Automatic Perturbation Analysis for
Scalable Certified Robustness and Beyond

Kaidi Xu!*, Zhouxing Shi>*, Huan Zhang>*, Yihan Wang?
Kai-Wei Chang?, Minlie Huang®*, Bhavya Kailkhura®, Xue Lin!, Cho-Jui Hsieh?

"Northeastern University 2Tsinghua University UCLA
4DCST, THUALI SKLits, BNRist, Tsinghua University SLawrence Livermore National Laboratory
{xu.kaid, xue.lin}@northeastern.edu, zhouxingshichn@gmail.com, huan@huan-zhang.com,
wangyihan617Q@gmail.com, kw@kwchang.net, aihuang@tsinghua.edu.cn,
kailkhural@llnl.gov, chohsieh@cs.ucla.edu

*Kaidi Xu, Zhouxing Shi and Huan Zhang contributed equally

Abstract

Linear relaxation based perturbation analysis (LiRPA) for neural networks, which
computes provable linear bounds of output neurons given a certain amount of
input perturbation, has become a core component in robustness verification and
certified defense. The majority of LiRPA-based methods focus on simple feed-
forward networks and need particular manual derivations and implementations
when extended to other architectures. In this paper, we develop an automatic
framework to enable perturbation analysis on any neural network structures, by
generalizing existing LiRPA algorithms such as CROWN to operate on general
computational graphs. The flexibility, differentiability and ease of use of our
framework allow us to obtain state-of-the-art results on LiRPA based certified
defense for fairly complicated networks like DenseNet, ResNeXt and Transformer
that are not supported by prior works. Our framework also enables loss fusion, a
technique that significantly reduces the computational complexity of LiRPA for
certified defense. For the first time, we demonstrate LiRPA based certified defense
on Tiny ImageNet and Downscaled ImageNet where previous approaches cannot
scale to due to the relatively large number of classes. Our work also yields an
open-source library for the community to apply LiRPA to areas beyond adversarial
robustness without much LiRPA expertise, e.g., we create a neural network with a
provably flat optimization landscape by applying LiRPA to network parameters and
considering perturbations on model weights. Our open source library is available
athttps://github.com/KaidiXu/auto_LiRPA.

1 Introduction

Bounding the range of a neural network outputs given a certain amount of input perturbation has
become an important theme for neural network verification and certified adversarial defense [48} 131}
451 157]. However, computing the exact bounds for output neurons is usually intractable [21]]. Recent
research studies have developed perturbation analysis bounds that are sound, computationally feasible,
and relatively tight [48] [54] 40}, 47, [38] [46]. For a neural network function f(x) € R, to study its
behaviour at xo with bounded perturbation ¢ such that x = x¢ + ¢ € S (e.g., S is a £, norm ball
around X), these works provide two linear functions f(x) := a'x+band f(x) := a' x+b that are
guaranteed lower and upper bounds respectively for output neurons w.r.t. the input under perturbation:
f(x) < f(x) < f(x) (Vx € S). We refer to the technique used in these works as Linear Relaxation

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/KaidiXu/auto_LiRPA

based Perturbation Analysis (LiRPA). CROWN [54] and DeepPoly [40] are two representative
LiRPA algorithms. Beyond its usage in neural network verification and certified defense, LiRPA is
capable to serve as a general toolbox to understand the behavior of deep neural networks (DNNs)
within a predefined input region, and has been used for interpretation and explanation [24} 37]].

To compute LiRPA bounds, the first step is to obtain linear relaxations of any non-linear units [54,36]
(e.g., activation functions) in a network. Then, these relaxations need to be “glued” together according
to the network structure to obtain the final bounds. Early developments of LiRPA focused on feed-
forward networks, and it has been extended to a few more complicated network structures for
real-world applications. For example, Wong et al. [50] implemented LiRPA for convolutional ResNet
on computer vision tasks; Ziigner & Giinnemann [59]] extended [48] to graph convolutional networks;
Ko et al. [24] and Shi et al. [37]] extended CROWN [54] to recurrent neural networks and Transformers
respectively. Unfortunately, each of these works extends LiRPA with an ad-hoc implementation that
only works for specific network architecture. This is similar to the “pre-automatic differentiation” era
where researchers have to implement gradient computation by themselves for their designed network
structure. Since LiRPA is significantly more complicated than backpropagation, non-experts in neural
network verification can find it challenging to understand and use LiRPA for their purpose.

Our paper takes a big leap towards making LiRPA a useful tool for general machine learning audience,
by generalizing existing LiRPA algorithms to general computational graphs. Our framework is a
superset of many existing works [49, 54, 47, 24] [37], and our automatic perturbation analysis
algorithm is analogous to automatic differentiation. Our algorithm can compute LiRPA automatically
for a given PyTorch model without manual derivation or implementation for the specific network
architecture. Importantly, our LiRPA bounds are differentiable which allows efficient training of
these bounds. In addition, our proposed framework enables the following contributions:

e The flexibility and ease-of-use of our framework allow us to easily obtain state-of-the-art certified
defense and robustness verification results for fairly complicated networks, such as DenseNet,
ResNeXt and Transfomer that are hardly supported in existing works due to tremendous efforts
required for manual LiRPA implementation.

o We propose loss fusion, a technique that significantly reduces the computational complexity of
LiPRA for certified defense. We demonstrate the first LiPRA-based certified defense training on Tiny
ImageNet and Downscaled ImageNet [5]], with a two-magnitude improvement on training efficiency.

e Our framework allows flexible perturbation specifications beyond ¢,-balls. For example, we
demonstrate a dynamic programming approach to concretize linear bounds under discrete perturbation
of synonym-based word substitution in a sentiment analysis task.

e We showcase that LiRPA can be a valuable tool beyond adversarial robustness, by demonstrating
how to create a neural network with a provably flat optimization landscape and revisit a popular
hypothesis on generalization and the flatness of optimization landscape. This is enabled by our unified
treatment and automatic derivation of LiRPA bounds for parameter space variables (model weights).

