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Abstract

We explore the link between deep ensembles and Gaussian processes (GPs) through
the lens of the Neural Tangent Kernel (NTK): a recent development in understand-
ing the training dynamics of wide neural networks (NNs). Previous work has
shown that even in the infinite width limit, when NNs become GPs, there is no
GP posterior interpretation to a deep ensemble trained with squared error loss.
We introduce a simple modification to standard deep ensembles training, through
addition of a computationally-tractable, randomised and untrainable function to
each ensemble member, that enables a posterior interpretation in the infinite width
limit. When ensembled together, our trained NNs give an approximation to a
posterior predictive distribution, and we prove that our Bayesian deep ensembles
make more conservative predictions than standard deep ensembles in the infinite
width limit. Finally, using finite width NNs we demonstrate that our Bayesian deep
ensembles faithfully emulate the analytic posterior predictive when available, and
can outperform standard deep ensembles in various out-of-distribution settings, for
both regression and classification tasks.

1 Introduction

Consider a training dataset D consisting of N i.i.d. data points D = {X ,Y} = {(xn, yn)}Nn=1,
with x2Rd representing d-dimensional features and y representing C-dimensional targets. Given
input features x and parameters ✓2Rp we use the output, f(x,✓)2RC , of a neural network (NN) to
model the predictive distribution p(y|x,✓) over the targets. For univariate regression tasks, p(y|x,✓)
will be Gaussian: �logp(y|x,✓) is the squared error 1

2�2 (y � f(x,✓))2 up to additive constant, for
fixed observation noise �22R+ . For classification tasks, p(y|x,✓) will be a Categorical distribution.

Given a prior distribution p(✓) over the parameters, we can define the posterior over ✓, p(✓|D), using
Bayes’ rule and subsequently the posterior predictive distribution at a test point (x⇤, y⇤):

p(y⇤|x⇤,D) =

Z
p(y⇤|x⇤,✓)p(✓|D) d✓ (1)

The posterior predictive is appealing as it represents a marginalisation over ✓ weighted by posterior
probabilities, and has been shown to be optimal for minimising predictive risk under a well-specified
model [1]. However, one issue with the posterior predictive for NNs is that it is computationally
intensive to calculate the posterior p(✓|D) exactly. Several approximations to p(✓|D) have been
introduced for Bayesian neural networks (BNNs) including: Laplace approximation [2]; Markov
chain Monte Carlo [3, 4]; variational inference [5–9]; and Monte-Carlo dropout [10].

Despite the recent interest in BNNs, it has been shown empirically that deep ensembles [11],
which lack a principled Bayesian justification, outperform existing BNNs in terms of uncertainty
quantification and out-of-distribution robustness, cf. [12]. Deep ensembles independently initialise
and train individual NNs (referred to herein as baselearners) on the negative log-likelihood loss
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L(✓)=
PN

n=1 `(yn, f(xn,✓)) with `(y, f(x,✓))=� logp(y|x,✓), before aggregating predictions.
Understanding the success of deep ensembles, particularly in relation to Bayesian inference, is a key
question in the uncertainty quantification and Bayesian deep learning communities at present: Fort
et al. [13] suggested that the empirical performance of deep ensembles is explained by their ability to
explore different functional modes, while Wilson and Izmailov [14] argued that deep ensembles are
actually approximating the posterior predictive.

In this work, we will relate deep ensembles to Bayesian inference, using recent developments
connecting GPs and wide NNs, both before [15–21] and after [22, 23] training. Using these insights,
we devise a modification to standard NN training that yields an exact posterior sample for f(·,✓)
in the infinite width limit. As a result, when ensembled together our modified baselearners give a
posterior predictive approximation, and can thus be viewed as a Bayesian deep ensemble.

One concept that is related to our methods concerns ensembles trained with Randomised Priors
to give an approximate posterior interpretation, which we will use when modelling observation
noise in regression tasks. The idea behind randomised priors is that, under certain conditions,
regularising baselearner NNs towards independently drawn “priors” during training produces exact
posterior samples for f(·,✓). Randomised priors recently appeared in machine learning applied to
reinforcement learning [24] and uncertainty quantification [25, 26], like this work. To the best of our
knowledge, related ideas first appeared in astrophysics where they were applied to Gaussian random
fields [27]. However, one such condition for posterior exactness with randomised priors is that the
model f(x,✓) is linear in ✓. This is not true in general for NNs, but has been shown to hold for wide
NNs local to their parameter initialisation, in a recent line of work. In order to introduce our methods,
we will first review this line of work, known as the Neural Tangent Kernel (NTK) [22].

