A Table of Notations

Table 3: Table of Notations.

Notation	Description
X	A batch of inputs (each row is a sample)
Y	A batch of labels (each row is a sample)
\mathcal{B}	A batch $\mathcal{B}=(\mathbf{X}, \mathbf{Y})$
N, C, L	Batch size, number of classes, and number of layers
$Q_{f}(\cdot), Q_{\theta}(\cdot), Q_{b}(\cdot)$	activation / parameter / gradient quantizer
$\mathbf{F}(\cdot ; \boldsymbol{\Theta})$	DNN with parameter Θ
$\mathbf{F}^{(l)}\left(\cdot ; \boldsymbol{\Theta}^{(l)}\right)$	l-th layer with parameter $\Theta^{(l)}$
$\mathbf{H}^{(l)}$	Activation matrix at layer l, whose size is $N \times D^{(l)}$
$\tilde{\mathbf{H}}^{(l)}, \tilde{\boldsymbol{\Theta}}^{(l)}$	Quantized activation / parameter
$\ell\left(\mathbf{H}^{(L)}, \mathcal{Y}\right)$	loss function of prediction $\mathbf{H}^{(L)}$ and label \mathcal{Y}.
$\nabla_{\boldsymbol{\Theta}} \ell$	Gradient of ℓ w.r.t. Θ
$\mathbf{J}^{(l)}$	Jacobian matrix $\frac{\partial \operatorname{vec}\left(\mathbf{H}^{(l)}\right)}{\partial \operatorname{vec}\left(\tilde{\mathbf{H}}^{(l-1)}\right)}$
$\mathbf{K}^{(l)}$	Jacobian matrix $\frac{\partial \operatorname{vec}\left(\mathbf{H}^{(l)}\right)}{\partial v\left(\tilde{\Theta}^{(l)}\right)}$
$\nabla_{\mathbf{H}^{(l)}}, \nabla_{\boldsymbol{\Theta}^{(l)}}, \nabla_{\boldsymbol{\Theta}}$	QAT gradient for activation / parameter
$\hat{\nabla}_{\mathbf{H}^{(l)}}, \hat{\nabla}_{\boldsymbol{\Theta}^{(l)}}, \hat{\nabla}_{\boldsymbol{\Theta}}$	FQT gradient for activation / parameter
$\nabla_{\mathbf{h}_{i}^{(l)}}, \hat{\nabla}_{\mathbf{h}_{i}^{(l)}}$	i-th row of QAT / FQT activation gradient at l-th layer
$\mathbb{E}[X \mid Y]$	Conditional expectation of X given Y
$\operatorname{Var}[X \mid Y]$	Conditional variance of X given Y
$R(\mathbf{X})$	Dynamic range of \mathbf{X}, i.e., $\max \mathbf{X}-\min \mathbf{X}$
b, B	Number of quantization bits / bins

B Preliminary Knowledge

Proposition 1. (Law of total variance) If \mathbf{X} and \mathbf{Y} are random matrices on the same probability space, and all elements of $\operatorname{Var}[\mathbf{Y}]$ is finite, then

$$
\operatorname{Var}[\mathbf{Y}]=\mathbb{E}[\operatorname{Var}[\mathbf{Y} \mid \mathbf{X}]]+\operatorname{Var}[\mathbb{E}[\mathbf{Y} \mid \mathbf{X}]]
$$

Proof. By the definition of variance,

$$
\operatorname{Var}[\mathbf{Y}]=\sum_{i j} \mathbb{E}\left[Y_{i j}^{2}\right]-\mathbb{E}\left[Y_{i j}\right]^{2}
$$

