ] that:

‖xsk,1 − xsk,2‖2 ≤
[

1

µ

(
1− (1− sµ)k

)
+ sk(1− sµ)k−1

]
M‖Q1 −Q2‖2

+
1

µ

(
1− (1− sµ)k

)
‖b1 − b2‖2.

Proof. Let us assume without loss of generality that ‖x∗,2‖2 ≤ ‖x∗,1‖2 and c0 ≤ 2
µ+L . We write

δxk = xsk,1−xsk,2 for each k ∈ N∪{0}. Then, by using Eq. 21 and the fact that∇f1(x)−∇f1(y) =

Q1(x− y) for all x, y ∈ Rd, we can deduce that δx0 = 0 and for all k ∈ N ∪ {0} that

δxk+1 = (Id − sQ1)δxk + ek =

k∑
i=0

(Id − sQ1)iek−i,

where ek = −s(∇f1 −∇f2)(xsk,2) for each k ∈ N∪ {0}. Note that it holds for all k ∈ N∪ {0} that

‖ek‖2 ≤ s‖(∇f1 −∇f2)(xsk,2)‖2 ≤ s
(
‖Q2 −Q2‖2‖xsk,2‖2 + ‖b1 − b2‖2

)
≤ s
(
‖Q2 −Q2‖2(‖x∗,2‖2 + ‖xsk,2 − x∗,2‖2) + ‖b1 − b2‖2

)
≤ s
(
‖Q2 −Q2‖2(‖x∗,2‖2 + (1− sµ)k‖x0 − x∗,2‖2) + ‖b1 − b2‖2

)
,

where we have applied Theorem A.1 for the last inequality. Thus for each k ∈ N, we can obtain from
Eq. 23 and x0 = 0 that

‖δxk‖2 ≤
k−1∑
i=0

(‖Id − sQ1‖2)i‖ek−1−i‖2

≤
k−1∑
i=0

(1− sµ)is
[
(1 + (1− sµ)k−1−i)‖x∗,2‖2‖Q2 −Q2‖2 + ‖b1 − b2‖2

]
=

[
1

µ

(
1− (1− sµ)k

)
+ sk(1− sµ)k−1

]
min(‖x∗,1‖2, ‖x∗,2‖2)‖Q2 −Q2‖2

+
1

µ

(
1− (1− sµ)k

)
‖b1 − b2‖2.

which leads to the desired conclusion due to the fact that M = min(‖x∗,1‖2, ‖x∗,2‖2).

We now proceed to investigate similar properties of the NAG algorithm, whose proofs are more
involved due to the fact that NAG is a multi-step method.

Recall that for any given f ∈ Qµ,L, initial guess x0 ∈ Rd and stepsize s ≥ 0, the NAG algorithm
generates iterates (xk, yk)k∈N∪{0} as follows: y0 = x0 and for each k ∈ N ∪ {0},

xk+1 = yk − s∇f(yk), yk+1 = xk+1 +
1−√µs
1 +
√
µs

(xk+1 − xk). (24)

Note that xk+1, yk+1 are denoted by yk+1, zk+1, respectively, in Section 3.

We first introduce the following matrix RNAG,s for Eq. 24 for any given function f ∈ Qµ,L and
stepsize s ∈ [0, 4

3L+µ ]:

RNAG,s :=

(
(1 + βs)(Id − sQ) −βs(Id − sQ)

Id 0

)
(25)
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where βs =
1−√µs
1+
√
µs and Q is the Hessian matrix of f . The following lemma establishes an upper

bound of the spectral norm of the k-th power of RNAG,s, which extends [18, Lemma 22] to block
matrices, a wider range of stepsize (s is allowed to be larger than 1/L) and a momentum parameter
βs depending on the stepsize s.

Lemma A.1. Let f ∈ Qµ,L, s ∈ (0, 4
3L+µ ], βs =

1−√µs
1+
√
µs and RNAG,s be defined as in Eq. 25. Then

we have for all k ∈ N that ‖RkNAG,s‖2 ≤ 2(k + 1)(1−√µs)k.

Proof. Let Q = UΛUT be the eigenvalue decomposition of the Hessian matrix Q of f , where Λ is a
diagonal matrix comprising of the corresponding eigenvalues of Q sorted in ascending order, i.e.,
0 < µ ≤ λ1 ≤ . . . ≤ λd ≤ L. Then we have that

RNAG,s =

(
U 0
0 U

)(
(1 + βs)(Id − sΛ) −βs(Id − sΛ)

Id 0

)(
UT 0
0 UT

)
,

which together with the facts that any permutation matrix is orthogonal, and the spectral norm of a
matrix is invariant under orthogonal transformations, gives us the identity that: for all k ∈ N,

‖RkNAG,s‖2 =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

(1 + βs)(Id − sΛ) −βs(Id − sΛ)
Id 0

)k∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= max
i=1,...n

‖T ks,i‖2, (26)

where Ts,i =
(

(1+βs)(1−sλi) −βs(1−sλi)
1 0

)
for all i = 1, . . . , d.

Now let s ∈ (0, 4
3L+µ ] and i = 1, . . . , d be fixed. If 1 − sλi ≥ 0, by using [18, Lemma 22] (with

α = µ, β = 1/s, h = 1− sλi and κ = β/α = 1/(µs)), we can obtain that

‖T ks,i‖2 ≤ 2(k + 1)

(
1−√µs
1 +
√
µs

(1− µs)
)k/2

≤ 2(k + 1)(1−√µs)k.

We then discuss the case where 1 − sλi < 0. Let us write T ks,i =
(
ak bk
ck dk

)
for each k ∈ N ∪ {0},

then we have for all k ∈ N that
ak = (1 + βs)(1− sλi)ak−1 − βs(1− sλi)ck−1, ck = ak−1,

bk = (1 + βs)(1− sλi)bk−1 − βs(1− sλi)dk−1, dk = bk−1,

with a1 = (1 + βs)(1 − sλi), b1 = −βs(1 − sλi), c1 = 1 and d1 = 0. Since the conditions
1 − sλi < 0 and s ≤ 4

3L+µ imply that λi > 1
s ≥

3L+µ
4 ≥ µ, we see the discriminant of the

characteristic polynomial satisfies that

∆ = (1 + βs)
2(1− sλi)2 − 4βs(1− sλi) =

4(1− sλi)
(1 +

√
µs)2

s(µ− λi) > 0,

which implies that there exist l1, l2, l3, l4 ∈ R such that it holds for all k ∈ N ∪ {0} that ak =

l1τ
k+1
+ + l2τ

k+1
− and bk = l3τ

k+1
+ + l4τ

k+1
− , with τ± = (1+βs)(1−sλi)±

√
∆

2 , l1 = 1
τ+−τ− , l2 =

− 1
τ+−τ− , l3 = −τ−

τ+−τ− and l4 = τ+
τ+−τ− . Thus, by letting ρi := max(|τ+|, |τ−|), we have that

|ak| = |
∑k
j=0 τ

k−j
+ τ j−| ≤ (k + 1)ρki and |bk| = |(−τ+τ−)

∑k−1
j=0 τ

k−1−j
+ τ j−| ≤ kρk+1

i for all
k ∈ N ∪ {0}.
Now we claim that the conditions 1 − sλi < 0 and 0 < s ≤ 4

3L+µ imply the estimate that
ρi ≤ 1−√µs < 1. In fact, the inequality s ≤ 4

3L+µ gives us that µs ≤ 4µ
3L+µ ≤ 1, which implies

that βs =
1−√µs
1+
√
µs ≥ 0. Hence we can deduce from 1− sλi < 0 that

√
∆ ≥ (1 + βs)(sλi − 1) and

|τ+| ≤ |τ−| ≤
sλi − 1 +

√
(sλi − 1)s(λi − µ)

1 +
√
µs

≤
sL− 1 +

√
(sL− 1)s(L− µ)

1 +
√
µs

.