2 NTK Background

Wide NNs, and their relation to GPs, have been a fruitful area recently for the theoretical study of
NNs: we review only the most salient developments to this work, due to limited space.

First introduced by Jacot et al. [22], the empirical NTK of f(·,✓t) is, for inputs x,x0, the kernel:

⇥̂t(x,x
0) = hr✓f(x,✓t),r✓f(x

0,✓t)i (2)

and describes the functional gradient of a NN in terms of the current loss incurred on the training set.
Note that ✓t depends on a random initialisation ✓0, thus the empirical NTK is random for all t > 0.

Jacot et al. [22] showed that for an MLP under a so-called NTK parameterisation, detailed in
Appendix A, the empirical NTK converges in probability to a deterministic limit ⇥, that stays
constant during gradient training, as the hidden layer widths of the NN go to infinity sequentially.
Later, Yang [28, 29] extended the NTK convergence result to convergence almost surely, which is
proven rigorously for a variety of architectures and for widths (or channels in Convolutional NNs) of
hidden layers going to infinity in unison. This limiting positive-definite (p.d.) kernel ⇥, known as the
NTK, depends only on certain NN architecture choices, including: activation, depth and variances for
weight and bias parameters. Note that the NTK parameterisation can be thought of as akin to training
under standard parameterisation with a learning rate that is inversely proportional to the width of the
NN, which has been shown to be the largest scale for stable learning rates in wide NNs [30–32].

Lee et al. [23] built on the results of Jacot et al. [22], and studied the linearised regime of an NN.
Specifically, if we denote as ft(x) = f(x,✓t) the network function at time t, we can define the first
order Taylor expansion of the network function around randomly initialised parameters ✓0 to be:

f lin
t (x) = f0(x) +r✓f(x,✓0)�✓t (3)

where �✓t = ✓t � ✓0 and f0 = f(·,✓0) is the randomly initialised NN function.

For notational clarity, whenever we evaluate a function at an arbitrary input set X 0 instead of a
single point x0, we suppose the function is vectorised. For example, ft(X ) 2 RNC denotes the
concatenated NN outputs on training set X , whereas r✓ft(X ) = r✓f(X ,✓t) 2 RNC⇥p. In the
interest of space, we will also sometimes use subscripts to signify kernel inputs, so for instance
⇥x0X = ⇥(x0,X ) 2 RC⇥NC and ⇥XX = ⇥(X ,X ) 2 RNC⇥NC throughout this work.

The results of Lee et al. [23] showed that in the infinite width limit, with NTK parameterisation and
gradient flow under squared error loss, f lin

t (x) and ft(x) are equal for any t � 0, for a shared random
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initialisation ✓0. In particular, for the linearised network it can be shown, that as t!1:

f lin
1(x) = f0(x)� ⇥̂0(x,X )⇥̂0(X ,X )�1(f0(X )� Y) (4)

and thus as the hidden layer widths converge to infinity we have that:

f lin
1(x) = f1(x) = f0(x)�⇥(x,X )⇥(X ,X )�1(f0(X )� Y) (5)

We can replace ⇥(X ,X )�1 with the generalised inverse when invertibility is an issue. However, this
will not be a main concern of this work, as our methods will add regularisation that corresponds
to modelling observation/output noise, which both ensures invertibility and alleviates any potential
convergence issues due to fast decay of the NTK eigenspectrum [33].

