
A Appendix467

A.1 Gradient Episodic Memory (GEM) and Averaged Gradient Episodic Memory468

(A-GEM)469

GEM ensures that each update on the t-th task will not increase the loss on the episodic memory, that470

is,471

minimizew`(w; Dtr
t) s.t. `(w; Mk)  `(wt�1; Mk) 8k < t (9)

To inspect the increase of loss on the episodic memory, GEM computes the gradient g on the current472

task and the reference gradient gk on the episodic memory Mk. When the angle between g and gk is473

obtuse, GEM projects the current gradient g to have a right or acute angle with gk,474

minimizegtrue

1

2
kg � gtruek22 s.t. g>truegk � 0 8k < t (10)

GEM solves above optimization problem via quadratic programming in the dual space with v 2475

R(t�1)⇥1:476

minimizevv>G>Gv + g>Gv s.t. v � 0 (11)

where G = �(g1, ..., gt�1) 2 Rd⇥(t�1), g 2 Rd⇥1, and d is the number of parameters in the neural477

network. After obtaining the solution v⇤, the gradient used for updating the model can be computed478

as gtrue = Gv⇤ + g.479

A-GEM [2] improves the efficiency of GEM by preventing the average episodic memory loss from480

increasing. In A-GEM, G is replaced by �gref which is the gradient computed on a random subset481

of the examples from all old tasks. And v⇤ is replaced with a single scalar which can be computed in482

closed form as g>gref
g>

refgref
.483

A.2 Closed-Form Solution of ✓484

Define k = `t/`ref, then we have485

✓ = arg max
�

h
k cos(�) + cos(✓̃ � �)

i

= arg max
�

h
k cos � + cos ✓̃ cos � + sin ✓̃ sin(�)

i

= arg max
�

h
cos �

⇣
k + cos ✓̃

⌘
+ sin ✓̃ sin(�)

i

= arg max
�

"
k + cos ✓̃

sin ✓̃
cos � + sin �

!
· sin ✓̃

#

= arg max
�

"
sin ✓̃

cos ↵
(sin ↵ cos � + cos ↵ sin �)

#

= arg max
�

"
sin ✓̃

cos ↵
sin (↵ + �)

#

=
⇡

2
� ↵

(12)

, where ↵ = arctan
⇣

k+cos ✓̃
sin ✓̃

⌘
.486

13

A.3 Some Derivations487

For notation simplicity, we use g, ĝ, a, b to replace r`t(w; ⇠), r`ref(w; ⇣), ↵1(w), ↵2(w) respec-488

tively. If g = ĝ, then a = 1, b = 0. Otherwise, the goal is to solve489

ag>g + bg>ĝ = kgk22 cos ✓

ag>ĝ + bkĝk22 = kgkkĝk cos(✓̃ � ✓)
(13)

The solution of (13) is490

a =
1

kgk22kĝk22 � g>ĝ

h
kĝk22kgk22 cos ✓ � (g>ĝ)kgk2kĝk2 cos(✓̃ � ✓)

i

b =
1

kgk22kĝk22 � g>ĝ

h
�(g>ĝ)kgk22 cos ✓ + kgk32kĝk2 cos(✓̃ � ✓)

i (14)

A.4 Datasets491

In the experiments, we consider the following four conventional lifelong learning benchmarks,492

• Permuted MNIST [4]: this is a variant of standard MNIST dataset [49] of handwritten493

digits with 20 tasks. Each task has a fixed random permutation of the input pixels which is494

applied to all the images of that task.495

• Split CIFAR [21]: this dataset consists of 20 disjoint subsets of CIFAR-100 dataset [50],496

where each subset is formed by randomly sampling 5 classes without replacement from the497

original 100 classes.498

• Split CUB [2]: the CUB dataset [51] is split into 20 disjoint subsets by randomly sampling499

10 classes without replacement from the original 200 classes.500

• Split AWA [2]: this dataset consists of 20 subsets of the AWA dataset [52]. Each subset is501

constructed by sampling 5 classes with replacement from a total of 50 classes. Note that the502

same class can appear in different subsets. As in [2], in order to guarantee that each training503

example only appears once in the learning process, based on the occurrences in different504

subsets the training data of each class is split into disjoint sets. In the learning process, the505

weights of the classifier of each class are randomly initialized within each head without any506

transfer from the previous occurrence of the class in past tasks.507

A.5 Evaluation Metrics508

Average Accuracy and Forgetting Measure [22] are common used metrics for evaluating performance509

of lifelong learning algorithms. In [2], the authors introduce another metric, called Learning Curve510