Note that 2− (µ+ L)s ≥ 2− 4(µ+L)
3L+µ ≥ 0, we see that

ρi ≤ 1−√µs ⇐= |τ−| ≤ 1−√µs ⇐= sL− 1 +
√

(sL− 1)s(L− µ) ≤ 1− µs
⇐⇒ (sL− 1)s(L− µ) ≤ (2− (µ+ L)s)2

⇐⇒ (us− 1)((3L+ µ)s− 4) ≥ 0.
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Therefore, we have that max(|ak|, |bk|, |ck|, |dk|) ≤ (k + 1)(1 − √µs)k, which, along with the
relationship between the spectral norm and Frobenius norm, gives us that ‖T ks,i‖2 ≤ ‖T ks,i‖F ≤
2(k+ 1)(1−√µs)k, and finishes the proof of the desired estimate for the case with 1− sλi < 0.

As an important consequence of Lemma A.1, we now obtain the following upper bound of the error
(‖xk − x∗‖2)k∈N for any given objective function f ∈ Qµ,L and stepsize s ∈ (0, 4

3L+µ ].

Theorem A.3. Let f ∈ Qµ,L admit the minimizer x∗ ∈ Rd, x0 ∈ Rd, s ∈ (0, 4
3L+µ ] and

(xsk, y
s
k)k∈N∪{0} be the iterates generated by Eq. 24 with stepsize s. Then we have for all k ∈ N∪{0}

that
‖xsk+1 − x∗‖22 + ‖xsk − x∗‖22 ≤ 8(1 + k)2(1−√µs)2k‖x0 − x∗‖22.

Proof. For any f ∈ Qµ,L, and s ∈ (0, 4
3L+µ ], by letting βs =

1−√µs
1+
√
µs , we can rewrite Eq. 24 as

follows: xs0 = x0, xs1 = x0 − s∇f(x0) and for all k ∈ N,

xsk+1 = (1 + βs)x
s
k − βsxk−1 − s∇f((1 + βs)x

s
k − βsxk−1), (27)

which together with the fact that∇f(x∗) = 0 shows that(
xsk+1 − x∗
xsk − x∗

)
= RNAG,s

(
xsk − x∗
xsk−1 − x∗

)
= RkNAG,s

(
xs1 − x∗
xs0 − x∗

)
where RNAG,s is defined as in Eq. 25. Hence by using xs1 = x0 − s∇f(x0) and Theorem A.1, we
can obtain that

‖xsk+1 − x∗‖22 + ‖xsk − x∗‖22 ≤ ‖RkNAG,s‖22(‖xs1 − x∗‖22 + ‖xs0 − x∗‖22)

≤ ‖RkNAG,s‖222‖x0 − x∗‖22,

which together with Lemma A.1 leads to the desired convergence result.

Remark A.1. It is well-known that for a general µ-strongly convex and L-smooth objective function
f , one can employ a Lyapunov argument and establish that the iterates obtained by Eq. 24 with
stepsize s ∈ [0, 1

L ] satisfy the estimate that ‖xk−x∗‖22 ≤ 2L
µ (1−√µs)k‖x0−x∗‖22. Here by taking

advantage of the affine structure of∇f , we have obtained a sharper estimate of the convergence rate
for a wider range of stepsize s ∈ (0, 4

3L+µ ].

We also would like to emphasize that the upper bound in Theorem A.3 is tight, in the sense that the
additional quadratic dependence on k in the error estimate is inevitable. In fact, one can derive a closed-
form expression of RkNAG,s and show that, for an index i such that the eigenvalue λi is sufficiently
close to µ, the squared error for that component is of the magnitude O((k

√
µs+ 1)2(1−√µs)2k).

We then proceed to analyze the sensitivity of Eq. 24 with respect to the stepsize. The following
theorem shows that the iterates (xk, yk)k∈N∪{0} generated by Eq. 24 depend Lipschitz continuously
on the stepsize s.
Theorem A.4. Let f ∈ Qµ,L admit the minimiser x∗ ∈ Rd, x0 ∈ Rd, and for each s ∈ (0, 4

3L+µ ]

let (xsk, y
s
k)k∈N∪{0} be the iterates generated by Eq. 24 with stepsize s. Then we have for all k ∈ N,

c0 > 0 and t, s ∈ [c0,
4

3L+µ ] that:

‖xtk − xsk‖2 ≤
(

2L(1 + k) +
4

3
k(k + 1)(k + 5)

(√
µ

c0
+ 2L

))
(1−√µc0)k|t− s|‖x0 − x∗‖2.

Proof. Throughout this proof we assume without loss of generality that c0 ≤ s < t ≤ 4
3L+µ . Let Q

be the Hessian matrix of f , for each r ∈ [c0,
4

3L+µ ] let βr =
1−√µr
1+
√
µr , and for each k ∈ N ∪ {0} let

δxk = xtk − xsk . Then we can deduce from Eq. 27 that δx0 = 0, δx1 = −(t− s)∇f(x0) and for all
k ∈ N that

xtk+1 − xsk+1 = [(1 + βt)x
t
k − βtxtk−1 − t∇f((1 + βt)x

t
k − βtxtk−1)]

− [(1 + βs)x
s
k − βsxsk−1 − s∇f((1 + βs)x

s
k − βsxsk−1)],
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which together with the fact that∇f(x)−∇f(y) = Q(x− y) for all x, y ∈ Rd shows that(
δxk+1

δxk

)
= RNAG,t

(
δxk
δxk−1

)
+

(
ek
0

)
with RNAG,t defined as in Eq. 25 and the following residual term

ek := [(1 + βt)x
s
k − βtxsk−1 − t∇f((1 + βt)x

s
k − βtxsk−1)]

− [(1 + βs)x
s
k − βsxsk−1 − s∇f((1 + βs)x

s
k − βsxsk−1)].

Hence we can obtain by induction that: for all k ∈ N,(
δxk+1

δxk

)
= RkNAG,t

(
δx1

δx0

)
+

k−1∑
i=0

RiNAG,t

(
ek−i

0

)
. (28)

Now the facts that∇f(x∗) = 0 and ∇2f ≡ Q gives us that

ek = (βt − βs)(xsk − xsk−1)− t∇f((1 + βt)x
s
k − βtxsk−1) + s∇f((1 + βs)x

s
k − βsxsk−1)

= (βt − βs)
(
(xsk − x∗)− (xsk−1 − x∗)

)
− tQ

(
(1 + βt)(x

s
k − x∗)− βt(xsk−1 − x∗)

)
+ sQ

(
(1 + βs)(x

s
k − x∗)− βs(xsk−1 − x∗)

)
=
[
(βt − βs)− (t+ tβt − s− sβs)Q

]
(xsk − x∗)−

[
(βt − βs)− (tβt − sβs)Q

]
(xsk−1 − x∗).

Note that one can easily verify that the function g1(r) = βr is
√
µ/c0-Lipschitz on [c0,

4
3L+µ ], and

the function g2(r) = rβr is 1-Lipschitz on [0, 4
3L+µ ]. Moreover, the fact that f ∈ Qµ,L implies that

‖Q‖2 ≤ L. Thus we can obtain from Theorem A.3 that

‖ek‖2 ≤
(√

µ

c0
+ 2L

)
|t− s|‖xsk − x∗‖2 +

(√
µ

c0
+ L

)
|t− s|‖xsk−1 − x∗‖2

≤
(√

µ

c0
+ 2L

)
|t− s|

√
2(‖xsk − x∗‖22 + ‖xsk−1 − x∗‖22)

≤
(√

µ

c0
+ 2L

)
|t− s|4(1 + k)(1−√µs)k‖x0 − x∗‖2.