From Eq. (5) we see that, conditional on the training data {X ,Y}, we can decompose f1 into
f1(x) = µ(x)+�(x) where µ(x) = ⇥(x,X )⇥(X ,X )�1Y is a deterministic mean and �(x) =
f0(x)�⇥(x,X )⇥(X ,X )�1f0(X ) captures predictive uncertainty, due to the randomness of f0.
Now, if we suppose that, at initialisation, f0

d⇠ GP(0, k) for an arbitrary kernel k : Rd⇥Rd ! RC⇥C ,
then we have f1(·) d⇠ GP(µ(x),⌃(x,x0)) for two inputs x,x0, where:1

⌃(x,x0) = kxx0 +⇥xX⇥�1
XXkXX⇥�1

XX⇥Xx �
�
⇥xX⇥�1

XXkXx0 + h.c.
�

(6)

For a generic kernel k, Lee et al. [23] observed that this limiting distribution for f1 does not have a
posterior GP interpretation unless k and ⇥ are multiples of each other.

As mentioned in Section 1, previous work [15–21] has shown that there is a distinct but closely related
kernel K, known as the Neural Network Gaussian Process (NNGP) kernel, such that f0

d! GP(0,K)
at initialisation in the infinite width limit and K 6= ⇥. Thus Eq. (6) with k=K tells us that, for wide
NNs under squared error loss, there is no Bayesian posterior interpretation to a trained NN, nor is
there an interpretation to a trained deep ensemble as a Bayesian posterior predictive approximation.

3 Proposed modification to obtain posterior samples in infinite width limit

Lee et al. [23] noted that one way to obtain a posterior interpretation to f1 is by randomly initialising
f0 but only training the parameters in the final linear readout layer, as the contribution to the NTK ⇥
from the parameters in final hidden layer is exactly the NNGP kernel K.2 f1 is then a sample from
the GP posterior with prior kernel NNGP, K, and noiseless observations in the infinite width limit i.e.
f1(X 0)

d⇠ N (KX 0XK�1
XXY, KX 0X 0�KX 0XK�1

XXKXX 0). This is an example of the “sample-then-
optimise” procedure of Matthews et al. [34], but, by only training the final layer this procedure limits
the earlier layers of an NN solely to be random feature extractors.

We now introduce our modification to standard training that trains all layers of a finite width NN
and obtains an exact posterior interpretation in the infinite width limit with NTK parameterisation
and squared error loss. For notational purposes, let us suppose ✓=concat({✓L,✓L+1}) with
✓L2Rp�pL+1 denoting L hidden layers, and ✓L+12RpL+1 denoting final readout layer L+1.
Moreover, define ⇥L=⇥�K to be the p.d. kernel corresponding to contributions to the NTK from
all parameters before the final layer, and ⇥̂L

t to be the empirical counterpart depending on ✓t. To
motivate our modification, we reinterpret f lin

t in Eq. (3) by splitting terms related to K and ⇥L:

f lin
t (x) = f0(x) +r✓L+1f(x,✓0)�✓L+1

t| {z }
K

+0C +r✓Lf(x,✓0)�✓L
t| {z }

⇥�K

(7)

where 0C2RC is the zero vector. As seen in Eq. (7), the distribution of f lin
0 (x)=f0(x) lacks extra

variance, ⇥L(x,x), that accounts for contributions to the NTK ⇥ from all parameters ✓L before
the final layer. This is precisely why no Bayesian intepretation exists for a standard trained wide NN,
as in Eq. (6) with k=K. The motivation behind our modification is now very simple: we propose to
manually add in this missing variance. Our modified NNs, f̃(·,✓), will then have trained distribution:

f̃1(X 0)
d⇠ N (⇥X 0X⇥�1

XXY, ⇥X 0X 0�⇥X 0X⇥�1
XX⇥XX 0) (8)

1Throughout this work, the notation “+h.c.” means “plus the Hermitian conjugate”, like Lee et al. [23].
For example: ⇥xX⇥�1

XXkXx0 + h.c. = ⇥xX⇥�1
XXkXx0 +⇥x0X⇥�1

XXkXx
2Up to a multiple of last layer width in standard parameterisation.
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on a test set X 0, in the infinite width limit. Note that Eq. (8) is the GP posterior using prior kernel ⇥
and noiseless observations f̃1(X )=Y , which we will refer to as the NTKGP posterior predictive. We
construct f̃ by sampling a random and untrainable function �(·) that is added to the standard forward
pass f(·,✓t), defining an augmented forward pass:

f̃(·,✓t) = f(·,✓t) + �(·) (9)