2 Background and Related Work

Giving certified lower and upper bounds for neural networks under input perturbations is the core
problem in robustness verification of neural networks. Early works formulated robustness verification
for ReLU networks as satisfiability modulo theory (SMT) and integer linear programming (ILP)
problems [10} 121} 143]], which are hardly feasible even for a MNIST-scale small network. Wong &
Kolter [49] proposed to relax the verification problem with linear programming and investigated its
dual solution. Many other works have independently discovered similar algorithms [8} (31} 38}, 147,
541140, 146] in either primal or dual space which we refer to as linear relaxation based perturbation
analysis (LiRPA). Recently, Salman et al. [36] unified these algorithms under the framework of
convex relaxation. Among them, CROWN [54] and DeepPoly [40] achieve the tightest bound
for efficient single neuron linear relaxation and are representative algorithms of LiRPA. Several
further refinements for the LiRPA bounding process were also proposed recently, including using an
optimizer to choose better linear bounds [7, 29], relaxing multiple neurons [39] or further tighten
convex relaxations [42]], but these methods typically involve much higher computational costs. The
contribution of our work is to extend LiRPA to its most general form, and allow automatic derivation
and computation for general network architectures. Additionally, our framework allows a general
purpose perturbation analysis for any nodes in the graph and flexible perturbation specifications, not

Table 1: Table of Notations

Symbol Meanings Symbol Meanings

i, J, k Any node on a computational graph X; Value of an independent node, typically model input or parameters.

o Output node on a computational graph h;, h; Lower/upper bound of node ¢ respectively

m(i) In-degree of node i W, b;, W,,b; Parameters of linear lower/upper bounds of node i respectively

u(i) Set of predecessor nodes (inputs) of node i | A, A; Linear coefficients of h;(X) terms in the linear lower/upper bounds of h,(X)
The space of the perturbed input d,d Bias terms in the linear lower/upper bounds of h,(X) during bound propagation

X Concatenation of all x; (assumed flattened) | h;(X) Computed value of node i on a computational graph

limiting to perturbations on input nodes or £,-ball perturbation specifications. This allows us to use
LiRPA as a general tool beyond robustness verification.

The neural network verification problem can also be solved via many other techniques, for example,
semidefinite programming [9, 33]], bounding local or global Lipschitz constant [[15} 33} 156]. However,
LiRPA based verification methods typically scale much better than alternatives, and they are a
keystone for many state-of-the-art certified defense methods. Certified adversarial defenses typically
seek for a guaranteed upper bound on test error, which can be efficiently obtained using LiRPA
bounds. By incorporating the bounds into the training process (which requires them to be efficient and
differentiable), a network can become certifiably robust [48}[31}145L112}|55]]. In addition, while interval
bound propagation (IBP) [31}[12]] that propagates constant bounding intervals can be easily extended
to general computational graphs, bounds computed by IBP can be very loose and make stable training
challenging [57]. Along with these methods, randomization based probabilistic defenses have been
proposed [6, 28, 27, 135], but in this work we mostly focus on LiRPA based deterministic certified
defense method.

Backpropagation [34] is a classic algorithm to compute the gradients of a complex error function. It
can be applied automatically once the forward computation is defined, without manual derivation of
gradients. It is essential in most deep learning frameworks, such as TensorFlow [1] and PyTorch [32].
The backward bound propagation in our framework is analogous to backpropagation as our com-
putation is also automatic given the computational graph created by the forward propagation, but
we aim to automatically derive bounds for output neurons instead of gradients. Our algorithm is
significantly more complicated. On the other hand, LiRPA based bounds have been implemented
manually in many previous works [49, |54, !45([30], but they mostly focus on specific types of networks
(e.g., feedforward or residual networks) for their empirical study, and do not have the flexibility to
generalize to general computational graphs and irregular networks.

3 Algorithm

3.1 Framework of Perturbation Analysis on General computational Graphs

Notations We define a computational graph as a Directed Acyclic Graph (DAG) G = (V,E).
V ={1,2,--- ,n}is aset of nodes in G. E is a set of node pairs (4, j) which denotes that node i is
an input argument of node j. For simplicity, we denote the in-degree of node 7 as m(z), and the set of
input nodes for node i as u(i) = {u1 (i), - , um(;) (i)} where (u;(i),i) € E,1 < j < m(i). Each
node 7 has a few associated attributes: H;(-) is the associated computation function, h; = H;(u(i))
is the vector produced by node i. Although h; can be a tensor in practice, we assume it has been
flattened into a vector for simplicity in this paper. Each node ¢ is either an independent node with
m(i) =0 representing the input nodes of the graph (e.g., network parameters, model inputs), or a
dependent node representing some computations (e.g., ReLU, MatMul). For independent nodes, H;
is an identity function and we denote h; =x;. We let X be the concatenation of all x;, such that the
output of each node ¢ can be written as a function of X, h; =h;(X), without explicitly referring to
u;(4). Without losing generality, we assume that the computational graph has a single output node o.
To conduct perturbation analysis, we consider x; to be arbitrarily taken from an input space S;. In
particular, if x; is not perturbed, S; = {c;} and c; is a constant vector. We denote S to be the space
of X when each part of X, i.e., x;, is perturbed within S; respectively.

Linear Relaxation based Perturbation Analysis (LiIRPA) Our final goal is to compute provable
lower and upper bounds for the value of output node h,(X), i.e., lower bound h, and upper bound
h, (element-wise), when X is perturbed within S: h, < h,(X) < h,, VX € S. In LiRPA, we find
tight lower and upper bounds by first computing linear bounds w.r.t. X:

W, X +b, < ho(X) < W,X+b, VXeS, (1)

Algorithm 1 Forward Mode Bound Propagation on General Computational Graphs

function BoundForward(7)
for j € u(i) do
if attributes W, b, W, b; of node j are unavailable then
BoundForward(j)

(Wi5bi?wi7bi) = Gz({B]‘j € u(z)})

where h,(X) is bounded by linear functions of X with parameters W, b, W,,b,. We generalize
existing LiRPA approaches into two categories: forward mode perturbation analysis and backward
mode perturbation analysis. Both methods aim to obtain bounds (T)) in different manners:

e Forward mode: forward mode LiRPA propagates the linear bounds of each node w.r.t. all the
independent nodes, i.e., linear bounds w.r.t. X, to its successor nodes in a forward manner, until
reaching the output node o.

e Backward mode: backward mode LiRPA propagates the linear bounds of output node o w.r.t.
dependent nodes to further predecessor nodes in a backward manner, until reaching all the independent
nodes.

We describe these two different modes in details below.