This, along with Eq. 28, Lemma A.1 and s < t, gives us that√
‖δxk+1‖22 + ‖δxk‖22 ≤ ‖RkNAG,t‖2‖δx1‖2 +

k−1∑
i=0

‖RiNAG,t‖2‖ek−i‖2

≤ 2(1 + k)(1−
√
µt)k|t− s|L‖x0 − x∗‖2

+

k−1∑
i=0

2(1 + i)(1−
√
µt)i

(√
µ

c0
+ 2L

)
|t− s|4(1 + k − i)(1−√µs)k−i‖x0 − x∗‖2

=

(
2L(1 + k) +

4

3
k(k + 1)(k + 5)

(√
µ

c0
+ 2L

))
|t− s|(1−√µs)k‖x0 − x∗‖2,

which finishes the proof of the desired estimate due to the fact that s ≥ c0.

The next theorem is an an analog of Theorem A.2 for the NAC scheme Eq. 24, which shows that the
outputs of Eq. 24 with stepsize s ∈ (0, 4

3L+µ ] is Lipschitz stable with respect to the perturbations of
the parameters in f .
Theorem A.5. Let x0 = 0, for each i ∈ {1, 2} let fi ∈ Qµ,L admit the minimizer x∗,i ∈ Rd and
satisfy ∇fi(x) = Qix + bi for a symmetric matrix Qi ∈ Rd×d and bi ∈ Rd, for each i ∈ {1, 2},
s > 0 let (xsk,i)k∈N∪{0} be the iterates generated by Eq. 24 with f = fi and stepsize s, and let
M = min(‖x∗,1‖2, ‖x∗,2‖2). Then we have for all k ∈ N, s ∈ [c0,

4
3L+µ ] that:

‖xsk,1 − xsk,2‖2 ≤
[

2

µ

(
1− (1−√µs)k−1

)
+ s

8(k − 1)k(k + 4)

3
(1−√µs)k−1

]
M‖Q1 −Q2‖2

+
2

µ

(
1− (1−√µs)k

)
‖b1 − b2‖2.
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Proof. Let us assume without loss of generality that ‖x∗,2‖2 ≤ ‖x∗,1‖2. We first fix an arbitrary
s ∈ [c0,

4
3L+µ ] and write δxk = xsk,1 − xsk,2 for each k ∈ N ∪ {0}. Then, by using Eq. 27 and

the fact that ∇f1(x) − ∇f1(y) = Q1(x − y) for all x, y ∈ Rd, we can deduce that δx0 = 0,
δx1 = −s(∇f1 −∇f2)(x0) and for all k ∈ N,(

δxk+1

δxk

)
= RNAG,s

(
δxk
δxk−1

)
+

(
ek
0

)
= RkNAG,s

(
δx1

δx0

)
+

k−1∑
j=0

RjNAG,s

(
ek−j

0

)
, (29)

where RNAG,s is defined as in Eq. 25 (with Q = Q1) and the residual term ek is given by

ek := −s(∇f1 −∇f2)((1 + βs)x
s
k,2 − βsxsk−1,2) ∀k ∈ N.

Note that, by using Theorem A.3 and the inequality that x+ y ≤
√

2(x2 + y2) for all x, y ∈ R, we
have for each k ∈ N that

‖ek‖2 = s‖(Q1 −Q2)((1 + βs)x
s
k,2 − βsxsk−1,2) + (b1 − b2)‖2

≤ s‖Q1 −Q2‖2(‖x∗,2‖2 + 2‖xsk,2 − x∗,2‖2 + ‖xsk−1,2 − x∗,2‖2) + s‖b1 − b2‖2
≤ s‖Q1 −Q2‖2(‖x∗,2‖2 + 2‖xsk,2 − x∗,2‖2 + ‖xsk−1,2 − x∗,2‖2) + s‖b1 − b2‖2
≤ s‖Q1 −Q2‖2(‖x∗,2‖2 + 8(1 + k)(1−√µs)k‖x0 − x∗,2‖2) + s‖b1 − b2‖2.

Hence we can obtain from Eq. 29, Lemma A.1 and x0 = 0 that√
‖δxk+1‖22 + ‖δxk‖22 ≤ 2(k + 1)(1−√µs)k‖δx1‖2 +

k−1∑
j=0

2(j + 1)(1−√µs)j‖ek−j‖2

≤ 2(k + 1)(1−√µs)ks‖b1 − b2‖2 +

k−1∑
j=0

2(j + 1)(1−√µs)j
[
s‖b1 − b2‖2

+ s‖Q1 −Q2‖2(1 + 8(1 + k − j)(1−√µs)k−j)‖x∗,2‖2
]

≤ 2s

k∑
j=0

(j + 1)(1−√µs)j‖b1 − b2‖2 + 2s

k−1∑
j=0

[
(j + 1)(1−√µs)j

+ 8(j + 1)(1 + k − j)(1−√µs)k
]
‖Q1 −Q2‖2 min(‖x∗,1‖2, ‖x∗,2‖2).

Let p = 1−√µs ∈ [0, 1), then we can easily show for each k ∈ N∪{0} that (1−p)
∑k
j=0(j+1)pj =∑k

j=0 p
j − pk+1, which implies that

∑k
j=0(j+ 1)(1−√µs)j ≤ 1−(1−√µs)k+1

µs . Moreover, we have

that
∑k−1
j=0 (j + 1)(1 + k− j) = k(k+1)(k+5)

6 for all k ∈ N. Thus we can simplify the above estimate
and deduce for each k ∈ N that

‖δxk+1‖2 ≤
2

µ

(
1− (1−√µs)k+1

)
‖b1 − b2‖2 +

[
2

µ

(
1− (1−√µs)k

)
+ s

8k(k + 1)(k + 5)

3
(1−√µs)k

]
‖Q1 −Q2‖2 min(‖x∗,1‖2, ‖x∗,2‖2).

Moreover, the condition that s ≤ 4
3L+µ ≤ 1

µ implies that ‖δx1‖2 = s‖b1 − b2‖2 ≤
2
µ

(
1− (1−√µs)

)
‖b1 − b2‖2, which shows that the same upper bound also holds for ‖δx1‖2

and finishes the proof of the desired estimate.
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B Approximation Ability

Lemma 4.1. (Faster Convergence⇒ Better Approximation Ability). Assume the problem setting
in Sec 2. The approximation ability can be bounded by two terms:

inf
φ∈Φ,θ∈Θ

sup
Q∗∈Q∗

P`φ,θ ≤ σbµ−2 inf
θ∈Θ

sup
Q∗∈Q∗

P‖Qθ −Q∗‖F︸ ︷︷ ︸
approximation ability of the neural module

+M inf
φ∈Φ

Cvg(k, φ)︸ ︷︷ ︸
best convergence

. (11)

Proof. For each φ ∈ Φ, θ ∈ Θ, Q∗ ∈ Q∗,

`φ,θ(x, b) = ‖Algkφ(Qθ(x), b)− Opt(Q∗(x), b)‖2 (30)

≤ ‖Algkφ(Qθ(x), b)− Opt(Qθ(x), b)‖2 + ‖Opt(Qθ(x), b)− Opt(Q∗(x), b)‖2 (31)

≤ Cvg(k, φ)‖Alg0
φ(Qθ(x), b)− Opt(Q∗(x), b)‖2 + ‖Qθ(x)−1b−Q∗(x)−1b‖2 (32)

≤ Cvg(k, φ) ·M + ‖
(
Qθ(x)−1 −Q∗(x)−1

)
b‖2, (33)

where in the last inequality we have used the facts that the initialization is assumed to be zero vector,
i.e., Alg0

φ(Qθ(x), b) = 0, and that M ≥ supx∈X ,b∈B Opt(Q∗(x), b). Note that the independence
of (x, b) and the fact that Ebb> = σ2

b I imply that

Eb‖
(
Qθ(x)−1 −Q∗(x)−1

)
b‖22 (34)

