
Table A: Verified error and running time of different frameworks on CIFAR. The
model structure is ConvSmall from [28].

Regularly trained (ε=2/255) LiRPA trained (ε=8/255)
[35] [37] Ours [45] [28] [50] Ours

Verified error 63.85% 63.85% 63.85% 74.50% 75.30% 71.59% 71.57%
Time (min) 223.37 89.45 14.37 248.74 105.31 43.45 28.11

Table B: Certified training on Downscaled ImageNet.
We use WideResNet with ε = 1

255
.

Dataset Method Clean PGD Verified
ImageNet
(64× 64)

IBP [9] 84.04% 90.88% 93.87%
Ours 83.77% 89.74% 91.27%

We thank all reviewers for their encouraging and helpful comments. We will fix all typos. We answer questions below:1

R1. Comparison to other LiRPA implementations on feed-forward NNs. We categorize existing implementations2

into 2 kinds: (1) for verification only (typically implemented on CPUs, including DeepZ[35], and DeepPoly[37])3

(2) for training certified defense (typically using more efficient, yet weaker or approximated bounds: convex outer4

adversarial polytope[45], DiffAI[28], IBP[9] and CROWN-IBP[50]). For category (1) we compare bound tightness5

(verified error given a `∞ norm ε) and time to verify the test set; for category (2) we compare verified accuracy after6

training and training time. Results are presented in Table A. Following convex relaxation theory[32], our bound has7

the same strength as CROWN[49]/DeepPoly[37], but we use GPU acceleration from PyTorch. Our contribution is not8

to improve tightness of LiRPA bounds, but the first framework that generalizes to general computational graphs in9

an automatic manner. Results on a large dataset. We conduct additional experiments on downscaled (64× 64, 1,00010

classes) ImageNet in Table B. With the help of loss fusion, for the first time, we demonstrate LiRPA based certified11

defense on Downscaled ImageNet and outperform IBP[9], the only method that can scale to this setting previously.12

R2. High-order bounds. Admittedly, we only implement the linear relaxations of CROWN and currently do not handle13

CROWN-quad. In CROWN[50], the quadratic bound is only applied to 2-layer networks and is hard to extend to14

multiple layers, as when propagating a quadratic bound to the 3rd layer it becomes quadratic (x4) due to correlations15

between two quadratic terms (“order explosion”). This makes the concretization problem (in Sec. 3.2) hard to solve.16

We plan to study high-order bounds on general graphs as our future work. Limitations on linear input constraints We17

can handle any input constraint X ∈ S as long as the linear “concretization” problem can be efficiently solved (Sec 3.2).18

When S is an `∞ ball, it is linear; but it is non-linear when S is an `2 ball (but S is still convex so easy to solve). We can19

even handle non-linear, non-convex case. For example, when S is a sparse perturbation (non-linear and non-convex),20

e.g, S = {‖X−X0‖0 ≤ k, 0 ≤ X ≤ 1}, the solution is: ho,j = Aj,:X−
∑

topk(A
+
j,: ∗X)+

∑
topk(A

−
j,: ∗ (1 − X)),21

ho,j=Aj,:X−
∑

topk(A
−
j,:∗X)+

∑
topk(A

+
j,:∗(1−X)). where ∗ denotes element-wise multiplication, topk denotes the22

indices of largest k elements. We show preliminary results on LiRPA based `0 norm certified defense in Table D. The23

input constraints can be even more generalized when it is produced by some parameterized neural network, where we24

can combine this network with the classifier to verify the whole computation. We will also discuss these extensions.25

Fairness of comparison to IBP. We compare to IBP in training experiments because (1) IBP is currently the only feasible26

method for training large-scale certified defense on irregular networks; (2) Even on smaller networks, IBP outperforms27

many tighter bounds after training (see Table 4 in [9]) and IBP based method[50] is currently the state-of-the-art.28

Performance on NLP benchmarks We discussed this issue in Appendix C.2 (L.545-559). Huang et al. build a convex29

hull on the input layer, where each instance in the convex hull has only one position perturbed but the perturbation30

is enlarged to δ times. They use CNN and after the first layer, the convex hull is converted into interval bounds. But31

this requires the first layer to be an affine layer and different positions have interactions, which is not the case in32

Transformer/LSTM. E.g., the linear layer before the self-attention in Transformer (to obtain query/key/value) is applied33

to different positions independently. In this case, Huang et al.’s method gives a (δ − 1)-time over-estimation, compared34

to assuming all the positions are independently replaced as in Jia et al. [17]. Therefore, we adopt the IBP based method35

in [17] whose results are not affected by δ. To avoid bugs, we test our code base carefully with continuous integration36

(Travis CI) and we compare our bounds with references from other libraries when possible (e.g., on feed-forward NNs).37

Bayesian Neural Networks We greatly appreciate the reviewer on pointing out this potential application and we will38

discuss it in related works and further study it as our future work.39

Table C: Multi-layer NLP models with δtrain = 6.

Model Method Verified Test Accuracy (%)
δ = 0 δ = 1 δ = 3 δ = 6

2-Layer IBP 77.5 75.4 75.4 75.4
Transformer Ours 78.1 77.2 77.2 77.2

4-Layer IBP 78.4 76.0 76.0 76.0
Transformer Ours 78.6 77.4 77.4 77.3

2-Layer IBP 81.4 78.2 78.2 78.2
LSTM Ours 81.4 78.4 78.4 78.4

Table D: Results of `0 norm certified defense on a simple MLP model.

Method Metric k = 1 k = 4 k = 10

IBP Verfied err. 5.79% 10.06% 25.15%
Clean err. 1.57% 2.24% 4.84%

Ours Verfied err. 5.71% 9.59% 24.67%
Clean err. 1.62% 2.21% 4.95%40

R3. Multi-layer NLP models. Our method natively support multi-layer LSTMs and Transformers. We include additional41

experiments in Table C. Our framework provides competitive results on these networks. Nature error rates Yes, it is the42

error rate on clean test set (we will fix the terms used). The accuracy of models is relatively low compared to normally43

trained models, but this is common in certified defense - our reported error rates are similar to or better than those in44

state-of-the-art (e.g., [45,9,50] reported clean test errors of 71.33%, 50.51% and 54.02% on CIFAR-10 with ε = 8
255 ,45

respectively; ours are around 53%). Currently all LiRPA based certified defenses have this trade-off between robustness46

and accuracy. We leave further development on improving the clean accuracy of certified training as a future work.47