Forward Mode LiRPA on General Computation Graphs For each node 7 on the graph, we
compute the linear bounds of h;(X) w.r.t. all the independent nodes:

W. X +b, <hi(X)<W,X+b; ¥XeS.

We start from independent nodes. For an independent node ¢, we have h;(X)=x; so we trivially have
the bounds Ix; <h;(X) < Ix;. For a dependent node i, we have a forward LiRPA oracle function G;
which takes ﬂj, hj, Wj, b; for every j € u(4) as input and produce new linear bounds for node 7,
assuming all node j € u(4) have been bounded:

(wmwa“BZ) = GZ({BJ |.7 € u(i)})v‘Vhere Bj = (wjaijwj’gj)' 2
We defer the discussions on oracle function G; to a later section. Now, we focus on extending
this method on a general graph with known oracle functions in Algorithm [I] The forward mode
perturbation analysis is straightforward to extend to a general computational graph: for each dependent
node 4, we can obtain its bounds by recursively applying (Z). We check every input node j and
compute the bounds of node j if they are unavailable. We then use G; to obtain the linear bounds of

node ¢. The correctness of this procedure is guaranteed by the property of G;: given B; as inputs, it
always produces valid bounds for node 7. We analyze its complexity in Appendix[A.2]

Backward Mode LiRPA on General Computation Graphs For each node 7, we maintain two
attributes: A; and A;, representing the coefficients in the linear bounds of h,(X) w.r.t h;(X):

DTAMX)+d < ho(X) <D Ah(X)+d VX €S, ©)
i€V i€V
where d, d are bias terms that are maintained in L our algorithm. Suppose that the output dimension of
node ¢ is s;, then the shape of matrices A, and A; is s, X ;. Initially, we trivially have
A,=A,=1, A, =A;=0(i#0), d=d=0,)
which makes (3) hold true. When node ¢ is a dependent node, we have a backward iiRPA oracle
function F; aiming to compute the lower bound of A, h;(X) and the upper bound of A;h;(X), and
represent the bounds with linear functions of its predecessor nodes w1 (i), ua (%), - -+ , Up (s (4):
(A, iys A (i) Ay iy Ao (i) Ao A 1A, A) = Fi(A;, A),
StD M) A SARX), An(X) <0 Ak (X) A (O)

We substitute the h;(X) terms in () with the new bounds (3, and thereby these terms are backward
propagated to the predecessor nodes and replaced by the h;(X)(j € u(i)) related terms in (3)). In the
end, all such terms are propagated to the independent nodes and h,(X) will be bounded by linear
functions of independent nodes only, where (3] becomes equivalent to (1.

Um (i) (7'

Algorithm 2 Backward Mode Bound Propagation on a General Computational Graph

function BoundBackward(o)
Create BFS queue @ and Q.push(o)
A <1 A,«I A,+0, A;+0 (Vi#0), d«0, d<0 (Eq. @)
GetOutDegree(o) {Vi obtain d;, the number of unprocessed output nodes of node i that o
depends on.}
while () is not empty do
i + Q-pop()
(Au, i)
for j € u(i) do
A+=A;, Aj+= AJ7 dji—=1
if d =0 and node j is a dependent node then
Q. push(j) _ N
d+=A, d+=A, A;+0, A;+0 {Clear A, and A; once we propagated through 7.}

return d, d {The algorithm has modified A, A; on the graph.}

= m@1x(20x10) —=m@I1x(5x10) —m1x(5x10)
szIRZO"‘“ A,ER) ijIESXZO A SR x, e AER
4\ iR‘X\U /
! R20 R 5 | &

R
MatMLM—c| Tanh I I MatMul | | MatMul
X ER] A‘geRIXZO‘— A9€RIXZ(]4—— A10€|R1X5 »A ER]XS A ERIXS A EIRIXS

* [})
MatMul |—— ReLU | (_output }— Reducesum
6E|R1X5<_A7EIR1X§‘_/ _Iemlxl

| Start
A ERXEXIO Output can be bounded by A x,+A,x +A x +A x +A x +bias

Xul(i)v A 2(i)0 Aug(i)v T 7A (i)’XUm(i)(i)7A7 Z) = Fl(Az7X1) (Eq @)

= —Um (i)

R!

Figure 1: Illustration of the backward mode perturbation analysis. Node 1 ~ 5 are independent
nodes and the others are dependent nodes. Red arrows represent the flow of A matrices including
both A and A that are propagated from the final output node (node 14) to previous nodes. Finally,
only independent nodes retain non-zero A matrices (highlighted in red), and these matrices represent
linear bounds w.r.t. independent nodes.

We present the full algorithm in Algorithm 2] We let d; denote the number of unprocessed output
nodes of node ¢ that node o depends on, which is initially obtained by a “GetOutDegree” function
detailed in Appendix [A3] We use a BFS for propagating the linear bounds, starting from node o as
(). For each node ¢ picked from the head of the queue, we backward propagate h;(X) using ().
We update the bound parameters and decrease all d;(j € u(i)) by one. If d; =0 becomes true for
a dependent node j, all its related successor nodes have been processed and we push node j to the
queue. We repeat this process until the queue is empty. Figure[T]illustrates the flow of backward
propagating the bound parameters on an example computational graph, and Figure 2]illustrates the
BFS algorithm. We show its soundness in Theorem [T]and its proof is given in Appendix BT}

Theorem 1 (Soundness of backward mode LiRPA) When Algorithm[2|terminates, we have
D AR(X)+d < he(X) <> Ahi(X)+d VX ES,

i€V i€V

where A;, A; are guaranteed to be O for any dependent node i, and thus we obtain provable linear
upper and lower bounds of node o w.r.t. all independent nodes.

Oracle Functions Oracle functions F; and G; are defined for each type of operationsﬂ Previous
works [48, 54, 36, 37] have covered many common operations such as affine transformations,
activation functions, matrix multiplication, etc. Since the major focus of this paper is on handling
general computational graph structures, rather than deriving bounds for these elementary operations,
we leave the detailed form of these oracle functions in Appendix [A.T]

'Note that the oracle functions of some operations also require h,, h;(j € wu(i)) for linear relaxation,
although we do not explicitly mention them in the algorithm description for 51mphclty

\0\/
oY
()

0O N6 0 O Legenas

Graph:) Anode i that is popped qut of
Y oy - the queue. When a node is

g h popped out, its bounds will be
backward propagated to its

b \ input nodes.