= Tr
(
(Qθ(x)−1 −Q∗(x)−1)>(Qθ(x)−1 −Q∗(x)−1)σ2

b I
)

(35)

= σ2
b‖Qθ(x)−1 −Q∗(x)−1‖2F (36)

= σ2
b‖Qθ(x)−1(Qθ(x)−Q∗(x))Q∗(x)−1‖2F (37)

≤ µ−4σ2
b‖Qθ(x)−Q∗(x)‖2F (38)

Therefore, we see from Hölder’s inequality that

Eb‖
(
Qθ(x)−1 −Q∗(x)−1

)
b‖2 ≤ µ−2σb‖Qθ(x)−Q∗(x)‖F . (39)

Collecting all the above inequalities, we have

P`φ,θ ≤ Cvg(k, φ) ·M + σbµ
−2P‖Qθ −Q∗‖F . (40)

Taking supremum over Q∗, we have

sup
Q∗∈Q∗

P`φ,θ ≤ Cvg(k, φ) ·M + σbµ
−2 sup

Q∗∈Q∗
P‖Qθ −Q∗‖F . (41)

Taking infimum over φ and θ, we have

inf
φ∈Φ,θ∈Θ

sup
Q∗∈Q∗

P`φ,θ ≤ inf
φ∈Φ

Cvg(k, φ) ·M + σbµ
−2 inf

θ∈Θ
sup

Q∗∈Q∗
P‖Qθ −Q∗‖F . (42)

Lemma 4.2. (Faster Convergence⇒ Better Representation of Q∗). Assume the problem setting
in Sec 2. Then ∀φ ∈ Φ, θ ∈ Θ, Q∗ ∈ Q∗ it holds true that

P‖Qθ −Q∗‖2F ≤ σ−2
b L4(

√
P`2φ,θ +M · Cvg(k, φ))2. (12)

Proof. Let us assume without loss of generality that P`2φ,θ = ε for some ε ≥ 0. For any x ∈ X ,
b ∈ B, we have

`φ,θ(x) ≥ ‖Opt (Qθ(x), b)− Opt (Q∗(x), b) ‖2 − ‖Algkφ (Qθ(x), b)− Opt (Qθ(x), b) ‖2
≥ ‖Qθ(x)−1b−Q∗(x)−1b‖2 − Cvg(k, φ)‖Opt (Qθ(x), b) ‖2 (43)

≥ ‖Qθ(x)−1b−Q∗(x)−1b‖2 −M · Cvg(k, φ). (44)

Rearranging the terms in the above inequality, we have

‖Qθ(x)−1b−Q∗(x)−1b‖2 ≤ `φ,θ(x) +M · Cvg(k, φ). (45)
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By Eq. 37 and the inequality that ‖AB‖F ≤ ‖A‖2‖B‖F for any given A ∈ Rm×r and B ∈ Rr×n,
we have that

Eb‖Qθ(x)−1b−Q∗(x)−1b‖22 (46)

= σ2
b‖Qθ(x)−1(Qθ(x)−Q∗(x))Q∗(x)−1‖2F (47)

≥ σ2
b

‖Qθ(x)−Q∗(x)‖2F
‖Q∗(x)‖22‖Qθ(x)‖22

(48)

≥ σ2
b‖Qθ(x)−Q∗(x)‖2F /L4, (49)

which implies that,

‖Qθ(x)−Q∗(x)‖2F ≤ σ−2
b L4Eb‖Qθ(x)−1b−Q∗(x)−1b‖22. (50)

Combining it with Eq. 45 and the fact that (P`φ,θ)
2 ≤ P`2φ,θ, we have

P‖Qθ(x)−Q∗(x)‖2F ≤ σ−2
b L4P (`φ,θ +M · Cvg(k, φ))2 (51)

= σ−2
b L4

(
P`2φ,θ + (M · Cvg(k, φ))2 + 2(M · Cvg(k, φ))P`φ,θ

)
(52)

≤ σ−2
b L4

(
ε+ (M · Cvg(k, φ))2 + 2(M · Cvg(k, φ))

√
ε
)

(53)

= σ−2
b L4

(√
ε+M · Cvg(k, φ)

)2
, (54)

which completes the proof.
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C Generalization Ability

In this section, we shall prove the following result, which is a refined version of Theorem 5.1.
Theorem C.1. Assume the problem setting in Sec 2 and let r > 0. Then for any t > 0, with
probability at least 1− e−t, the empirical Rademacher complexity of `locF (r) can be bounded by

Rn`
loc
F (r) ≤

√
2dn−

1
2 Stab(k)

(√
(
√
r +MCvg(k))2C1(n) + C2(n, t, k, r) + 4

)
+ Sens(k)BΦ,

where

C1(n) = 216σ−2
b L4 logN (n−

1
2 , `Q, L2(Pn))

C2(n, t, k, r) =

(
768B2

Qt

n
+ 720BQERn`locQ (rq)

)
logN (n−

1
2 , `Q, L2(Pn)),

rq = σ−2
b L4(

√
r + MCvg(k))2, `locQ (rq) = {‖Qθ − Q∗‖F : θ ∈ Θ, P‖Qθ − Q∗‖2F ≤ rq},

BQ = 2L
√
d, and BΦ = 1

2 supφ1,φ2∈Φ ‖φ1 − φ2‖2.

Furthermore, for any t > 0, the expected Rademacher complexity of `locF (r) can be bounded by

ERn`locF (r) ≤
√

2dn−
1
2 Stab(k)

(√
(
√
r +MCvg(k))2C1(n) + C2(n, t) + C3(n, t) + 4

)
+ Sens(k)BΦ,

where

C1(n) = 216σ−2
b L4 logNQ,

C2(n, t) =

(
1 + 3BQe

−t√logNQ +
45√
n
BQ logNQ

)
2880√
n
BQ logNQ + t

768B2
Q

n
logNQ,

C3(n, t) = 12BQe
−t√logNQ +

360√
n
BQ logNQ,

and NQ = N (n−
1
2 , `Q, L∞).

In order to prove Theorem C.1, we first prove the following theorem, which reduces bounding the
empirical Rademacher complexity of `locF (r) to that of `locQ (rq), and plays an important role in our
complexity analysis.
Theorem C.2. Assume the problem setting in Sec 2. Then it holds for any r > 0 that

Rn`
loc
F (r) ≤

√
2d Stab(k)Rn`

loc
Q (rq) + Sens(k)BΦ, (55)

with rq = σ−2
b L4(

√
r+MCvg(k))2, `locQ (rq) = {‖Qθ −Q∗‖F : θ ∈ Θ, P‖Qθ −Q∗‖2F ≤ rq} and

BΦ = 1
2 supφ1,φ2∈Φ ‖φ1 − φ2‖2.

Proof. Let k ∈ N be fixed throughout this proof. We first show that the loss `φ,θ is Stab(k)-Lipschtiz
in Qθ and Sens(k)-Lipschitiz in φ. For any (x, b) ∈ X × B, by using the triangle inequality and the
definitions of Stab(k, φ′) and Sens(k), we can obtain the following estimate of the loss:

|`φ,θ(x)− `φ′,θ′(x)|
= |‖Algkφ(Qθ(x), b)− Opt(Q∗(x), b)‖2 − ‖Algkφ′(Qθ′(x), b)− Opt(Q∗(x), b)‖2|
≤ ‖Algkφ(Qθ(x), b)− Algkφ′(Qθ′(x), b)‖2
≤ ‖Algkφ′(Qθ(x), b)− Algkφ′(Qθ′(x), b)‖2 + ‖Algkφ(Qθ(x), b)− Algkφ′(Qθ(x), b)‖2
≤ Stab(k, φ′)‖Qθ(x)−Qθ′(x)‖2 + Sens(k)‖φ− φ′‖2
≤ Stab(k)‖Qθ(x)−Qθ′(x)‖2 + Sens(k)‖φ− φ′‖2.