By law of total expectation,

$$
\begin{aligned}
\mathbb{E}\left[Y_{i j}^{2}\right]-\mathbb{E}\left[Y_{i j}\right]^{2} & =\mathbb{E}\left[\mathbb{E}\left[Y_{i j}^{2} \mid \mathbf{X}\right]\right]-\mathbb{E}\left[\mathbb{E}\left[Y_{i j} \mid \mathbf{X}\right]\right]^{2} \\
& =\mathbb{E}\left[\operatorname{Var}\left[Y_{i j} \mid \mathbf{X}\right]+\mathbb{E}\left[Y_{i j} \mid \mathbf{X}\right]^{2}\right]-\mathbb{E}\left[\mathbb{E}\left[Y_{i j} \mid \mathbf{X}\right]\right]^{2} \\
& =\mathbb{E}\left[\operatorname{Var}\left[Y_{i j} \mid \mathbf{X}\right]\right]+\mathbb{E}\left[\mathbb{E}\left[Y_{i j} \mid \mathbf{X}\right]^{2}\right]-\mathbb{E}\left[\mathbb{E}\left[Y_{i j} \mid \mathbf{X}\right]\right]^{2} \\
& =\mathbb{E}\left[\operatorname{Var}\left[Y_{i j} \mid \mathbf{X}\right]\right]+\operatorname{Var}\left[\mathbb{E}\left[Y_{i j} \mid \mathbf{X}\right]\right]
\end{aligned}
$$

Putting it together, we have

$$
\operatorname{Var}[\mathbf{Y}]=\sum_{i j} \mathbb{E}\left[\operatorname{Var}\left[Y_{i j} \mid \mathbf{X}\right]\right]+\operatorname{Var}\left[\mathbb{E}\left[Y_{i j} \mid \mathbf{X}\right]\right]=\mathbb{E}[\operatorname{Var}[\mathbf{Y} \mid \mathbf{X}]]+\operatorname{Var}[\mathbb{E}[\mathbf{Y} \mid \mathbf{X}]]
$$

Proposition 2. For a random matrix \mathbf{X} and a constant matrix \mathbf{W},

$$
\operatorname{Var}[\mathbf{X W}] \leq \operatorname{Var}[\mathbf{X}]\|\mathbf{W}\|_{2}^{2}
$$

Proof. Firstly, for any matrices \mathbf{A} and \mathbf{B}, by the definition of Frobenius and operator norm, we have

$$
\|\mathbf{A B}\|_{F}^{2}=\sum_{i}\left\|\mathbf{a}_{i} \mathbf{B}\right\|_{2}^{2} \leq \sum_{i}\left\|\mathbf{a}_{i}\right\|_{2}^{2}\|\mathbf{B}\|_{2}^{2}=\|\mathbf{A}\|_{F}^{2}\|\mathbf{B}\|_{2}^{2}
$$

Let $\boldsymbol{\mu}=\mathbb{E}[\mathbf{X}]$, and utilize this inequality, we have

$$
\begin{aligned}
\operatorname{Var}[\mathbf{X W}] & =\mathbb{E}\|\operatorname{vec}(\mathbf{X W})-\mathbb{E}[\operatorname{vec}(\mathbf{X W})]\|_{2}^{2}=\mathbb{E}\|\mathbf{X W}-\mathbb{E}[\mathbf{X} \mathbf{W}]\|_{F}^{2} \\
& =\mathbb{E}\|(\mathbf{X}-\boldsymbol{\mu}) \mathbf{W}\|_{F}^{2} \leq \mathbb{E}\left[\|(\mathbf{X}-\boldsymbol{\mu})\|_{F}^{2}\|\mathbf{W}\|_{2}^{2}\right]=\operatorname{Var}[\mathbf{X}]\|\mathbf{W}\|_{2}^{2}
\end{aligned}
$$

Proposition 3. For constant matrices \mathbf{A}, \mathbf{B} and a random matrix $\boldsymbol{\epsilon}$, if for all entries $i, j, \operatorname{Var}\left[\epsilon_{i j}\right] \leq$ σ^{2}, then

$$
\operatorname{Var}[\mathbf{A} \boldsymbol{\epsilon} \mathbf{B}] \leq \sigma^{2}\|\mathbf{A}\|_{F}^{2}\|\mathbf{B}\|_{F}^{2}
$$

Proof.