Given a parameter initialisation scheme init(·) and initial parameters ✓0
d⇠init(·), our cho-

sen formulation for �(·) is as follows: 1) sample ✓̃
d⇠init(·) independently of ✓0; 2) denote

✓̃=concat({✓̃L, ✓̃L+1}); and 3) define ✓⇤=concat({✓̃L,0pL+1}). In words, we set the pa-
rameters in the final layer of an independently sampled ✓̃ to zero to obtain ✓⇤. Now, we define:

�(x) = r✓f(x,✓0)✓
⇤ (10)

There are a few important details to note about �(·) as defined in Eq. (10). First, �(·) has the same
distribution in both NTK and standard parameterisations,3 and also �(·) | ✓0

d⇠ GP
�
0, ⇥̂L

0

�
in the

NTK parameterisation.4 Moreover, Eq. (10) can be viewed as a single Jacobian-vector product (JVP),
which packages that offer forward-mode autodifferentiation (AD), such as JAX [35], are efficient at
computing for finite NNs. It is worth noting that our modification adds only negligible computational
and memory requirements on top of standard deep ensembles [11]: a more nuanced comparison can
be found in Appendix G. Alternative constructions of f̃ are presented in Appendix C.

To ascertain whether a trained f̃1 constructed via Eqs. (9, 10) returns a sample from the GP posterior
Eq. (8) for wide NNs, the following proposition, which we prove in Appendix B.1, will be useful:

Proposition 1. �(·) d! GP(0,⇥L) and is independent of f0(·) in the infinite width limit. Thus,
f̃0(·) = f0(·) + �(·) d! GP(0,⇥).

Using Proposition 1, we now consider the linearisation of f̃t(·), noting that r✓ f̃0(·) = r✓f0(·):

f̃ lin
t (x) = f0(x) +r✓L+1f(x,✓0)�✓L+1

t| {z }
K

+ �(x) +r✓Lf(x,✓0)�✓L
t| {z }

⇥�K

(11)

The fact that r✓ f̃ lin
t (·)=r✓f0(·) is crucial in Eq. (11), as this initial Jacobian is the feature map of

the linearised NN regime from Lee et al. [23]. As per Proposition 1 and Eq. (11), we see that �(x)
adds the extra randomness missing from f lin

0 (x) in Eq. (7), and reinitialises f̃0 as a sample from
GP(0,K) to GP(0,⇥) for wide NNs. This means we can set k=⇥ in Eq. (6) and deduce:

Corollary 1. f̃1(X 0)
d⇠ N (⇥X 0X⇥�1

XXY, ⇥X 0X 0�⇥X 0X⇥�1
XX⇥XX 0), and hence a trained f̃1

returns a sample from the posterior NTKGP in the infinite width limit.

To summarise: we define our new NN forward pass to give f̃t(x) = ft(x)+�(x) for standard forward
pass ft(x), and an untrainable �(x) defined as in Eq. (10). As given by Corollary 1, independently
trained baselearners f̃1 can then be ensembled to approximate the NTKGP posterior predictive.
We will call f̃1 trained in this section an NTKGP baselearner, regardless of parameterisation or
width. We are aware that the name NTK-GP has been used previously to refer to Eq. (6) with NNGP
kernel K, which is what standard training under squared error with a wide NN yields. However, we
believe GPs in machine learning are synonymous with probabilistic inference [36], which Eq. (6) has
no connection to in general, so we feel the name NTKGP is more appropriate for our methods.

3In this work ⇥ always denotes the NTK under NTK parameterisation. It is also possible to model ⇥ to be the
scaled NTK under standard parameterisation (which depends on layer widths) as in Sohl-Dickstein et al. [32]
with minor reweightings to both �(·) and, when modelling observation noise, the L2-regularisation described in
Appendix D.

4With NTK parameterisation, it is easy to see that �(·) | ✓0
d⇠ GP

�
0, ⇥̂L

0

�
, because ✓̃L d⇠N (0, Ip�pL+1).