(56)
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where we write Stab(k) = supφ∈Φ Stab(k, φ) for each k ∈ N.

We then establish a vector contraction inequality, which is a modified version of Corollary 4 in [21]
and Lemma 5 in [22]. Note that the empirical Rademacher complexity of `locF can be written as:

Rn`
loc
F (r) =

1

n
Eσ sup

φ,θ

n∑
i=1

σi`φ,θ(xi) =
1

n
Eσ1:n−1

Eσn sup
φ,θ

n−1∑
i=1

σi`φ,θ(xi) + σn`φ,θ(xn), (57)

where the supremum is taken over the parameter space
{

(φ, θ) : φ ∈ Φ, θ ∈ Θ, P `2φ,θ ≤ r
}

.

Let Un−1(φ, θ) =
∑n−1
i=1 σi`φ,θ(xi) for each (φ, θ). We now assume without loss of generality that

the supremum can be attained and let
φ1, θ1 = arg sup

φ,θ

(
Un−1(φ, θ) + `φ,θ(xn)

)
,

φ2, θ2 = arg sup
φ,θ

(
Un−1(φ, θ)− `φ,θ(xn)

)
,

since otherwise we can consider (φ1, θ1) and (φ2, θ2) that are ε-close to the suprema for any ε > 0
and conclude the same result. Then we can deduce from Eq. 56 that

Eσn sup
φ,θ

n−1∑
i=1

σi`φ,θ(xi) + σn`φ,θ(xn)

=
1

2

(
Un−1(φ1, θ1) + `φ1,θ1(xn) + Un−1(φ2, θ2)− `φ2,θ2(xn)

)
=

1

2

(
Un−1(φ1, θ1) + Un−1(φ2, θ2) + (`φ1,θ1(xn)− `φ2,θ2(xn))

)
≤ 1

2

(
Un−1(φ1, θ1) + Un−1(φ2, θ2)

)
+

1

2

(
Stab(k)‖Qθ1(xn)−Qθ2(xn)‖2 + Sens(k)‖φ1 − φ2‖2

)
≤ 1

2

(
Un−1(φ1, θ1) + Un−1(φ2, θ2)

)
+

1

2
Stab(k)‖Qθ1(xn)−Qθ2(xn)‖F + Sens(k)BΦ,

where BΦ = 1
2 supφ1,φ2∈Φ ‖φ1 − φ2‖2.

For each x ∈ X , θ ∈ Θ and 1 ≤ j, k ≤ d, let Qj,kθ (x) be the j, k-th entry of the matrix Qθ(x). The
the Khintchine-Kahane inequality (see e.g. [21]) gives us that

Eσn sup
φ,θ

n∑
i=1

σi`φ,θ(xi) ≤
1

2
(Un−1(φ1, θ1) + Un−1(φ2, θ2)) + Sens(k)BΦ (58)

+
1

2
Stab(k)

√
2Eεn

∣∣∣∣∑
j,k

εj,kn

(
Qj,kθ1 (xn)−Qj,kθ2 (xn)

) ∣∣∣∣, (59)

where εn = (εj,kn )nj,k=1 are independent Rademacher variables. Hence, if we denote by s(εn) the

sign of
∑
j,k ε

j,k
n

(
Qj,kθ1 (xn)−Qj,kθ2 (xn)

)
and by Q∗j,k(x) be the j, k-th entry of the matrix Q∗(x),

then we can obtain that

Eσn sup
φ,θ

n∑
i=1

σi`φ,θ(xi)

≤ Eεn
1

2

[(
Un−1(φ1, θ1) + Stab(k)

√
2s(εn)

∑
j,k

εj,kn Qj,kθ1 (xn)

)

+

(
Un−1(φ2, θ2)− Stab(k)

√
2s(εn)

∑
j,k

εj,kn Qj,kθ2 (xn)

)]
+ Sens(k)BΦ

= Eεn
1

2

[(
Un−1(φ1, θ1) + Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ1 (xn)−Q∗j,k(xn)

))

+

(
Un−1(φ2, θ2)− Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ2 (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ.

22



Then by taking the supremum over (φ, θ) and using the fact that σn is an independent Rademacher
variable, we can deduce that

Eσn sup
φ,θ

n∑
i=1

σi`φ,θ(xi)

≤ Eεn
1

2

[
sup
φ,θ

(
Un−1(φ, θ) + Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))

+ sup
φ,θ

(
Un−1(φ, θ)− Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ

= EεnEσn
[

sup
φ,θ

(
Un−1(φ, θ) + Stab(k)

√
2σn

∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ

= Eεn
[

sup
φ,θ

(
Un−1(φ, θ) + Stab(k)

√
2
∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ,

where we have used the fact that
∑
j,k ε

j,k
n

(
Qj,kθ (xn)−Q∗j,k(xn)

)
is a symmetric random variable

in the last line.

By proceeding in the same way for all other σn−1, · · · , σ1, we can obtain the following vector-
contraction inequality:

Eσ sup
φ,θ

n∑
i=1

σi`φ,θ(xi) ≤
√

2Stab(k)Eε1:n
[
sup
θ

n∑
i=1

∑
j,k

εj,ki

(
Qj,kθ (xn)−Q∗j,k(xn)

)]
+ nSens(k)BΦ.

(60)

The first term on the right-hand side can be bounded by using the Cauchy-Schwarz inequality as
follows:

Eε1:n

sup
θ

n∑
i=1

∑
j,k

εj,ki

(
Qj,kθ (xn)−Q∗j,k(xn)

)
= Eσ1:nEε1:n

sup
θ

n∑
i=1

σi
∑
j,k

εj,ki

(
Qj,kθ (xn)−Q∗j,k(xn)

)
≤ Eσ1:nEε1:n

sup
θ

n∑
i=1

σi

√∑
j,k

(εj,ki )2

√∑
j,k

|Qj,kθ (xn)−Q∗j,k(xn)|2


= Eσ1:n

Eε1:n

[
sup
θ

n∑
i=1

σid‖Qθ(xn)−Q∗(xn)‖F

]

= dEσ1:n

[
sup
θ

n∑
i=1

σi‖Qθ(xn)−Q∗(xn)‖F

]
.

(61)

Therefore, bounding the Rademacher complexity of `locF (r) reduces to bounding the Rademacher
complexity of the space of functions ‖Qθ − Q∗‖F . Recall that the supremum is taken over the
parameter space where (φ, θ) ∈ Φ×Θ satisfies P`2φ,θ ≤ r. Note that Lemma 4.2 implies that,

P‖Qθ −Q∗‖2F ≤ rq := σ−2
b L4

(√
ε+M · Cvg(k, φ)

)2
. (62)

Hence, by defining the following function space:

`locQ (rq) :=
{
‖Qθ −Q∗‖F : θ ∈ Θ, P‖Qθ −Q∗‖2F ≤ rq

}
, (63)

we can conclude the desired relationship between Rn`locF (r) and Rn`locQ (rq) from the inequalities
Eq. 60 and Eq. 61.
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With Theorem C.2 in hand, we see that, for each r > 0, in order to obtain the upper bounds of
Rn`

loc
F (r) in Theorem C.1, it suffices to estimate Rn`locQ (rq), i.e., the Rademacher complexity of the

function space `locQ (rq).

The following theorem summarizes the estimates for the empirical and expected Rademacher com-
plexity of the local class `locQ , which will be established in Propositions C.1 and C.2, respectively.