$$
\begin{aligned}
\operatorname{Var}[\mathbf{A} \boldsymbol{\epsilon} \mathbf{B}] & =\sum_{i j} \operatorname{Var}\left[\mathbf{a}_{i} \boldsymbol{\epsilon} \mathbf{B}_{:, j}\right]=\sum_{i j} \operatorname{Var}\left[\sum_{k l} A_{i k} \epsilon_{k l} B_{l j}\right]=\sum_{i j k l} A_{i k}^{2} \operatorname{Var}\left[\epsilon_{k l}\right] B_{l j}^{2} \\
& \leq \sigma^{2} \sum_{i j k l} A_{i k}^{2} B_{l j}^{2}=\sigma^{2}\|\mathbf{A}\|_{F}^{2}\|\mathbf{B}\|_{F}^{2}
\end{aligned}
$$

C Proofs

In this section, we give the proofs on the gradient bias and variance used in the main text.

C. 1 Proof of Theorem 1

Proof. We prove by induction. Firstly,

$$
\hat{\nabla}_{\mathbf{H}^{(L)}}=\nabla_{\mathbf{H}^{(L)}}=\partial \ell / \partial \mathbf{H}^{(L)}
$$

so $\mathbb{E}\left[\hat{\nabla}_{\mathbf{H}^{(l)}} \mid \mathcal{B}\right]=\nabla_{\mathbf{H}^{(l)}}$ holds for $l=L$. Assume that $\mathbb{E}\left[\hat{\nabla}_{\mathbf{H}^{(l)}} \mid \mathcal{B}\right]=\nabla_{\mathbf{H}^{(l)}}$ holds for l, then we have

$$
\operatorname{vec}\left(\mathbb{E}\left[\hat{\nabla}_{\mathbf{H}^{(l-1)}} \mid \mathcal{B}\right]\right)=\mathbb{E}\left[\operatorname{vec}\left(\hat{\nabla}_{\mathbf{H}^{(l-1)}}\right) \mid \mathcal{B}\right]
$$

because $\operatorname{vec}(\cdot)$ does not affect the expectation. According to the definition Eq. [5], we have

$$
\mathbb{E}\left[\operatorname{vec}\left(\hat{\nabla}_{\mathbf{H}^{(l-1)}}\right) \mid \mathcal{B}\right]=\mathbb{E}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \mathbf{J}^{(l)} \mid \mathcal{B}\right]
$$

Since $\mathbf{J}^{(l)}$ is deterministic given \mathcal{B}, we have

$$
\mathbb{E}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \mathbf{J}^{(l)} \mid \mathcal{B}\right]=\operatorname{vec}\left(\mathbb{E}\left[Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right) \mid \mathcal{B}\right]\right) \mathbf{J}^{(l)}=\operatorname{vec}\left(\mathbb{E}\left[\hat{\nabla}_{\mathbf{H}^{(l)}} \mid \mathcal{B}\right]\right) \mathbf{J}^{(l)}
$$

By induction assumption and Eq. (4),

$$
\operatorname{vec}\left(\mathbb{E}\left[\hat{\nabla}_{\mathbf{H}^{(l)}} \mid \mathcal{B}\right]\right) \mathbf{J}^{(l)}=\operatorname{vec}\left(\nabla_{\mathbf{H}^{(l)}}\right) \mathbf{J}^{(l)}=\operatorname{vec}\left(\nabla_{\mathbf{H}^{(l-1)}}\right)
$$

So $\mathbb{E}\left[\hat{\nabla}_{\mathbf{H}^{(l-1)}} \mid \mathcal{B}\right]=\nabla_{\mathbf{H}^{(l-1)}}$. Similarly,

$$
\operatorname{vec}\left(\mathbb{E}\left[\hat{\nabla}_{\boldsymbol{\Theta}^{(l)}} \mid \mathcal{B}\right]\right)=\mathbb{E}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \mathbf{K}^{(l)} \mid \mathcal{B}\right]=\operatorname{vec}\left(\nabla_{\mathbf{H}^{(l)}}\right) \mathbf{K}^{(l)}=\operatorname{vec}\left(\nabla_{\boldsymbol{\Theta}^{(l)}}\right)
$$