To extend this to standard parameterisation, note that Eq. (10) is just the first order term in the Taylor expansion
of f(x,✓0 + ✓⇤), which has a parameterisation agnostic distribution, about ✓0.
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3.1 Modelling observation noise

So far, we have used squared loss `(y, f̃(x,✓)) = 1
2�2 (y � f̃(x,✓))2 for �2=1, and seen how

our NTKGP training scheme for f̃ gives a Bayesian interpretation to trained networks when we
assume noiseless observations. Lemma 3 of Osband et al. [24] shows us how to draw a posterior
sample for linear f̃ if we wish to model Gaussian observation noise y

d⇠ N (f̃(x,✓),�2) for �2>0:
by adding i.i.d. noise to targets y0n

d⇠ N (yn,�2) and regularising L(✓) with a weighted L2 term,
either k✓k2⇤ or k✓�✓0k2⇤, depending on if you regularise in function space or parameter space. The
weighting ⇤ is detailed in Appendix D. These methods were introduced by Osband et al. [24] for
the application of Q-learning in deep reinforcement learning, and are known as Randomised Prior
parameter (RP-param) and Randomised Prior function (RP-fn) respectively. The randomised prior
(RP) methods were motivated by a Bayesian linear regression approximation of the NN, but they do
not take into account the difference between the NNGP and the NTK. Our NTKGP methods can
be viewed as a way to fix this for both the parameter space or function space methods, which we
will name NTKGP-param and NTKGP-fn respectively. Similar regularisation ideas were explored in
connection to the NTK by Hu et al. [37], when the NN function is initialised from the origin, akin to
kernel ridge regression.

3.2 Comparison of predictive distributions in infinite width

Having introduced the different ensemble training methods considered in this paper: NNGP; deep
ensembles; randomised prior; and NTKGP, we will now compare their predictive distributions
in the infinite width limit with squared error loss. Table 1 displays these limiting distributions,
f1(·) d⇠ GP(µ,⌃), and should be viewed as an extension to Equation (16) of Lee et al. [23]. In

Table 1: Predictive distributions of wide ensembles for various training methods. std denotes standard
training with f(x,✓), and ours denotes training using our additive �(x) to make f̃(x,✓).

Method Layers
trained

Output
Noise µ(x) ⌃(x,x0)

NNGP Final �2 � 0 KxX (KXX +�2I)�1Y Kxx0 �KxX (KXX +�2I)�1KXx0

Deep
Ensembles All (std) �2 = 0 ⇥xX⇥�1

XXY Kxx0 �
�
⇥xX⇥�1

XXKXx0+h.c.
�

⇥xX⇥�1
XXKXX⇥�1

XX⇥Xx0

Randomised
Prior All (std) �2 > 0 ⇥xX (⇥XX +�2I)�1Y Kxx0 �

�
⇥xX (⇥XX +�2I)�1KXx0+h.c.

�

+⇥xX (⇥XX +�2I)�1(KXX +�2I)(⇥XX +�2I)�1⇥Xx0

NTKGP All (ours) �2 � 0 ⇥xX (⇥XX +�2I)�1Y ⇥xx0 �⇥xX (⇥XX +�2I)�1⇥Xx0

order to parse Table 1, let us denote µNNGP, µDE, µRP, µNTKGP and ⌃NNGP,⌃DE,⌃RP, ⌃NTKGP to be
the entries in the µ(x) and ⌃(x,x0) columns of Table 1 respectively, read from top to bottom. We
see that µDE(x) = µNTKGP(x) if �2=0, and µRP(x) = µNTKGP(x) if �2>0. In words: the predictive
mean of a trained ensemble is the same when training all layers, both with standard training and our
NTKGP training. This holds because both f0 and f̃0 are zero mean. It is also possible to compare the
predictive covariances as the following proposition, proven in Appendix B.2, shows:

Proposition 2. For �2=0, ⌃NTKGP ⌫ ⌃DE ⌫ ⌃NNGP. Similarly, for �2>0, ⌃NTKGP ⌫ ⌃RP ⌫ ⌃NNGP.

Here, when we write k1 ⌫ k2 for p.d. kernels k1, k2, we mean that k1�k2 is also a p.d. kernel.
One consequence of Proposition 2 is that the predictive distribution of an ensemble of NNs trained
via our NTKGP methods is always more conservative than a standard deep ensemble, in the linearised
NN regime, when the ensemble size K!1. It is not possible to say in general when this will
be beneficial, because in practice our models will always be misspecified. However, Proposition
2 suggests that in situations where we suspect standard deep ensembles might be overconfident,
such as in situations where we expect some dataset shift at test time, our methods should hold an
advantage. Note, wide randomised prior ensembles (� > 0) were also theoretically shown to make
more conservative predictions than corresponding NNGP posteriors in Ciosek et al. [26], albeit
without the connection to the NTK.