Area (LCA), to assess the learning speed of different lifelong learning algorithms.511

Suppose there are Nk mini-batches in the training set of task Dk. Similar to [2], we define ak,i,j512

as the accuracy on the test set of task Dj after the model is trained on the i-th mini-batch of task513

Dk. Generally, suppose the model f(x; w) is trained on a sequence of T tasks {D1, D2, ..., DT }.514

Average Accuracy and Forgetting Measure after the model is trained on the task Dk are defined as515

Ak =
1

k

kX

j=1

ak,Mk,j Fk =
1

k � 1

k�1X

j=1

fk
j , (15)

where fk
j = maxl2{1,2,..,k�1} al,Ml,j � ak,Mk,j . Clearly, AT is the average test accuracy and FT516

assesses the degree of accuracy drop on old tasks after the model is trained on all the T tasks. Learning517

Curve Area (LCA) [2] at � is defined as,518

LCA� =
1

� + 1

�X

b=0

Zb, (16)

where Zb = 1
T

PT
k=1 ak,b,k. Intuitively, LCA measures the learning speed of different lifelong519

learning algorithms. A higher value of LCA indicates that the model learns quickly. We refer the520

readers to [2] for more details about LCA.521

14

A.6 RESULT TABLES522

In Table 2 and Table 3 we show the detailed results of all the methods on different benchmarks.523

Table 2: The results of Average Accuracy (AT), Forgetting Measure (FT) and LCA of different
methods on Permuted MNIST and Split CIFAR. The results are averaged across 5 runs with
different random seeds.

Methods Permuted MNIST Split CIFAR

AT (%) FT LCA10 AT (%) FT LCA10

VAN 47.55±2.37 0.52±0.026 0.259±0.005 40.44±1.02 0.27±0.006 0.309±0.011
EWC 68.68±0.98 0.28±0.010 0.276±0.002 42.67±4.24 0.26±0.039 0.336±0.010
MAS 70.30±1.67 0.26±0.018 0.298±0.006 42.35±3.52 0.26±0.030 0.332±0.010

RWALK 85.60±0.71 0.08±0.007 0.319±0.003 42.11±3.69 0.27±0.032 0.334±0.012
MER - - - 37.27±1.68 0.03±0.030 0.051±0.101

PROG-NN 93.55±0.06 0.0±0.000 0.198±0.006 59.79±1.23 0.0±0.000 0.208±0.002
GEM 89.50±0.48 0.06±0.004 0.230±0.005 61.20±0.78 0.06±0.007 0.360±0.007

A-GEM 89.32±0.46 0.07±0.004 0.277±0.008 61.28±1.88 0.09±0.018 0.350±0.013
MEGA-I 91.10±0.08 0.05±0.001 0.281± 0.005 66.10±1.67 0.05±0.014 0.366±0.009
MEGA-II 91.21±0.10 0.05±0.001 0.283±0.004 66.12±1.94 0.06±0.015 0.375±0.012

Table 3: The results of Average Accuracy (AT), Forgetting Measure (FT) and LCA of different
methods on Split CUB and Split AWA. The results are averaged across 10 runs with different random
seeds.

Methods Split CUB Split AWA

AT (%) FT LCA10 AT (%) FT LCA10

VAN 53.89±2.00 0.13±0.020 0.292±0.008 30.35±2.81 0.04±0.013 0.214±0.008
EWC 53.56±1.67 0.14±0.024 0.292±0.009 33.43±3.07 0.08±0.021 0.257±0.011
MAS 54.12±1.72 0.13±0.013 0.293±0.008 33.83±2.99 0.08±0.022 0.257±0.011

RWALK 54.11±1.71 0.13±0.013 0.293±0.009 33.63±2.64 0.08±0.023 0.258±0.011
PI 55.04±3.05 0.12±0.026 0.292±0.010 33.86±2.77 0.08±0.022 0.259±0.011

A-GEM 61.82±3.72 0.08±0.021 0.302±0.011 44.95±2.97 0.05±0.014 0.287±0.012
MEGA-I 79.67±2.15 0.01±0.019 0.315±0.011 54.82±4.97 0.04±0.034 0.307±0.014
MEGA-II 80.58±1.94 0.01±0.017 0.311±0.010 54.28±4.84 0.05±0.040 0.305±0.015

A.7 Detailed Analysis of MEGA-I and MEGA-II524

In this section, we present a detailed analysis on the reason that why the MEGA-II outperforms525