Therefore, $\mathbb{E}\left[\hat{\nabla}_{\boldsymbol{\Theta}^{(l)}} \mid \mathcal{B}\right]=\nabla_{\boldsymbol{\Theta}^{(l)}}$. Taking l from L to 1 , we prove

$$
\forall l \in[L], \mathbb{E}\left[\hat{\nabla}_{\mathbf{H}^{(l)}} \mid \mathcal{B}\right]=\nabla_{\mathbf{H}^{(l)}} ; \quad \forall l \in[L]_{+}, \mathbb{E}\left[\hat{\nabla}_{\boldsymbol{\Theta}^{(l)}} \mid \mathcal{B}\right]=\nabla_{\boldsymbol{\Theta}^{(l)}}
$$

so $\mathbb{E}\left[\hat{\nabla}_{\boldsymbol{\Theta}} \mid \mathcal{B}\right]=\nabla_{\Theta}$.

C. 2 Proof of Theorem 2

Proof. By Proposition 1 and Theorem 1, we have

$$
\operatorname{Var}\left[\hat{\nabla}_{\Theta}\right]=\mathbb{E}\left[\operatorname{Var}\left[\hat{\nabla}_{\boldsymbol{\Theta}} \mid \mathcal{B}\right]\right]+\operatorname{Var}\left[\mathbb{E}\left[\hat{\nabla}_{\boldsymbol{\Theta}} \mid \mathcal{B}\right]\right]=\mathbb{E}\left[\operatorname{Var}\left[\hat{\nabla}_{\boldsymbol{\Theta}} \mid \mathcal{B}\right]\right]+\operatorname{Var}\left[\nabla_{\boldsymbol{\Theta}}\right]
$$

By definition of $\operatorname{Var}[\cdot]$, we have $\operatorname{Var}\left[\hat{\nabla}_{\boldsymbol{\Theta}} \mid \mathcal{B}\right]=\sum_{l=1}^{L} \operatorname{Var}\left[\operatorname{vec}\left(\hat{\nabla}_{\boldsymbol{\Theta}^{(l)}}\right) \mid \mathcal{B}\right]$. Apply Proposition 1 and Eq. (5), we have

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(\hat{\nabla}_{\mathbf{\Theta}^{(l)}}\right) \mid \mathcal{B}\right]\right] \\
= & \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \mathbf{K}^{(l)} \mid \mathcal{B}\right]\right] \\
= & \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \mathbf{K}^{(l)} \mid \hat{\nabla}_{\mathbf{H}^{(l)}}\right]\right]+\mathbb{E}\left[\operatorname{Var}\left[\mathbb{E}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \mathbf{K}^{(l)} \mid \hat{\nabla}_{\mathbf{H}^{(l)}}\right] \mid \mathcal{B}\right]\right] \\
= & \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \mathbf{K}^{(l)} \mid \hat{\nabla}_{\mathbf{H}^{(l)}}\right]\right]+\mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right) \mathbf{K}^{(l)} \mid \mathcal{B}\right]\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right) \mathbf{K}^{(l)} \mid \mathcal{B}\right]\right] \\
= & \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l+1)}}\right)\right) \mathbf{J}^{(l+1)} \mathbf{K}^{(l)} \mid \hat{\nabla}_{\mathbf{H}^{(l+1)}}\right]\right]+\mathbb{E}\left[\operatorname{Var}\left[\mathbb{E}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l+1)}}\right)\right) \mathbf{J}^{(l+1)} \mathbf{K}^{(l)} \mid \hat{\nabla}_{\mathbf{H}^{(l+1)}}\right] \mid \mathcal{B}\right]\right] \\
= & \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l+1)}}\right)\right) \mathbf{J}^{(l+1)} \mathbf{K}^{(l)} \mid \hat{\nabla}_{\mathbf{H}^{(l+1)}}\right]\right]+\mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(\hat{\nabla}_{\mathbf{H}^{(l+1)}}\right) \mathbf{J}^{(l+1)} \mathbf{K}^{(l)} \mid \mathcal{B}\right]\right] .
\end{aligned}
$$