5



3.3 Modelling heteroscedasticity

Following Lakshminarayanan et al. [11], if we wish to model heteroscedasticity in a univariate
regression setting such that each training point, (xn, yn), has an individual observation noise �2(xn)
then we use the heteroscedastic Gaussian NLL loss (up to additive constant):

`(y0n, f̃(xn,✓)) =
(y0n � f̃(xn,✓))2

2�2(xn)
+

log �2(xn)

2
(12)

where y0n=yn+�(xn)✏n and ✏n
i.i.d.⇠ N (0, 1). It is easy to see that for fixed �2(xn), our

NTKGP trained baselearners will still have a Bayesian interpretation: Y 0  ⌃� 1
2Y 0 and f̃(X ,✓) 

⌃� 1
2 f̃(X ,✓) returns us to the homoscedastic case, where ⌃=diag(�2(X ))2RN⇥N . We will follow

Lakshminarayanan et al. [11] and parameterise �2(x)=�2
✓(x) by an extra output head of the NN,

that is trainable alongside the mean function µ✓(x) when modelling heteroscedasticity.5

3.4 NTKGP Ensemble Algorithms

We now proceed to train an ensemble of K NTKGP baselearners. Like previous work [11, 24], we
independently initialise baselearners, and also use a fixed, independently sampled training set noise
✏k2RNC if modelling output noise. These implementation details are all designed to encourage
diversity among baselearners, with the goal of approximating the NTKGP posterior predictive for our
Bayesian deep ensembles. Appendix F details how to aggregate predictions from trained baselearners.
In Algorithm 1, we outline our NTKGP-param method: data_noise adds observation noise to
targets; concat denotes a concatenation operation; and init(·) will be standard parameterisation
initialisation in the JAX library Neural Tangents [38] unless stated otherwise. As discussed by Pearce
et al. [25], there is a choice between “anchoring”/regularising parameters towards their initialisation or
an independently sampled parameter set when modelling observation noise. We anchor at initialisation
as the linearised NN regime only holds local to parameter initialisation [23], and also this reduces the
memory cost of sampling parameters sets. Appendix E details our NTKGP-fn method.

Algorithm 1 NTKGP-param ensemble

Require: Data D = {X ,Y}, loss function L, NN model f✓ : X ! Y , Ensemble size K 2 N, noise
procedure: data_noise, NN parameter initialisation scheme: init(·)
for k = 1, . . . ,K do

Form {Xk,Yk} = data_noise(D)

Initialise ✓k
d⇠ init(·)

Initialise ✓̃k
d⇠ init(·) and denote ✓̃k = concat({✓̃L

k , ✓̃L+1
k })

Set ✓⇤
k = concat({✓̃L

k ,0pL+1})
Define �(x) = r✓f(x,✓k)✓⇤

k

Define f̃k(x,✓t) = f(x,✓t) + �(x) and set ✓0 = ✓k
Optimise L(f̃k(Xk,✓t),Yk) +

1
2 k✓t � ✓kk2⇤ for ✓t to obtain ✓̂k

end for

return ensemble {f̃k(·, ✓̂k)}Kk=1

3.5 Classification methodology

For classification, we follow recent works [23, 39, 40] which treat classification as a regression
task with one-hot regression targets. In order to obtain probabilistic predictions, we temperature
scale our trained ensemble predictions with cross-entropy loss on a held-out validation set, noting
that Fong and Holmes [41] established a connection between marginal likelihood maximisation and
cross-validation.

Because �(·) is untrainable in our NTKGP methods, it is important to match the scale of the NTK
⇥ to the scale of the one-hot targets in multi-class classification settings. One can do this either
by introducing a scaling factor  > 0 such that we scale either: 1) f̃  1

 f̃ so that ⇥  1
2⇥, or

2) ec  ec where ec 2 RC is the one-hot vector denoting class c  C. We choose option 2) for
5We use the sigmoid function, instead of softplus [11], to enforce positivity on �2

✓(·), because our data will be
standardised.
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our implementation, tuning  on a small set of values chosen to match the second moments of the
randomly initialised baselearners, in logit space, of each ensemble method on the training set. We
found  to be an important hyperparameter that can determine a trade-off between in-distribution and
out-of-distribution performance: see Appendix H for further details.