Recall that, for any given ε > 0, a class of functions F and pseudometric ‖ · ‖, the covering number
N (ε,F , ‖ · ‖) is defined as the cardinality of the smallest subset F̂ of F for which every element of
F is within the ε-neighbourhood of some element of F̂ with respect to the pseudometric ‖ · ‖.
Theorem C.3. Assume the problem setting in Sec 2. Let r > 0, rq = σ−2

b L4(
√
r + MCvg(k))2

and `locQ (rq) = {‖Qθ − Q∗‖F : θ ∈ Θ, P‖Qθ − Q∗‖2F ≤ rq}. Then for all t > 0, we have with
probability at least 1− e−t that

Rn`
loc
Q (rq) ≤ n−

1
2

[(
C1(n)(

√
r +MCvg(k))2 + C2(n, t, k, r)

) 1
2

+ 4

]
, (64)

where

C1(n) = 216σ−2
b L4 logN

(
n−

1
2 , `Q, L2(Pn)

)
,

C2(n, t, k, r) =

(
768B2

Qt

n
+ 720BQERn`locQ (rq)

)
logN

(
n−

1
2 , `Q, L2(Pn)

)
,

and BQ = 2L
√
d.

Moreover, for all t > 0, we have that

ERn`locQ (rq) ≤ n−
1
2

[(
C1(n)(

√
r +MCvg(k))2 + C2(n, t)

) 1
2

+ C3(n, t) + 4

]
, (65)

where

C1(n) = 216σ−2
b L4 logNQ,

C2(n, t) =

(
1 + 3BQe

−t√logNQ +
45√
n
BQ logNQ

)
2880√
n
BQ logNQ + t

768B2
Q

n
logNQ,

C3(n, t) = 12BQe
−t√logNQ +

360√
n
BQ logNQ

and NQ = N (n−
1
2 , `Q, L∞).

We first establish the estimate for the empirical Rademacher complexity Rn`locQ (rq), i.e., Eq. 64 in
Theorem C.3.
Proposition C.1. Assume the problem setting in Sec 2. LetBQ = sup(θ,x)∈Θ×X ‖Qθ(x)−Q∗(x)‖F ,
and for each r > 0 let rq and `locQ (rq) be defined as in Theorem C.2. Then we have that

Rn`
loc
Q (rq) ≤ 4√

n

(
1 + 3BQ

√
logN

(
1√
n
, `locQ (rq), L2(Pn)

))
. (66)

Moreover, for all t > 0, it holds with probability at least 1− e−t that

Rn`
loc
Q (rq) ≤ 4√

n

(
1 + 3C(rq, t)

√
logN

(
1√
n
, `locQ (rq), L2(Pn)

))
, (67)

with the constant C(rq, t) =
( 3rq

2 +
16B2

Qt

3n + 5BQERn`locQ (rq)
)1/2

.

Proof. The classical Dudley’s entropy integral bound for the empirical Rademacher complexity gives
us that

Rn`
loc
Q (rq) ≤ inf

α>0

(
4α+

12√
n

∫ ∞
α

√
logN (ε, `locQ (rq), L2(Pn)) dε

)
. (68)
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Observe that all functions in `locQ (rq) take value in [0, BQ], which implies for all ε ≥ BQ that,
N (ε, `locQ (rq), L2(Pn)) ≤ N (ε, `locQ (rq), L∞(Pn)) = 1 and consequently the integrand in Eq. 68
vanishes on [BQ,∞). Hence we have that

Rn`
loc
Q (rq) ≤ inf

α>0

(
4α+

12√
n

∫ BQ

α

√
logN (ε, `locQ (rq), L2(Pn)) dε

)

≤ 4√
n

+
12√
n

∫ BQ

1√
n

√
logN (ε, `locQ (rq), L2(Pn)) dε

≤ 4√
n

+
12√
n
BQ

√
logN

(
1√
n
, `locQ (rq), L2(Pn)

)
,

where we used the fact that N (ε, `locQ (rq), L2(Pn)) is decreasing in terms of ε for the last inequality.
This proves the estimate Eq. 66.

In order to establish the estimate Eq. 67, we shall bound the empirical error Pn‖Qθ−Q∗‖2F with high
probability. Let us consider the class of functions `locQ2(rq) = {‖Qθ−Q∗‖2F : θ ∈ Θ, P‖Qθ−Q∗‖2F ≤
rq}, whose element takes values in [0, B2

Q]. Moreover, we see it holds for all ‖Qθ−Q∗‖2F ∈ `locQ2(rq)

that P‖Qθ −Q∗‖4F ≤ B2
QP‖Qθ −Q∗‖2F ≤ B2

Qrq. Hence, by applying Theorem 2.1 in [16] (with
F = `locQ2(rq), a = 0, b = B2

Q, α = 1/4 and r = B2
Qrq) and the Cauchy-Schwarz inequality, we can

deduce that, for each t > 0, it holds with probability at least 1− e−t that

Pn‖Qθ −Q∗‖2F ≤ P‖Qθ −Q∗‖2F +
5

2
ERn`locQ2(rq) +

√
2B2

Qrqt

n
+B2

Q

13t

3n

≤ rq +
5

2
ERn`locQ2(rq) +

rq
2

+
B2
Qt

n
+B2

Q

13t

3n

≤ 3rq
2

+ 5BQERn`locQ (rq) +
16B2

Qt

3n
.

Consequently, we see it holds with probability at least 1−e−t that,N (ε, `locQ (rq), L2(Pn)) = 1 for all
ε ≥ C(rq, t), with the constant C(rq, t) defined as in the statement of Proposition C.1. Substituting
this fact into the integral bound Eq. 68 and following the same argument as above, we can conclude
Eq. 67 with probability at least 1− e−t.

Now we proceed to prove the estimate of the expected Rademacher complexity ERn`locQ (rq), i.e.,
Eq. 65 in Theorem C.3.

Proposition C.2. Assume the same setting as in Proposition C.1. Then it holds for any r, t > 0 that

ERn`locQ (rq) ≤ n−
1
2

[(
C1(n, t)(

√
r +MCvg(k))2 + C2(n, t)

) 1
2

+ C3(n, t) + 4

]
, (69)

where C1(n, t), C2(n, t) and C3(n, t) the constants defined as in Eq. 72, Eq. 73 and Eq. 74, respec-
tively.

Proof. Let r, t > 0 be fixed throughout this proof. Since it holds for all ε > 0 and n ∈ N that
N (ε, `locQ (rq), L2(Pn)) ≤ N (ε, `Q, L∞), we can deduce from Proposition C.1 that

ERn`locQ (rq) ≤ 4√
n

(
1 + 3

[
C(rq, t)(1− e−t) +BQe

−t]√logN
(

1√
n
, `Q, L∞

))
, (70)

with the constants BQ and C(rq, t) defined as in the statement of Proposition C.1.

The above estimate gives an implicit upper bound of ERn`locQ (rq) since C(rq, t) also involves
ERn`locQ (rq). Now we shall introduce the notation Nn

Q = N ( 1√
n
, `Q, L∞) and derive an explicit

upper bound of ERn`locQ (rq). By rearranging the terms in Eq. 70 and using the definition of C(rq, t),
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we can obtain that
√
n

4
ERn`locQ (rq)− 1− 3BQe

−t
√

logNn
Q

≤ 3(1− e−t)

√(
3rq
2

+
16B2

Qt

3n
+ 5BQERn`locQ (rq)

)
logNn

Q.

(71)

We shall assume without loss of generality that ERn`locQ (rq) ≥ 4√
n

(
1 + 3BQe

−t
√

logNn
Q

)
, since

otherwise we have a trivial estimate that ERn`locQ (rq) ≤ 4n−
1
2A1, withA1 = 1+3BQe

−t
√

logNn
Q.