Repeat this procedure, we can finally get

$$
\mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(\hat{\nabla}_{\boldsymbol{\Theta}^{(l)}}\right) \mid \mathcal{B}\right]\right]=\sum_{k=l}^{L} \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(k)}}\right)\right) \gamma^{(l, k)} \mid \hat{\nabla}_{\mathbf{H}^{(k)}}\right]\right]
$$

Putting it together, we have

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\nabla}_{\boldsymbol{\Theta}}\right] & =\mathbb{E}\left[\operatorname{Var}\left[\hat{\nabla}_{\boldsymbol{\Theta}} \mid \mathcal{B}\right]\right]+\operatorname{Var}\left[\nabla_{\boldsymbol{\Theta}}\right]=\operatorname{Var}\left[\nabla_{\boldsymbol{\Theta}}\right]+\sum_{l=1}^{L} \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(\hat{\nabla}_{\boldsymbol{\Theta}^{(l)}}\right) \mid \mathcal{B}\right]\right] \\
& =\operatorname{Var}\left[\nabla_{\boldsymbol{\Theta}}\right]+\sum_{l=1}^{L} \sum_{k=l}^{L} \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(k)}}\right)\right) \boldsymbol{\gamma}^{(l, k)} \mid \hat{\nabla}_{\mathbf{H}^{(k)}}\right]\right] \\
& =\operatorname{Var}\left[\nabla_{\mathbf{\Theta}}\right]+\sum_{k=1}^{L} \sum_{l=1}^{k} \mathbb{E}\left[\operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(k)}}\right)\right) \boldsymbol{\gamma}^{(l, k)} \mid \hat{\nabla}_{\mathbf{H}^{(k)}}\right]\right] \\
& =\operatorname{Var}\left[\nabla_{\mathbf{\Theta}}\right]+\sum_{l=1}^{L} \mathbb{E}\left[\sum_{k=1}^{l} \operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \boldsymbol{\gamma}^{(k, l)} \mid \hat{\nabla}_{\mathbf{H}^{(l)}}\right]\right],
\end{aligned}
$$

where in the second last line we swap the order of inner and outer summations, and in the last line we swap the symbols k and l, and utilize the linearity of expectation.
Utilizing Proposition 2, we have

$$
\operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \gamma^{(k, l)} \mid \hat{\nabla}_{\mathbf{H}^{(l)}}\right] \leq \operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \mid \hat{\nabla}_{\mathbf{H}^{(l)}}\right]\left\|\gamma^{(k, l)}\right\|_{2}^{2}
$$

Putting it together

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\nabla}_{\boldsymbol{\Theta}}\right] & \leq \operatorname{Var}\left[\nabla_{\boldsymbol{\Theta}}\right]+\sum_{l=1}^{L} \mathbb{E}\left[\sum_{k=1}^{l} \operatorname{Var}\left[\operatorname{vec}\left(Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right) \mid \hat{\nabla}_{\mathbf{H}^{(l)}}\right]\left\|\gamma^{(k, l)}\right\|_{2}^{2}\right] \\
& =\operatorname{Var}\left[\nabla_{\boldsymbol{\Theta}}\right]+\sum_{l=1}^{L} \mathbb{E}\left[\operatorname{Var}\left[Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right) \mid \hat{\nabla}_{\mathbf{H}^{(l)}}\right] \sum_{k=1}^{l}\left\|\gamma^{(k, l)}\right\|_{2}^{2}\right] .
\end{aligned}
$$

D Variance of Specific Quantizers

Proposition 4. (Variance of stochastic rounding) For any $\mathbf{X} \in \mathbb{R}^{N \times M}$, $\operatorname{Var}[\operatorname{SR}(\mathbf{X})] \leq \frac{N M}{4}$.

Proof. For any real number X, let $p:=X-\lfloor X\rfloor \in[0,1)$, then

$$
\begin{aligned}
& \operatorname{Var}[\operatorname{SR}(X)]=\mathbb{E}[\operatorname{SR}(X)-X]^{2}=p(\lceil X\rceil-X)^{2}+(1-p)(\lfloor X\rfloor-X)^{2} \\
= & p(1-p)^{2}+p^{2}(1-p)=p(1-p)(1-p+p)=p(1-p) \leq \frac{1}{4}
\end{aligned}
$$

Therefore, according to Definition 1,

$$
\operatorname{Var}[\operatorname{SR}(\mathbf{X})]=\sum_{i j} \operatorname{Var}\left[\operatorname{SR}\left(X_{i j}\right)\right]=\frac{N M}{4}
$$

For simplicity, all the expectation and variance are conditioned on $\hat{\nabla}_{\mathbf{H}^{(l)}}$ in the rest of this section.

