
To REVIEWER 1: Q1. Uniform sampling is very unlikely to produce hard negatives with high scores. Reply. Yes, this1

is also why uniform sampling is not able to generate high quality negative samples. Thus, previous works (IRGAN [37],2

AdvIR [28]) tried to fit the real negative sampling distribution with techniques of adversarial learning. However, by3

emphasizing hard negative samples with large scores, they overlook the risk of introducing false negative instances.4

To solve this problem, we propose to robustify negative sampling by favouring high-variance samples. Moreover, we5

simultaneously design a simplified memory-based solution for efficient sampling.6

Q2. Since new samples are likely to have lower scores, one either has to increase the temperature or leave Mu relatively7

static between iterations. Reply. Since CF model can memorize easy training instances first and gradually adapt to8

hard instances, a.k.a. memorization effect [1] (See our experiment results in Fig. 3c/d.), it is unnecessary to avoid9

introducing new samples into negative sampling. After several training epochs, model is well trained and even new10

samples can have high scores.11

Q3. how the std can be accurately estimated in Equation 4? And estimating std is expansive. Reply. Please check12

Appendix B.6 for details. For each candidate sample stored in memory Mu, we directly use its corresponding prediction13

probability in the latest 5 epochs to compute the std. These prediction results have already been logged even if this14

sample has just entered Mu. Without any extra forward or backward passes, the computation overhead is constant (O(1))15

for each sampling operation.16

To REVIEWER 2: Q1. Evaluation results on longer lists (@5, @10, @20 and beyond).17

Reply. In real applications, it is more important
to rank the suitable items at top positions of a
list. Therefore, a smaller value of K in evalua-
tion emphasizes more on this capability. Previous
works [19,23] set K as 1∼10 (out of 100 evalu-
ated items) and 20 (out of 2000 items), respectively.
Due to space limitation, we only report the results
at K = 1/3. As suggested by reviewers, we list
the rest results (K = 5/10) in the following table.
It can be observed that the proposed SRNS still
outperforms various baselines.

Method Movielens-1m Pinterest
N@5 N@10 R@5 R@10 N@5 N@10 R@5 R@10

ENMF 0.3507 0.4030 0.5066 0.6682 0.4777 0.5370 0.6824 0.8643
Uniform 0.3348 0.3932 0.4884 0.6689 0.4750 0.5323 0.6766 0.8524
NNCF 0.1835 0.2302 0.2840 0.4297 0.4309 0.4925 0.6218 0.8114

AOBPR 0.3428 0.4005 0.5002 0.6780 0.4790 0.5375 0.6837 0.8631
IRGAN 0.3372 0.3957 0.4912 0.6714 0.4750 0.5327 0.6758 0.8528
RNS-AS 0.3443 0.3993 0.4992 0.6684 0.4839 0.5390 0.6832 0.8523
AdvIR 0.3445 0.3973 0.5018 0.6644 0.4843 0.5393 0.6839 0.8527
SRNS 0.3527 0.4093 0.5025 0.6712 0.4971 0.5505 0.6894 0.8531

0.57% 1.56% -0.81% -1.00% 2.64% 2.08% 0.80% -1.30%

Q2. Experimental results cannot be compared directly with published results due to different experimental conditions.18

Reply. There is no standard experimental setting that is adopted by all previous CF works. By following [28,37], we19

regarded ratings with 4∼5 as positive labels and evaluated with similar list lengths. We will cover more experimental20

conditions in the final version.21

To REVIEWER 3: Q1. The concept of “hard negative samples” is used without explanation. Reply. They are negative22

samples with a high probability of being positive according to the model, which are hard for learning. We will elaborate23

more in the final version.24

Q2. The analysis based on synthetic data is relatively weak, hard to justify the observation. Reply. 1) Variance-based25

criterion has been adopted in ML community, e.g., [8] improves stochastic optimization by emphasizing high variance26

samples, and similar technique is widely used in active learning for variance reduction (see “B. Settles. Active learning27

literature survey. 2010”). Here we introduce this into CF so as to filter out false negative samples. 2) The analysis on28

synthetic data is motivated by the needs of a reliable measure of sample quality. 3) Experiment results on both synthetic29

and real-world datasets demonstrate the effectiveness of our SRNS method.30

Q3. Experiment results on longer evaluation lists. Reply. Please see Q1 of REVIEWER 2.31

To REVIEWER 4: Q1. why SRNS is much faster than existing sampling methods. Reply. SRNS can converge to better32

performance (N@1) with less time (Fig. 4(a-c)). Moreover, it can be trained from scratch. For time complexity of std33

computation, please see Q3 of REVIEWER 1.34

Q2. For experiment on changing scoring function r, better to compare SRNS with RNS-AS and AdvIR. Reply. Original35

papers of RNS-AS and AdvIR does not consider using different r, thus, to be fair, we only compare SRNS with uniform36

sampling to demonstrate its generality on different choices of r.37

Q3. Performance gain seems to be marginal as the number of recommended items increases. Reply. 1) As in38

Appendix B.4, results of both baselines and SRNS in Table 3 are tuned according to N@1 on validation set. 2) Generally39

learning difficulty increases for all methods as K increases.40

Q4. Needs to consider one candidate-based sampling method and another reinforced-based sampling method as41

baselines. Reply. [Ding et al. WWW’18] is irrelevant, as it focuses on augmenting negative samples with additional42

view data, which is not available here. [Ding et al. IJCAI’19] is already compared in experiments, which is RNS-AS.43