4 Experiments

Due to limited space, Appendix I will contain all experimental details not discussed in this section.

Toy 1D regression task We begin with a toy 1D example y = xsin(x) + ✏, using homoscedastic
✏

d⇠ N (0, 0.12). We use a training set of 20 points partitioned into two clusters, in order to detail
uncertainty on out-of-distribution test data. For each ensemble method, we use MLP baselearners
with two hidden layers of width 512, and erf activation. The choice of erf activation means that both
the NTK ⇥ and NNGP kernel K are analytically available [23, 42]. We compare ensemble methods to
the analytic GP posterior using either ⇥ or K as prior covariance function using the Neural Tangents
library [38].

Figure 1 compares the analytic NTKGP posterior predictive with the analytic NNGP posterior
predictive, as well as three different ensemble methods: deep ensembles, RP-param and NTKGP-
param. We plot 95% predictive confidence intervals, treating ensembles as one Gaussian predictive
distribution with matched moments like Lakshminarayanan et al. [11]. As expected, both NTKGP-
param and RP-param ensembles have similar predictive means to the analytic NTKGP posterior.
Likewise, we see that only our NTKGP-param ensemble predictive variances match the analytic
NTKGP posterior. As foreseen in Proposition 2, the analytic NNGP posterior and other ensemble
methods make more confident predictions than the NTKGP posterior, which in this example results
in overconfidence on out-of-distribution data.6

Figure 1: All subplots plot the analytic NTKGP posterior (in red). From left to right, (in blue):
analytic NNGP posterior; deep ensembles; RP-param; and NTKGP-param (ours). For each method
we plot the mean prediction and 95% predictive confidence interval. Green points denote the training
data, and the black dotted line is the true test function y = xsin(x).
Flight Delays We now compare different ensemble methods on a large scale regression problem
using the Flight Delays dataset [43], which is known to contain dataset shift. We train heteroscedastic
baselearners on the first 700k data points and test on the next 100k test points at 5 different starting
points: 700k, 2m (million), 3m, 4m and 5m. The dataset is ordered chronologically in date through
the year 2008, so we expect the NTKGP methods to outperform standard deep ensembles for the later
starting points. Figure 2 (Left) confirms our hypothesis. Interestingly, there seems to be a seasonal
effect between the 3m and 4m test set that results in stronger performance in the 4m test set than
the 3m test set, for ensembles trained on the first 700k data points. We see that our Bayesian deep
ensembles perform slightly worse than standard deep ensembles when there is little or no test data
shift, but fail more gracefully as the level of dataset shift increases.

Figure 2 (Right) plots confidence versus error for different ensemble methods on the combined test
set of 5⇥100k points. For each precision threshold ⌧ , we plot root-mean-squared error (RMSE)
on examples where predictive precision is larger than ⌧ , indicating confidence. As we can see, our
NTKGP methods incur lower error over all precision thresholds, and this contrast in performance is
magnified for more confident predictions.

MNIST vs NotMNIST We next move onto classification experiments, comparing ensembles
trained on MNIST and tested on both MNIST and NotMNIST.7 Our baselearners are MLPs with
6Code for this experiment is available at: https://github.com/bobby-he/bayesian-ntk.
7Available at http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
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Figure 2: (Left) Flight Delays NLLs for ensemble methods trained on first 700k points of the dataset
and tested on various out-of-distribution test sets, with time shift between training set and test set
increasing along the x-axis. (Right) Error vs Confidence curves for ensembles tested on all 5⇥100k
test points combined. Both plots include 95% CIs corresponding to 10 independent ensembles.