D. 1 Per-tensor Quantizer

$$
\begin{aligned}
& \operatorname{Var}\left[Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right]=\operatorname{Var}\left[\operatorname{SR}\left(S^{(l)}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}-Z^{(l)}\right)\right) / S^{(l)}+Z^{(l)}\right] \\
= & \frac{1}{\left(S^{(l)}\right)^{2}} \operatorname{Var}\left[\operatorname{SR}\left(S^{(l)}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}-Z^{(l)}\right)\right)\right] \leq \frac{N D^{(l)}}{4\left(S^{(l)}\right)^{2}}=\frac{N D^{(l)}}{4 B^{2}} R\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)^{2} .
\end{aligned}
$$

D. 2 Matrix Quantizer

For the matrix quantizer defined in Eq. 11, we have
$\operatorname{Var}\left[Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right]=\operatorname{Var}\left[\left(\mathbf{S}^{(l)}\right)^{-1} \operatorname{SR}\left(\mathbf{S}^{(l)}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}-\mathbf{1} \mathbf{z}^{(l)}\right)\right)+\mathbf{1} \mathbf{z}^{(l)}\right]=\operatorname{Var}\left[\left(\mathbf{S}^{(l)}\right)^{-1} \operatorname{SR}\left(\mathbf{S}^{(l)}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}-\mathbf{1} \mathbf{z}^{(l)}\right)\right)\right]$.
Utilizing Proposition 3 with $\mathbf{A}=\left(\mathbf{S}^{(l)}\right)^{-1}, \boldsymbol{\epsilon}=\operatorname{SR}\left(\mathbf{S}^{(l)}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}-\mathbf{1} \mathbf{z}^{(l)}\right)\right)$, and $\mathbf{B}=\mathbf{I}$,

$$
\begin{equation*}
\operatorname{Var}\left[Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right] \leq \frac{1}{4}\left\|\left(\mathbf{S}^{(l)}\right)^{-1}\right\|_{F}^{2}\|\mathbf{I}\|_{F}^{2}=\frac{D^{(l)}}{4}\left\|\left(\mathbf{S}^{(l)}\right)^{-1}\right\|_{F}^{2} \tag{13}
\end{equation*}
$$

Minimizing Eq. 13 w.r.t. $\mathbf{S}^{(l)}$ yields optimization problem 12 as follows

$$
\min _{\mathbf{S}^{(l)}}\left\|\left(\mathbf{S}^{(l)}\right)^{-1}\right\|_{F}^{2}, \text { s.t. } R\left(\mathbf{S}^{(l)} \hat{\nabla}_{\mathbf{H}^{(l)}}\right) \leq B
$$

D. 3 Per-sample Quantizer

When $\mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{N}\right)$, we can rewrite optimization problem 12 as

$$
\begin{equation*}
\min _{s_{1}, \ldots, s_{N}} \sum_{i=1}^{N} s_{i}^{-2} \text {, s.t. } s_{i} R\left(\hat{\nabla}_{\mathbf{h}_{i}^{(l)}}\right) \leq B, \forall i \in[N]_{+} . \tag{14}
\end{equation*}
$$

Since the objective is monotonic w.r.t. s_{i}, problem (14) can be minimized when all the inequality constraints takes equality, i.e., $s_{i} R\left(\hat{\nabla}_{\mathbf{h}_{i}^{(l)}}\right)=B$. Therefore, $s_{i}=B / R\left(\hat{\nabla}_{\mathbf{h}_{i}^{(l)}}\right)$. Plug this back to Eq. (13), we have

$$
\operatorname{Var}\left[Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right] \leq \frac{D^{(l)}}{4}\left\|\left(\mathbf{S}^{(l)}\right)^{-1}\right\|_{F}^{2}=\frac{D^{(l)}}{4} \sum_{i=1}^{N}\left(B / R\left(\hat{\nabla}_{\mathbf{h}_{i}^{(l)}}\right)^{-2}=\frac{D^{(l)}}{4 B^{2}} \sum_{i=1}^{N} R\left(\hat{\nabla}_{\mathbf{h}_{i}^{(l)}}\right)^{2} .\right.
$$