Then by squaring both sides of Eq. 71 and rearranging the terms, we get that

n

16
(ERn`locQ (rq))
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(√

n

2
A1 + 45(1− e−t)2BQ logNn

Q

)
ERn`locQ (rq)

+A2
1 − 9(1− e−t)2A2 logNn

Q ≤ 0,

with the constant A2 =
3rq
2 +

16B2
Qt

3n . This implies that
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[√
nA1

2
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2
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[
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1 − 9(1− e−t)2A2 logNn
Q
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2
]

= n−
1
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[
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360√
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(1− e−t)2BQ logNn
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360√
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Q

]2
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1 − 9(1− e−t)2A2 logNn
Q

]) 1
2
]
.

Hence, for each t > 0, by introducing the following constants

C1(n, t) = 216(1− e−t)2σ−2
b L4 logNn

Q, (72)

C2(n, t) =
[
4A1 +

360√
n

(1− e−t)2BQ logNn
Q

]2 − 16A2
1 + t(1− e−t)2

768B2
Q

n
logNn

Q

=

(
1 + 3BQe

−t
√

logNn
Q +

45√
n

(1− e−t)2BQ logNn
Q
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2880√
n
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Q
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768B2

Q

n
logNn

Q, (73)

C3(n, t) = 12BQe
−t
√

logNn
Q +

360√
n

(1− e−t)2BQ logNn
Q, (74)

with BQ = sup(θ,x)∈Θ×X ‖Qθ(x) − Q∗(x)‖F ≤ 2
√
dL and Nn

Q = N ( 1√
n
, `Q, L∞), we can

deduce that

ERn`locQ (rq) ≤ n−
1
2

[(
C1(n, t)(

√
r +MCvg(k))2 + C2(n, t)

) 1
2

+ C3(n, t) + 4

]
.
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D RNN as a Neural Algorithm

We denote by RNNkφ a recurrent neural network that has k unrolled RNN cells and view it as a neural
algorithm. It has been proposed in [19] to use RNN to learn an optimization algorithm where the
update steps in each iteration are given by the operations in an RNN cell

yk+1 ← RNNcell (Q, b,yk) := V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

)))
. (75)

In the above equation, we take a specific example where the RNNcell is a multi-layer perception
(MLP) with activations σ = RELU that takes the current iterate yk and the gradient gk = Qyk + b
as inputs.

(I) Stable Region. First, we show that when the parameters satisfy cφ := supQ ‖V ‖2‖W 1
1 +

W 1
2Q‖2

∏L
l=2 ‖W l‖2 < 1, the operations in RNNcell are strictly contractive, i.e., ‖yk+1 − yk‖2 ≤

cφ‖yk − yk−1‖2.

Proof. By definition,

‖yk+1 − yk‖2 = ‖V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

)))
− V σ

(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk−1 +W 1
2 gk−1

)))
‖2

≤ ‖V ‖2‖σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

)))
− σ

(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk−1 +W 1
2 gk−1

)))
‖2

Since the activation function σ = RELU satisfies the inequality that ‖σ(x)− σ(x′)‖2 ≤ ‖x− x′‖2
for any x,x′, we have

‖yk+1 − yk‖2 ≤ ‖V ‖2‖WLσ
(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

))
−WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk−1 +W 1
2 gk−1

))
‖2.

Similarly, we can obtain

‖yk+1 − yk‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖

(
W 1

1 yk +W 1
2 gk

)
−
(
W 1

1 yk−1 +W 1
2 gk−1

)
‖2

= ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖(W 1
1 +QW 1

2 )(yk − yk−1)‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖W 1

1 +QW 1
2 ‖2‖yk − yk−1‖2

≤ cφ‖yk − yk−1‖2.

Therefore, if cφ < 1, then the operation is strictly contractive.

(II) Stability. We shall show the neural algorithm RNNkφ has a stability constant Stab(k, φ) =

O(1− ckφ) (see the definition of stability in Sec 3).

Proof. Let us consider two quadratic problems induced by (Q, b) and (Q′, b′), and denote the
corresponding outputs of RNNkφ as yk = RNNkφ(Q, b) and y′k = RNNkφ(Q′, b′).

Denote cQφ = ‖V ‖2‖W 1
1 + W 1

2Q‖2
∏L
l=2 ‖W l‖2, cQ

′

φ = ‖V ‖2‖W 1
1 + W 1

2Q
′‖2
∏L
l=2 ‖W l‖2, and

ĉφ := ‖V ‖2‖W 1
2 ‖2

∏L
l=2 ‖W l‖2. First, we see that

‖yk‖2 ≤ cQφ ‖yk−1‖2 + ĉφ‖b‖2 ≤ (cQφ )k‖y0‖2 + ĉφ‖b‖2
k∑
i=1

(cQφ )i−1

=
ĉφ‖b‖2(1− (cQφ )k)

1− cQφ
≤ ĉφ‖b‖2

1− cQφ
.

(76)
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Similar conclusion holds for y′k. Then, by following a similar argument as that for the proof of the
stable region, we can deduce from y0 = y′0 that

‖yk − y′k‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖(W 1

1 +W 2
1Q)yk−1 − (W 1

1 +W 2
1Q
′)y′k−1 +W 2

1 (b− b′)‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2(‖W 1

1 +W 2
1Q‖2‖yk−1 − y′k−1‖2 + ‖Q−Q′‖2‖W 2

1 ‖2‖y′k−1‖2
+ ‖W 2

1 ‖2‖(b− b′)‖2)

≤ cQφ ‖yk−1 − y′k−1‖2 + ĉφ‖Q−Q′‖2
ĉφ‖b′‖2
1− cQ′φ

+ ĉφ‖b− b′‖2

≤ (cQφ )k‖y0 − y′0‖2 +

(
ĉ2φ‖b′‖2
1− cQ′φ

‖Q−Q′‖2 + ĉφ‖b− b′‖2

)
k∑
i=1

(cQφ )i−1

=
ĉ2φ‖b′‖2
1− cQ′φ

1− (cQφ )k

1− cQφ
‖Q−Q′‖2 + ĉφ

1− (cQφ )k

1− cQφ
‖b− b′‖2.

Therefore, the stability constant is of the magnitude O(1− ckφ).

(III) Sensitivity. We now proceed to analyze the sensitivity of the neural algorithm RNNkφ as defined
in Sec 3. Note that the strong non-linearity in the RNN cell and the high-dimensionality of the
parameter space significantly complicate the analysis of the Lipschitz dependence of RNNkφ with
respect to its parameter φ = {W 1

1 ,W
1
1 ,W

2, . . . ,WL, V }. To simplify our presentation, we shall
assume the parameter φ are constrained in a compact subset Φ of the stable region, and show the
neural algorithm RNNkφ has a sensitivity Sens(k) = O(1 − (infφ∈Φ cφ)k). A rigorous sensitivity
analysis of RNN with general weights is out of the scope of this paper.

Proof. Let the range of parameters Φ is a compact subset of the stable region, such that for all φ ∈ Φ,
cφ := supQ ‖V ‖2‖W 1

1 + W 1
2Q‖2

∏L
l=2 ‖W l‖2 ≤ c0 < 1 for some constant c0. Let φ, φ′ ∈ Φ be

two given sets of parameters. For each k ∈ N, we denote yk = RNNkφ(Q, b) and y′k = RNNkφ′(Q, b)
the outputs corresponding to the parameters φ and φ′, respectively. Then we have that

‖yk − y′k‖2 = ‖RNNcellφ(Q, b,yk−1)− RNNcellφ′(Q, b,y′k−1)‖2
≤ ‖RNNcellφ(Q, b,y′k−1)− RNNcellφ′(Q, b,y′k−1)‖2

+ ‖RNNcellφ(Q, b,yk−1)− RNNcellφ(Q, b,y′k−1)‖2
≤ ‖RNNcellφ(Q, b,y′k−1)− RNNcellφ′(Q, b,y′k−1)‖2 + cφ‖yk−1 − y′k−1‖2

If there exists a constant K, independent of k, φ, φ′, such that

‖RNNcellφ(Q, b,y′k−1)− RNNcellφ′(Q, b,y′k−1)‖2 ≤ K‖φ− φ′‖2, (77)

then we can obtain from y0 = y′0 that

‖yk − y′k‖2 ≤ v‖φ− φ′‖2 + cφ‖yk−1 − y′k−1‖2

≤ K‖φ− φ′‖2
k∑
i=1

ci−1
φ =

1− ckφ
1− cφ

K‖φ− φ′‖2.