@ 1)
N T
(2) 2
I]
3) ® @ @ G @
I I
(5) 5
T T
() 6)

Queue:

d=1
dy =1

&
il
N

&
i
A\
¥

&
\\/ IS \r/
\LLD

) / D A node i that is in the queue.

When all the children nodes of i

&
il

ds =07 . X
are visited, the node will be

pushed into the queue.

LD\ (D (D (D [
©0-0-0-0-0

(@)L ~@)—™)—)
Yy
@@=

a
&
1
)

Figure 2: Flowchart of the BFS in Algorithm [2| In this example, node 6 is the final output node and
d; is the number of unprocessed output nodes of node ¢ that node 6 depends on.

Some oracle functions depend on certain graph attributes. For example, F; of node ¢ with a nonlinear
operation typically requires h, h; forall j € u(i) (typically referred to as “pre-activation bounds” in
previous works). We can obtain h;, H by assuming node j as the output node and apply Algorithm
then concretize the linear bounds as w111 be discussed in Sec[3.2] However, this can be very expensive
because Algorlthmlneeds to be applied for every node j wherever h; or h; is required, rather than

just the output node. A typically more efficient approach is to obtain hj or h for all dependent nodes
except o using a cheaper method and then apply backward mode LiRPA for node o only. This leads
to two variants of hybrid approaches, Forward+Backward and IBP+Backward, where h; and h;
are produced by Forward Mode LiRPA or IBP, respectively. For certified training, IBP+Backward
(generalized from CROWN-IBP in Zhang et al. [57]) is the best for efficiency. We discuss the time
complexity of these methods in Appendix[A.2]

3.2 General Perturbation Specifications and Bound Concretization

Once the linear bounds are obtained as (), concrete bounds h,, and h,, can be found by solving the
following optimization problems (this step is referred to as the “concretization” of linear bounds):
h, =minW X +b,, h, = max W,X + b,. (6)
Xes Xes
We show two examples: classic £,-ball perturbations (0 < p < o0), and synonym-based word
substitution in language tasks.

¢,-ball Perturbations In this setting, assuming that X is the clean input, the input space is defined
by S ={X ||| X=X ||p< €} where the actual input X is perturbed within an ¢,,-ball centered at X
with a radius of e. Linear bounds can be concretized as shown in Zhang et al. [54]] for 0 < p < oo:

ho: _€Hwo||q+wox()+bo7 H0:€||WOI|Q+WOXO+BO’ 1/p+1/q: 17
where || - ||, denotes taking the dual ¢,-norm for each row in the matrix and the result is a vector. The
case for p = 0 (sparse ¢ perturbations) is slightly different and will be discussed in Appendix[C.4]

Synonym-based Word Substitution Beyond /,,-ball perturbations, we show an example of a
perturbation specification defined by synonym-based word substitution in language tasks. Let
the clean input to the model be a sequence of words w;,ws,--- ,w; mapped to embeddings
e(wy), e(ws),- -+ ,e(w;). Following a common adversarial perturbation setting in NLP [18] 20],
we allow at most § words to be replaced and each word w; can be replaced by words within its
pre-defined substitution set S(w;). S(w;) is constructed from the synonyms of w; and validated with
a language model. We denote each actual input word as @; € {w;} U S(w;), and we show that the
linear bounds of node o can be concretized with dynamic programming (DP) in Theorem [2] as proved

in Appendix
Theorem 2. Let W be columns in W, that correspond to the coefficients of e(wy) in the linear

bounds. The lower bound of b, + Zt 1 We(wy), when j words among 1, . .. ,w; have been
replaced, denoted as g, ; can be computed by:

g, =mm<gi,u+w¢e<w»7 gy, +min{We(w)}) (i.j>0) st €S(w),

and g, 0= —|—Z£ 1 W.e(w,). The concrete lower bound is mln —08, The upper bound

can also be computed similarly by taking the maximum instead of the minimum in the above DP
computation.

3.3 Loss Fusion for Scalable Training of Certifiably Robust Neural Networks

The optimization problem of robust training can be formulated as minimizing the robust loss:

min max L(fs(X), y), (7
X0,y

where fy(X) is the network output at the logit layer, and y is the ground truth. Let go(X,y) =
(e,1T —T)fp(X) be the margins between the ground truth label and all the classes (similarly defined
in Wong & Kolter [49], Zhang et al. [57]]). In previous works, the cross-entropy loss is upper
bounded by lower bounds on margins, as a consequence of Theorem 2 in Wong & Kolter [49]:
maxxes L(fo(X),y) < L(—g,(X,y),y) where g,(X,y) < minxes go(X,y). This requires us to
first lower bound gp (X, y) using LiRPA. The most efficient LIRPA approach [57] used IBP+Backward
to obtain this bound, requiring O(K'r) time where K is the output (logit) layer size (equal to the
number of classes in this case), and O(r) is the time complexity of a regular computation pass without
computing bounds (see Appendix [A.Z). This cannot scale to large datasets when K is large (e.g. in
Tiny ImageNet K = 200; in ImageNet K = 1000).
We propose a new technique, loss fusion, which computes an upper bound of L(fy(X),y) directly
without g, (X, y) as a surrogate. This is possible by treating L as the output node of the computational
graph. When L is the cross entropy loss, we have L(fy(X),y) = log S(X,y), where S(X,y) =
> i<k €xp([—g96(X, y)]i). We can thus upper bound L(fg(X), y) by computing an LiRPA upper
bound for S(X,y) directly, yielding S(X,y), and thereby maxxes L(fo(X),y) < log S(X,y).
This is a novel method that has not appeared in previous works and it yields two benefits. First, this
reduces the time complexity of upper bounding L(fy(X), y) to O(r), as now the output layer size
has been reduced from K to 1. This is the first time in the literature that a tight LiRPA based bound
can be computed in the same asymptotic complexity as regular forward propagation and IBP. Second,
we show that this is not only faster, but also produces tighter bounds in certain cases:
Theorem 3. Given same concrete lower and upper bounds of go(X,y) as g,(X,y) and gy(X,y)
which may be used in linear relaxation, for S(X,y)=>", - ;- exp([—go(X, y)];), we have

max L(fo(X),y) < log S(X,y) < L(=g,(X,v),9), ®)

where L is the cross-entropy loss, S(X,y) is the upper bound of S(X,vy) by backward mode LiRPA.
This theorem is proved in Appendix Intuitively, the original approach of propagating g P (X,9)
through the cross-entropy loss is similar to using IBP for bounding the loss function, but in loss fusion
we treat the loss function as part of the computational graph and apply LiRPA bounds to it directly; it
produces tighter bounds as we can use a tighter relaxation for the nonlinear function S(X, y).