MEGA-I significantly when the number of examples is limited. Define k1 = `t
`ref

, k2 = kr`t(w;⇠)k
kr`ref(w;⇣)k .526

We denote the angles between the mixed gradient gmix and the current gradient r`t(w; ⇠) calculated527

by MEGA-I and MEGA-II by ✓1 and ✓2 respectively. In Appendix A.2, we know that528

cos ✓2 =
k1 + cos ✓̃q

k2
1 + 2k1 cos ✓̃ + 1

. (17)

Now we derive the closed form of cos ✓1. For simplicity, we only consider the case where `t(w; ⇠) � ✏.529

By formula (6), we know that gmix = r`t(w; ⇠) + `ref
`t

r`ref(w; ⇣). Define gt = `t(w; ⇠), gref =530

r`ref(w; ⇣). By some algebra, we can show that531

gmix =
`t
`ref

kgrefk
✓

k1k2
gt

kgtk
+

gref

kgrefk

◆
.

Hence, we have532

cos ✓1 =
g>

mixgt

kgmixkkgtk
=

k1k2 + cos ✓̃q
k2
1k

2
2 + 2k1k2 cos ✓̃ + 1

. (18)

Comparing (18) and (17), and noting that the function f(k) = k+cos ✓̃p
k2+2k cos ✓̃+1

is a monotonically533

increasing function with respect to k for k � 0, we know that if k1k2 � k1, i.e., k2 � 1, then534

cos ✓1 � cos ✓2, which means ✓1  ✓2.535

15

(a) 200 Examples (b) 600 Examples (c) 55000 Examples

Figure 5: Count versus log(k2), where k2 = kgtk
kgrefk . k2 � 1 holds for a larger proportion of all cases

when the number of examples is smaller.

Figure 6: The average accuracy and execution time when the number of tasks is large.

When the number of training examples is small, we empirically show that it is more common that536

k2 > 1. This explains why MEGA-I’s update direction is dominated by the current gradient’s537

direction while MEGA-II still allows adequate rotation. This property helps MEGA-II obtain better538

performance than MEGA-I when the number of examples is small.539

We construct 20 tasks with X number of examples per task, where X = 200, 600 and 55000. The540

way to generate the tasks is the same as in Permuted MNIST, that is, a fixed random permutation of541

input pixels is applied to all the examples for a particular task. During the learning process, we record542

the norm of the gradient on the current task and the norm of the gradient on the episodic memory in543

each mini-batch.544

In Figure 5, we use histogram to show the distribution of log(k2) of MEGA-I. As we can see, when545

the number of examples per task is smaller, k2 tends to be greater than 1 for a larger proportion. In546

particular, when the number of examples per task is 55000, 3.61% of all k2 are less than 1 and when547

the number of examples per task is 600, 3.15% of all k2 are less than 1. Notably, when the number of548

examples per task is 200, only 1.05% of all k2 are less than 1. As explained in the last paragraph,549

if k2 > 1, then ✓1  ✓2, which means MEGA-II allows a more significant rotation of the current550

gradient. So MEGA-II can offer better performance than MEGA-I, especially when the number of551

examples is small.552

A.7.1 MEGA-2 Outperforms Other Baseline and MEGA-1 When the Number of Tasks is553

Large554

In this section, we increase the number of tasks 30, 50 and 70. Each task have 200 examples and555

is constructed in a similar way to the Permuted MNIST. In Fig. 6, we show the average accuracy556

and execution time for all the methods and all the cases. We can see that the proposed MEGA-II557

outperforms all the baselines, except in the cases of 30 tasks. From the execution time comparison in558

Fig. 6(b), we can see that MEGA-II is much more efficient than MER [24]. Note that MEGA-II also559

significantly outperforms MEGA-I in this case.560

16

	Introduction
	Related Work
	Lifelong Learning
	A Unified View of Episodic Memory Based Lifelong Learning
	Mixed Stochastic Gradient
	MEGA-I
	MEGA-II

	Experiments
	Experimental Settings and Evaluation Protocol
	Results
	MEGA VS Baselines
	MEGA-II Outperforms Other Baselines and MEGA-I When the Number of Examples is Limited
	Ablation Studies

	Conclusion
	Appendix
	Gradient Episodic Memory (GEM) and Averaged Gradient Episodic Memory (A-GEM)
	Closed-Form Solution of
	Some Derivations
	Datasets
	Evaluation Metrics
	RESULT TABLES
	Detailed Analysis of MEGA-I and MEGA-II
	MEGA-2 Outperforms Other Baseline and MEGA-1 When the Number of Tasks is Large