The fact that cφ ≤ c0 < 1 for some constant c0 implies that the magnitude of sensitivity is O(1−
(infφ∈Φ cφ)k).

Now it remains to establish the estimate Eq. 77. For each k ∈ N, φ = {W 1
1 ,W

1
1 ,W

2, . . . ,WL, V }
and l = 2, · · · , L, we introduce the notation

f lφ := W lσ
(
W l−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

))
, (78)

with f1
φ = W 1

1 yk +W 1
2 gk. Then we have for each l = 1, · · · , L that

‖f lφ‖2 ≤
l∏

j=2

‖W j‖2
(
‖W 1

1 +W 1
2Q‖2‖yk‖2 + ‖W 1

2 ‖2‖b‖2
)

= cl‖yk‖2 + ĉl‖b‖2, (79)
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with the constants cl :=
(∏l

j=2 ‖W j‖2
)
‖W 1

1 + W 1
2Q‖2, ĉl :=

(∏l
j=2 ‖W j‖2

)
‖W 1

2 ‖2 for all
l = 1, . . . , L. Then by induction, we can see that

‖fLφ − fLφ′‖2 = ‖WLσ(fL−1
φ )−W ′Lσ(fL−1

φ′ )‖2
≤ ‖WL −W ′L‖2‖fL−1

φ′ ‖2 + ‖WL‖2‖fL−1
φ − fL−1

φ′ ‖2

≤ ‖WL −W ′L‖2‖fL−1
φ′ ‖2 + ‖WL‖2

(
‖WL−1 −W ′L−1‖2‖fL−2

φ′ ‖2

+ ‖WL−1‖2‖fL−2
φ − fL−2

φ′ ‖2
)

≤
L∑
l=2

( L∏
j=l+1

‖W j‖2
)
‖W l −W ′l‖2‖f l−1

φ′ ‖2 +

( L∏
l=2

‖W l‖2
)
‖f1
φ − f1

φ′‖2.

Thus we have that

‖RNNcellφ(Q, b,yk)− RNNcellφ′(Q, b,yk)‖2 = ‖V σ(fLφ )− V ′σ(fLφ′)‖2
≤ ‖V − V ′‖2‖fLφ′‖2 + ‖V ‖2‖fLφ − fLφ′‖2

≤ ‖V − V ′‖2‖fLφ′‖2 + ‖V ‖2
[ L∑
l=2

( L∏
j=l+1

‖W j‖2
)
‖W l −W ′l‖2‖f l−1

φ′ ‖2

+

( L∏
l=2

‖W l‖2
)
‖f1
φ − f1

φ′‖2
]
.

Furthermore, we see that

‖f1
φ − f1

φ′‖2 = ‖(W 1
1 +W 1

2Q)yk +W 1
2 b− (W ′11 +W ′12 Q)yk +W ′12 b‖2

≤ ‖W 1
1 −W ′11 + (W 1

2 −W ′12 )Q‖2‖yk‖2 + ‖W 1
2 −W ′12 ‖2‖b‖2

≤ ‖W 1
1 −W ′11 ‖‖yk‖2 + ‖W 1

2 −W ′12 ‖(‖Q‖2‖yk‖2 + ‖b‖2),

from which we can conclude that

‖RNNcellφ(Q, b,yk)− RNNcellφ′(Q, b,yk)‖2

≤ ‖fLφ′‖2‖V − V ′‖2 +

L∑
l=2

[
‖V ‖2

( L∏
j=l+1

‖W j‖2
)
‖f l−1
φ′ ‖2

]
‖W l −W ′l‖2

+ ‖V ‖2
( L∏
l=2

‖W l‖2
)[
‖W 1

1 −W ′11 ‖‖yk‖2 + ‖W 1
2 −W ′12 ‖(‖Q‖2‖yk‖2 + ‖b‖2)

]
.

Note that we have assumed that the set of parameters Φ is a compact subset of the stable region
and (Q, b) ∈ Sd×dµ,L × B are bounded, which imply that for all φ, φ′ ∈ Φ, the corresponding outputs
(yk)k∈N and (y′k)k∈N are uniformly bound, and hence ‖f lφ′‖2 is bounded for all k and l = 1, . . . , L
(see Eq. 79). Consequently, we see there exists a constant K such that Eq. 77 is satisfied. This
finishes the proof of the desired sensitivity result.

(IV) Convergence. For the convergence of RNNkφ, we can only give the best case guarantee. It is easy
to see that with the following choice of φ, RNNkφ can represent GDks :

V = [I,−I], W 1
1 = [I;−I]>, W 2

1 = [−sI; sI]>, W l = I for l = 2, · · · , L. (80)

Therefore, for the best case, RNNkφ can converge at least as fast as GDks .
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E Experiment Details

Here we state the configuration details of the experiments.

• Convexity and smoothness. They are set to be µ = 0.1 and L = 1, respectively.
• Dataset. 10000 pairs of (x, b) are generated in the following way: 10000 many x are

uniformly sampled from [−5, 5]10 × U5×5, where U5×5 denotes the space of all 5 × 5
unitary matrices. Each input x actually is a tuple x = (zx, Ux) where zx ∈ [−5, 5]10 and
Ux is unitary. 10000 many b are uniformly sampled from [−5, 5]5. These 10000 pairs are
viewed as the whole dataset.
• Training set Sn. During training, n samples are randomly drawn from these 10000

data points as the training set. The labels of these training samples are given by
y = Opt(Q∗(x), b).

• More details on Q∗(x). As mentioned before, each x is a tuple x = (zx, Ux). Then
we implement Q∗(x) = Uxdiag([g∗(zx), µ, L])U>x , where g∗ is a 2-layer dense neural
network with hidden dimension 3, output dimension 3, and with randomly fixed parameters.
Note that in the final layer of g∗, there is a sigmoid-activation that scales the output to the
range [0, 1] and then the range is further re-scaled to [µ,L]. Finally, g∗(zx) is concatenated
with [µ,L] to form a 5-dimensional vector with smallest and largest value to be µ and L
respectively. This vector represents the eigenvalues of Q∗(x).

• Architecture of Qθ. Qθ has the same form as Q∗(x), except that the network g∗ in Q∗

becomes gθ in Qθ. That is, Qθ(x) = Uxdiag([gθ(zx), µ, L])U>x . Here gθ is also a 2-layer
dense neural network with output dimension 3, but the hidden dimension can vary. In the
reported results, when we say hidden dimension=0, it means gθ is a one-layer network.

For the experiments that compare RNNkφ with GDkφ and NAGkφ, they are conducted under the ‘learning
to learn’ scenario, with the following modifications compared to the above setting.

• Dataset. Instead of sampling (x, b), here we directly sample the problem pairs (Q, b).
Similarly, 10000 pairs of (Q, b) are sampled uniformly from S10×10

µ,L × [−5, 5]10.

• Architecture of RNNkφ. For each cell in RNNkφ, it is a 4-layer dense neural network with hidden
dimension 20-20-20.

For all experiments, each model has been trained by both ADAM and SGD with learning rate searched
over [1e-2,5e-3,1e-3,5e-4,1e-4], and only the best result is reported. Furthermore, error bars are
produced by 20 independent instantiations of the experiments. The experiments are mainly run
parallelly (since we need to search the best learning rate) on clusters which have 416 nodes where on
each node there are 24 Xeon 6226 CPU @ 2.70GHz with 192 GB RAM and 1x512 GB SSD.
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