4 Experiments

Table 2: Error rates of different certifiably trained models on CIFAR-10 and Tiny-ImageNet datasets
(results on downscaled ImageNet are in Table). “Standard”, ‘PGD” and “verified” rows report the
standard test error, test error under PGD attack, and verified test error, respectively.

Dataset Error CNN-7+BN DenseNet ‘WideResNet ResNeXt Literature results
) IBP Ours IBP Ours IBP Ours IBP Ours CROWN-IBP |57 IBP [57]*| Balunovic & Vechev |3
CIFAR-10 Standard | 57.95% 53.71% | 57.21% 56.03% | 58.07% = 53.89% | 56.32% 53.85% 54.02% 58.43% 483%
8 PGD 67.10% 64.31% | 67.75% 65.09% | 67.23% 6442% | 67.55% 64.16% 65.42% 68.73% -
255 Verified | 69.56% 66.62% | 69.59% 61.57% | 70.04% = 61.71% | 70.41% 68.25% 66.94% 70.81% 72.5%
Tiny-ImageNet Standard | 78.54% 78.42% | 78.40% 77.96% | 73.54% 72.18% | 78.94% 78.58% None. [12] reported a IBP model trained on
1 PGD 81.05% 80.96% | 80.32% 80.52% | 79.40% 79.48% | 80.17% 79.80% 64 x 64 downscaled Imagenet dataset with
€= 35 Verified | 87.96% = 87.31% | 86.87% 85.44% | 85.15% 84.14% | 87.70% 86.95% 84.04% clean error and 93.87% verified error.

2 Gowal et al. [12] reported better IBP verified error (68.44%) but this result was found not easily reproducible [571[3

Robust Training of Large-scale Vision Mod-
els Our loss fusion technique allows us to scale
to Tiny-ImageNet [26] and downscaled Ima-

Table 4: Certified defense on Downscaled ImageNet
dataset. We use WideResNet in this experiment.

geNet [5]]; to the best of our knowledge, this Dataset Method | Standard _ PGD __ Verified

is the first LiRPA based certified defense on TmageNet(64Xx64) | IBP[I2] | 84.04% 90.88% 93.87%
. . _ 1 ()

Tiny-ImageNet and downscaled ImageNet with €= o Ours | 83.77% 8974% 91.27%

a large number of class labels (200 and 1000,
respectively). Besides, the automatic LiRPA bounds allow us to train certifiably robust models
on complicated network architectures (WideResNet [33], DenseNet [17] and ResNeXt [52]) and

Table 3: Per-epoch training time and memory usage of 4 large models on CIFAR-10 with batch size
256, and 3 large models on Tiny-ImageNet with batch size 100. “LF’=loss fusion; “OOM”=out of
memory. Numbers in parentheses are multiples of natural training time or memory usage. With loss
fusion, LiRPA based bounds are only 3 to 5 times slower than natural training even on datasets with
many labels. Without loss fusion (e.g., in [57]]) LiRPA cannot scale to the Tiny-ImageNet dataset.

Dataset Trainine method Wall Clock Time (s) GPU Memory Usage (GB)
° Natural IBP LiRPA w/o LF LiRPA w/LF | Natural IBP LiRPAw/oLF LiRPA w/LF
CNN-7+BN 11.89 2223 (1.87x) 56.05 (4.71x) 33.40 (2.81x) 4.42 7.06 (1.60x) 20.52 (4.64x) 10.34(2.34x)
CIFAR-10 DenseNet 22.07 54.40 (2.46x) OOM 90.79 (4.11x) 6.58 16.78 (2.55x) OOM 27.50 (4.18x)
‘WideResNet 19.39 43.65 (2.55%) OOM 74.78 (3.85%) 7.18 13.50 (1.88x) OOM 21.98 (3.06x)
ResNeXt 14.78 3244 (2.20x) 132.70 (8.98x) 55.84 (3.78x) 4.74 11.34 (2.39x) 43.68 (9.21x) 18.58 (3.92x)
CNN-7+BN 56.70 112.09 (1.98x) OOM 163.29 (2.88x) 422 7.12 (1.69%) OOM 10.57 (2.50%)
Tiny-ImageNet DenseNet 13517 318.77 (2.36x) OOM 513.96 (3.80x) 8.55 20.55 (2.4x) OOM 34.81 (4.07x)
Y ° ‘WideResNet 133.11 407.74 (3.06x) OOM 635.50 (4.77x) 10.91 24.05 (2.20x) OOM 39.08 (3.58x)
ResNeXt 92.63 191.34 (2.07x) OOM 337.83 (3.65x) 4.31 7.05 (1.64x) OOM 11.66 (2.69x)

Table 5: Verification and certified defense for LSTM and Transformer based NLP models. i, and §
represent the number of perturbed words during training and evaluation. For the most important setting
Otrain = 6, we run training with 5 different seeds and report the mean and standard deviation. §¢pain =0
stands for natural training; § = 0 stands for evaluating standard test accuracy. “IBP+Backward (alt.)”
on dyain = 1 has an alternative training schedule focusing on the small § (see Appendix m