2-hidden layers, 200 hidden units per layer and ReLU activation. The weight parameter initialisation
variance �2

W is tuned using the validation accuracy on a small set of values around the He initialisation,
�2
W=2, [44] for all classification experiments. Figure 3 shows both in-distribution and out-of-

distribution performance across different ensemble methods. In Figure 3 (left), we see that our
NTKGP methods suffer from slightly worse in-distribution test performance, with around 0.2%
increased error for ensemble size 10. However, in Figure 3 (right), we plot error versus confidence on
the combined MNIST and NotMNIST test sets: for each test point (x, y), we calculate the ensemble
prediction p(y = k|x) and define the predicted label as ŷ = argmaxkp(y = k|x), with confidence
p(y = ŷ|x). Like Lakshminarayanan et al. [11], for each confidence threshold 0  ⌧  1, we
plot the average error for all test points that are more confident than ⌧ . We count all predictions on
the NotMNIST test set to be incorrect. We see in Figure 3 (right) that the NTKGP methods vastly
outperform both deep ensembles and RP methods, obtaining over 15% lower error on test points
that have confidence ⌧=0.6, compared to all baselines. This is because our methods correctly make
much more conservative predictions on the out-of-distribution NotMNIST test set, as can be seen by
Figure 4, which plots histograms of predictive entropies. Due to the simple MLP architecture and
ReLU activation, we can compare ensemble methods to analytic NTKGP results in Figures 3 & 4,
where we see a close match between the NTKGP ensemble methods (at larger ensemble sizes) and
the analytic predictions, both on in-distribution and out-of-distribution performance.

Figure 3: (Left) Classification error on MNIST test set for different ensemble sizes. (Right) Error
versus Confidence plots for ensembles, of size 10, trained on MNIST and tested on both MNIST and
NotMNIST. CIs correspond to 5 independent runs.

CIFAR-10 vs SVHN Finally, we present results on a larger-scale image classification task: en-
sembles are trained on CIFAR-10 and tested on both CIFAR-10 and SVHN. We conduct the same
setup as for the MNIST vs NotMNIST experiment, with baselearners taking the Myrtle-10 CNN
architecture [40] of channel-width 100. Figure 5 compares in distribution and out-of-distribution
performance: we see that our NTKGP methods and RP-fn perform best on in-distribution test error.
Unlike on the simpler MNIST task, there is no clear difference on the corresponding error versus
confidence plot, and this is also reflected in the entropy histograms, which can be found in Figure 8
of Appendix I.
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Figure 4: Histograms of predictive entropy on MNIST (top) and NotMNIST (bottom) test sets for
different ensemble methods of different ensemble sizes, and also for Analytic NTKGP.

Figure 5: (Left) Classification error on CIFAR-10 test set for different ensemble sizes. (Right) Error
versus Confidence plots of ensembles trained on CIFAR-10 and tested on both CIFAR-10 and SVHN.
CIs correspond to 5 independent runs.

5 Discussion

We built on existing work regarding the Neural Tangent Kernel (NTK), which showed that there is
no posterior predictive interpretation to a standard deep ensemble in the infinite width limit. We
introduced a simple modification to training that enables a GP posterior predictive interpretation for
a wide ensemble, and showed empirically that our Bayesian deep ensembles emulate the analytic
posterior predictive when it is available. In addition, we demonstrated that our Bayesian deep
ensembles often outperform standard deep ensembles in out-of-distribution settings for both regression
and classification tasks.

In terms of limitations, our methods may perform worse than standard deep ensembles [11] when
confident predictions are not detrimental, though this can be alleviated via NTK hyperparameter
tuning. Moreover, our analyses are planted in the “lazy learning” regime [45, 46], and we have not
considered finite-width corrections to the NTK during training [47–49]. In spite of these limitations,
the search for a Bayesian interpretation to deep ensembles [11] is of particular relevance to the
Bayesian deep learning community, and we believe our contributions provide useful new insights to
resolving this problem by examining the limit of infinite-width.

A natural question that emerges from our work is how to tune hyperparameters of the NTK to
best capture inductive biases or prior beliefs about the data. Possible lines of enquiry include: the
large-depth limit [50], the choice of architecture [51], and the choice of activation [52]. Finally, we
would like to assess our Bayesian deep ensembles in non-supervised learning settings, such as active
learning or reinforcement learning.
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Broader Impact

We believe that our Bayesian deep ensembles may be useful in situations where predictions that are
robust to model misspecification and dataset shift are crucial, such as weather forecasting or medical
diagnosis.
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