Model Training Verified Test Accuracy (%)
Budget Method 6=0 =1 6=2 6=3 6=4 6=5) =6
IBP 849 0.6 0.6 0.6 0.6 0.6 0.6
Otrain = 0 Forward 84.9 0 0 0 0 0 0
Forward+Backward 84.9 0 0 0 0 0 0
LSTM j 1BP 81.3 782 782 782 78.2 782 782
Swain = 1 IBP+Backward (alt.) 81.7 71.3 75.2 73.8 72.7 72.3 72.0
IBP+Backward 81.3 79.0 78.6 78.6 78.6 78.6 78.6
S = 6 IBP 798+1.09 762+1.67 762+1.67 762+1.67 T62£1.67 762+1.67 76.2+1.67
i IBP+Backward 7944147 76.64+1.42 76.6+142 76.6+£142 76.6+£142 76.6£1.42 76.6+1.42
IBP 82.0 0.6 0.6 0.6 0.6 0.6 0.6
Otrain = 0 Forward 82.0 60.6 47.1 40.5 36.8 35.6 35.0
Forward+Backward 82.0 65.0 51.2 44.5 41.3 39.2 38.7
Transformer | - 1BP 8.7 76.9 76.9 76.9 76.9 76.9 76.9
Swrain = 1 IBP+Backward (alt.) 79.2 71.0 75.4 75.1 74.5 74.1 73.9
IBP+Backward 78.5 773 77.2 77.1 77.1 77.1 77.1
S —6 IBP 78.4+£0.34 76.6£030 76.6£030 76.6£0.30 76.6£0.30 76.6£0.30 76.6£0.30
rain IBP+Backward 78.5+£0.08 77.4+0.21 77.440.19 77.4+0.19 77.4+0.20 77.4+020 77.4+0.19

achieve state-of-the-art results, where previous works use simpler models [50 31} 145 |57]] due to
implementation difficulty. We extend CROWN-IBP [57] to the general IBP+Backward approach:
we use IBP to compute bounds of intermediate nodes of the graph and use tight backward mode
LiRPA for the bounds of the last layer. Unlike in CROWN-IBP, we apply loss fusion to avoid the time
complexity dependency on the number of class labels, and we train a few state-of-the-art classification
models ([S7] used a simple CNN feedforward network). We compare our results to IBP training [12].
We provide detailed hyperparameters in Appendix [C.I] We report results on CIFAR-10 [25] with /o,
perturbation e =8/255 and Tiny-ImageNet with e =1/255 in Table[2] and Downscaled-ImageNet [5]
which has 1, 000 class labels with ¢, perturbation e=1/255 in Table We find that in all settings,
our tight LiRPA bounds improve both clean and verified errors compared to IBP. Additionally, we
achieve state-of-the-art verified error of 66.62% on CIFAR-10 with € = 8/255, better than latest
published works [12} 157, 3]] in certified defense.

In Table 3] we report wall clock time and GPU memory usage for regular training, pure IBP training,
LiRPA training on logit layer without loss fusion (same as [57]) and LiRPA training with loss fusion.
We use the same batch size 256 for all settings and conduct the experiments on 4 Nvidia GTX 1080Ti
GPUs. With loss fusion, LiRPA is efficient and only 3-4 times slower than natural training on both
CIFAR-10 and Tiny-ImageNet. With loss fusion, we can enable LiRPA at a cost similar to IBP,
allowing us to use much tighter bounds and obtain better-verified errors than IBP (Table [2). The
computational cost is significantly better than [S7] which is up to 10 (number of labels) times slower
than natural training on CIFAR-10, and impossible to scale to Tiny-ImageNet with 200 labels or
downscaled ImageNet with 1000 labels. We also report an additional comparison where we use the
largest possible batch size rather than a fixed batch size in each setting in Appendix [C.1]

Verifying and Training Robust NLP Models Previous works were only able to implement simple
algorithms such as IBP on simple (e.g. CNN and LSTM) NLP models [20, 18] for certified defense.
None of them can handle complicated models like Transformer [44] or train with tighter LiRPA
bounds. We show that our algorithm can train certifiably robust models for LSTM and Transfomrer
sentiment classifiers on SST-2 [41]]. We consider synonym-based word substitution with 6 <6 (up

/

©
N
=)
=

9 9
c < 80
=901 —— 10% data, natural obj = —— 10% data, natural obj 3
g | 10% data, flat obj 279{ - 10% data, flat obj ,Loss
E gg| — 1% data, natural obj 5 —— 1% data, natural obj
3 ! 378 ; 1
8 | 1% data, flat obj 8 | 1% data, flat obj
7 277 0
e s XN 10, 0
761 - o 05 &S
;’u os 0.0 &€ -0 oad\ﬁe
75 radjgp, 00 -0 9ragija,, 0.0 -05 Q&
0.0IN 0.1N N 0.01IN 0.1N N Nt direcf,, 10 -1%8° Nt diredyy 10 163"
batch-size batch-size n @ on @
MNIST FashionMNIST Natural model Flat model
() (b)

Figure 3: Application of LiRPA bounds to network parameters to obtain a model with a provably
“flat” loss surface. (a) Test accuracy of naturally trained models and “flat” objective trained models
on MNIST and FashionMNIST with different combinations of data size and batch size (“obj” in the
legends is short for “objective”). (b) The training loss landscape of models trained with natural and
flat objective on 10% data of MNIST with 0.1V batch size for training dataset size N. We plot the
loss surface along the gradient direction and a random direction.

to 6 word substitutions). We provide more backgrounds and training details in Appendix [C.2] In
Table EL we first verify naturally trained (dyain = 0) LSTM and Transformer. Unfortunately, most
configurations cannot yield a non-trivial verified accuracy (larger than 1%), except for the case
of using the forward mode and forward+backward mode perturbation analysis on a Transformer.
We then conduct certified defense with 0y, = {1,6} using IBP as in [20, [18] and our efficient
IBP+Backward perturbation analysis. Models trained using IBP+Backward outperforms pure IBP
(similar to our observations in computer vision tasks), and the verified test accuracy is significantly
better than naturally trained models. The results demonstrate that our framework allows us to better
verify and train complex NLP models using tight LiRPA bounds.

Training Neural Networks with Guaranteed Flatness Recently, some researchers [[14} |19} [13|
16] have hypothesized that DNNs optimized with stochastic gradient descent (SGD) can find wide
and flat local minima which may be associated with good generalization performance. Most previous
works on LiRPA based certified defense only implemented input perturbations analysis. Our frame-
work naturally extends to perturbation analysis on network parameters 6 as they are also independent
nodes in a computational graph (e.g., node x; in Figure[T). This requires to relax the multiplication
operation (e.g., the MatMul nodes in Figure|[I)) which was first discussed in Shi et al. [37], and our
Algorithm [2]can then be directly applied. With this advantage, LiRPA can compute provable upper
and lower bounds on the local “flatness” around a certain point 6y for some loss L:

,C(ao) — CL(Q()) < ﬁ(@o + AQ) < [,(90) + CU(QQ), for all HAH”Q <e, ()]

where C', and Cy are linear functions of g that can be found by LiRPA. This is a “zeroth-order”
flatness criterion, where we guarantee that the loss value does not change too much in a small region
around 6y, and we do not have further assumptions on gradients or Hessian of the loss. When 6y is
a good solution, £(6y) is close to 0, so we can simply set the left hand side of (9) to 0 and upper
bound L(0y + A6) to ensure flatness. Using our framework, we can train a classifier that guarantees
flatness of local optimization landscape, by minimizing the “flat” objective £(6y)-+Cy (6p) for the
perturbation set S(fy) = {0 : ||0 — ||z < €} where 6y is the current network parameter. When this
“flat” objective is close to 0, we guarantee that L is close to O for all § € S(6). We build a 3-layer
MLP model with [64, 64, 10] neurons in each layer and conduct experiments using only 10% and 1%
of the training data in MNIST and FashionMNIST, and we then test on the full test set to aggressively
evaluate the generalization performance. We also aggressively set the batch size to {0.01NV,0.1N, N'}
as in [19] where N is the size of training dataset. Additional details are in Appendix [C.3]

The test accuracies of the models trained with regular cross entropy and our “flat” objective are shown
in Figure[3a] We visualize their loss surfaces in Figure [3b] When batch size is increased or fewer
data are used, test accuracy generally decreases due to overfitting, which is consistent with [22]]. For
models trained with the flat objective, the accuracy tends to be better, especially when a very large
batch size is used. These observations provide some evidence for the hypothesis that a flat local
minimum generalizes better, however, we cannot exclude the possibility that the improvements come
from side effects of our objective. Our focus is to demonstrate potential applications beyond neural
network verification of our framework rather than proving this hypothesis.

Broader Impact

In this paper, we develop an automatic framework to enable perturbation analysis on any neural
network structure. Our framework can be used in a wide variety of tasks ranging from robustness veri-
fication to certified defense, and potentially many more applications requiring a provable perturbation
analysis. It can also play an important building block for several safety-critical ML applications, such
as transportation, engineering, and healthcare, etc. We expect that our framework will significantly
improve the robustness and reliability of real-world ML systems with theoretical guarantees.

An important product of this paper is an open-source LiRPA library with over 10,000 lines of code,
which provides automatic and differentiable perturbation analysis. This library can tremendously
facilitate the use of LiRPA for the research community as well as industrial applications, such as
verifiable plant control [51]]. Our library of LiRPA on general computational graphs can also inspire
further improved implementations on automatic outer bounds calculations with provable guarantees.

Although our focus on this paper has been on exploring known perturbations and providing guarantees
in such clairvoyant scenarios, in real-world an adversary (or nature) may not adhere to our assumptions.
Thus, we may additionally want to understand implication of these unknown scenarios on the system
performance. This is a relatively unexplored area in robust machine learning, and we encourage
researchers to understand and mitigate the risks arising from unknown perturbations in these contexts.

Acknowledgments and Disclosure of Funding

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344 and was partly supported by
the National Science Foundation CNS-1932351, NSFC key project No. 61936010, NSFC regular
project No. 61876096, NSF I1S-1901527, NSF 1IS-2008173, and ARL-0011469453.

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, 1., Talwar, K., Tucker, P,,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., and Zheng, X. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems, 2016.

[2] Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivastava, M., and Chang, K.-W. Generating
natural language adversarial examples. In EMNLP, pp. 2890-2896, 2018.

[3] Balunovic, M. and Vechev, M. Adversarial training and provable defenses: Bridging the gap. In
International Conference on Learning Representations, 2020.

[4] Chiang, P.-Y., Ni, R., Abdelkader, A., Zhu, C., Studer, C., and Goldstein, T. Certified defenses
for adversarial patches, 2020.

[5] Chrabaszcz, P., Loshchilov, 1., and Hutter, F. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

[6] Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certified adversarial robustness via randomized
smoothing. In /CML, 2019.

[7] Dvijotham, K., Gowal, S., Stanforth, R., Arandjelovic, R., O’Donoghue, B., Uesato, J., and
Kohli, P. Training verified learners with learned verifiers. arXiv preprint arXiv:1805.10265,
2018.

[8] Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., and Kohli, P. A dual approach to scalable
verification of deep networks. UAI 2018.

10

[9] Dvijotham, K. D., Stanforth, R., Gowal, S., Qin, C., De, S., and Kohli, P. Efficient neural
network verification with exactness characterization. UAI, 2019.

[10] Ehlers, R. Formal verification of piece-wise linear feed-forward neural networks. In Inter-
national Symposium on Automated Technology for Verification and Analysis, pp. 269-286.
Springer, 2017.

[11] Gao, J., Lanchantin, J., Soffa, M. L., and Qi, Y. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops
(SPW), pp. 50-56. IEEE, 2018.

[12] Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Mann, T., and Kohli, P.
On the effectiveness of interval bound propagation for training verifiably robust models. arXiv
preprint arXiv:1810.12715, 2018.

[13] Goyal, P., Dollér, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia,
Y., and He, K. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[14] He, H., Huang, G., and Yuan, Y. Asymmetric valleys: Beyond sharp and flat local minima. In
Advances in Neural Information Processing Systems, pp. 2549-2560, 2019.

[15] Hein, M. and Andriushchenko, M. Formal guarantees on the robustness of a classifier against
adversarial manipulation. In Advances in Neural Information Processing Systems (NIPS), pp.
22662276, 2017.

[16] Hoffer, E., Hubara, 1., and Soudry, D. Train longer, generalize better: closing the generalization
gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, pp. 1731-1741, 2017.

[17] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 4700-4708, 2017.

[18] Huang, P.-S., Stanforth, R., Welbl, J., Dyer, C., Yogatama, D., Gowal, S., Dvijotham, K., and
Kohli, P. Achieving verified robustness to symbol substitutions via interval bound propagation.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-1IJCNLP),
pp- 4074-4084, 2019.

[19] Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A., Bengio, Y., and Storkey, A. J.
Finding flatter minima with sgd. In ICLR (Workshop), 2018.

[20] Jia, R., Raghunathan, A., Goksel, K., and Liang, P. Certified robustness to adversarial word
substitutions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pp. 4120-4133, 2019.

[21] Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. Reluplex: An efficient
smt solver for verifying deep neural networks. In International Conference on Computer Aided
Verification, pp. 97-117. Springer, 2017.

[22] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. On large-
batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[23] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[24] Ko, C.-Y., Lyu, Z., Weng, T.-W., Daniel, L., Wong, N., and Lin, D. Popqorn: Quantifying

robustness of recurrent neural networks. In International Conference on Machine Learning, pp.
3468-34717, 2019.

11

[25] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images.
Technical Report TR-2009, 2009.

[26] Le, Y. and Yang, X. Tiny imagenet visual recognition challenge. CS 231N, 2015.

[27] Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and Jana, S. Certified robustness to
adversarial examples with differential privacy. In 2019 IEEE Symposium on Security and
Privacy (SP), pp. 656-672. IEEE, 2019.

[28] Li, B., Chen, C., Wang, W., and Carin, L. Certified adversarial robustness with additive noise.
In Advances in Neural Information Processing Systems, pp. 9464-9474, 2019.

[29] Lyu, Z., Ko, C.-Y., Kong, Z., Wong, N., Lin, D., and Daniel, L. Fastened crown: Tightened
neural network robustness certificates. arXiv preprint arXiv:1912.00574, 2019.

[30] Maurer, J., Singh, G., Mirman, M., Gehr, T., Hoffmann, A., Tsankov, P., Cohen, D. D., and
Piischel, M. Eran user manual. Manual, 2018.

[31] Mirman, M., Gehr, T., and Vechev, M. Differentiable abstract interpretation for provably robust
neural networks. In International Conference on Machine Learning, pp. 3575-3583, 2018.

[32] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems 32, pp. 8024-8035. Curran Associates, Inc., 2019.

[33] Raghunathan, A., Steinhardt, J., and Liang, P. S. Semidefinite relaxations for certifying

robustness to adversarial examples. In Advances in Neural Information Processing Systems, pp.
10877-10887, 2018.

[34] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-
propagating errors. nature, 323(6088):533-536, 1986.

[35] Salman, H., Li, J., Razenshteyn, 1., Zhang, P., Zhang, H., Bubeck, S., and Yang, G. Provably
robust deep learning via adversarially trained smoothed classifiers. In Advances in Neural
Information Processing Systems, pp. 11289—11300, 2019.

[36] Salman, H., Yang, G., Zhang, H., Hsieh, C.-J., and Zhang, P. A convex relaxation barrier to
tight robustness verification of neural networks. In Advances in Neural Information Processing
Systems 32, pp. 9832-9842, 2019.

[37] Shi, Z., Zhang, H., Chang, K.-W., Huang, M., and Hsieh, C.-J. Robustness verification for
transformers. In International Conference on Learning Representations, 2020.

[38] Singh, G., Gehr, T., Mirman, M., Piischel, M., and Vechev, M. Fast and effective robustness
certification. In Advances in Neural Information Processing Systems, pp. 10825-10836, 2018.

[39] Singh, G., Ganvir, R., Piischel, M., and Vechev, M. Beyond the single neuron convex barrier
for neural network certification. In Advances in Neural Information Processing Systems, pp.
15072-15083, 2019.

[40] Singh, G., Gehr, T., Piischel, M., and Vechev, M. An abstract domain for certifying neural
networks. Proceedings of the ACM on Programming Languages, 3(POPL):41, 2019.

[41] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. Recursive
deep models for semantic compositionality over a sentiment treebank. In Proceedings of the
2013 conference on empirical methods in natural language processing, pp. 1631-1642, 2013.

[42] Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W., Patel, K., and Vielma, J. P. The convex
relaxation barrier, revisited: Tightened single-neuron relaxations for neural network verification.
arXiv preprint arXiv:2006.14076, 2020.

[43] Tjeng, V., Xiao, K., and Tedrake, R. Evaluating robustness of neural networks with mixed
integer programming. ICLR, 2019.

12

[44] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention is all you need. In Advances in neural information processing systems,

pp. 5998-6008, 2017.

[45] Wang, S., Chen, Y., Abdou, A., and Jana, S. Mixtrain: Scalable training of formally robust
neural networks. arXiv preprint arXiv:1811.02625, 2018.

[46] Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. Efficient formal safety analysis of
neural networks. In Advances in Neural Information Processing Systems, pp. 6367-6377, 2018.

[47] Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J., Daniel, L., Boning, D., and Dhillon, I.
Towards fast computation of certified robustness for relu networks. In International Conference
on Machine Learning, pp. 5273-5282, 2018.

[48] Wong, E. and Kolter, J. Z. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In ICML, 2018.

[49] Wong, E. and Kolter, Z. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, pp. 5283-5292, 2018.

[50] Wong, E., Schmidt, F., Metzen, J. H., and Kolter, J. Z. Scaling provable adversarial defenses. In
NIPS, 2018.

[51] Wong, E., Schneider, T., Schmitt, J., Schmidt, F. R., and Kolter, J. Z. Neural network virtual
sensors for fuel injection quantities with provable performance specifications. arXiv preprint
arXiv:2007.00147, 2020.

[52] Xie, S., Girshick, R., Dollar, P., Tu, Z., and He, K. Aggregated residual transformations for
deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1492-1500, 2017.

[53] Zagoruyko, S. and Komodakis, N. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

[54] Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and Daniel, L. Efficient neural network
robustness certification with general activation functions. In Advances in neural information
processing systems, pp. 4939-4948, 2018.

[55] Zhang, H., Cheng, M., and Hsieh, C.-J. Enhancing certifiable robustness via a deep model
ensemble. arXiv preprint arXiv:1910.14655, 2019.

[56] Zhang, H., Zhang, P., and Hsieh, C.-J. Recurjac: An efficient recursive algorithm for bound-
ing jacobian matrix of neural networks and its applications. AAAI Conference on Artificial
Intelligence, 2019.

[57] Zhang, H., Chen, H., Xiao, C., Li, B., Boning, D., and Hsieh, C.-J. Towards stable and
efficient training of verifiably robust neural networks. In International Conference on Learning
Representations, 2020.

[58] Zhu, C., Ni, R., Chiang, P.-y., Li, H., Huang, F., and Goldstein, T. Improving the tightness of con-
vex relaxation bounds for training certifiably robust classifiers. arXiv preprint arXiv:2002.09766,
2020.

[59] Ziigner, D. and Giinnemann, S. Certifiable robustness and robust training for graph convolutional
networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 246-256, 2019.

13