D. 4 Householder Quantizer

Let $\lambda_{1}=R\left(\hat{\nabla}_{\mathbf{h}_{1}^{(L)}}\right)$, $\lambda_{2}=2 \max _{i \neq 1}\left\|\hat{\nabla}_{\mathbf{h}_{i}^{(L)}}\right\|_{\infty}$, and assume $\lambda_{2} / \lambda_{1} \approx 0$. Without loss of generality, we can write

$$
\hat{\nabla}_{\mathbf{H}^{(l)}}=\left[\begin{array}{c}
\hat{\nabla}_{\mathbf{h}_{1}^{(l)}} \\
\hat{\nabla}_{\mathbf{H}_{>1}^{(l)}}
\end{array}\right]=\left[\begin{array}{c}
\hat{\nabla}_{\mathbf{h}_{1}^{(l)}} \\
\mathbf{0}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{0} \\
\hat{\nabla}_{\mathbf{H}_{>1}^{(l)}}
\end{array}\right]=\lambda_{1} \mathbf{e}_{1} \mathbf{u}_{1}+\frac{1}{2} \lambda_{2} \mathbf{U}_{2},
$$

such that $R\left(\mathbf{u}_{1}\right) \leq 1$, and $\max _{i \neq 1}\left\|\hat{\nabla}_{\mathbf{h}_{i}^{(L)}}\right\|_{\infty} \leq 1$, and \mathbf{e}_{1} is a column coordinate vector. Furthermore, we construct $\mathbf{S}^{(l)}=\mathbf{Q} \operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{2}\right)$, where $\mathbf{Q}=\mathbf{I}-2 \mathbf{n n}^{\top} /\|\mathbf{n}\|_{2}^{2}$ is a Householder reflection with the normal vector $\mathbf{n}=\mathbf{1} / \sqrt{N}-\mathbf{e}_{1}$.
We have

$$
\begin{aligned}
\mathbf{S}^{(l)} \hat{\nabla}_{\mathbf{H}^{(l)}} & =\mathbf{Q} \operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{2}\right)\left(\lambda_{1} \mathbf{e}_{1} \mathbf{u}_{1}+\frac{1}{2} \lambda_{2} \mathbf{U}_{2}\right)=\mathbf{Q}\left(\lambda_{1} s_{1} \mathbf{e}_{1} \mathbf{u}_{1}+\frac{1}{2} \lambda_{2} s_{2} \mathbf{U}_{2}\right) \\
& =\lambda_{1} s_{1} N^{-1 / 2} \mathbf{1} \mathbf{u}_{1}+\frac{1}{2} \lambda_{2} s_{2} \mathbf{Q} \mathbf{U}_{2}
\end{aligned}
$$

Then, utilizing $R\left(\mathbf{u}_{1}\right) \leq 1$,

$$
R\left(\lambda_{1} s_{1} N^{-1 / 2} \mathbf{1} \mathbf{u}_{1}\right)=\lambda_{1} s_{1} N^{-1 / 2} R\left(\mathbf{1} \mathbf{u}_{1}\right)=\lambda_{1} s_{1} N^{-1 / 2}\left(\max _{j} \mathbf{u}_{1 j}-\min _{j} \mathbf{u}_{1 j}\right) \leq \lambda_{1} s_{1} N^{-1 / 2}
$$

On the other hand,

$$
R\left(\frac{1}{2} \lambda_{2} s_{2} \mathbf{Q} \mathbf{U}_{2}\right)=\frac{1}{2} \lambda_{2} s_{2} R\left(\mathbf{Q} \mathbf{U}_{2}\right) \leq \lambda_{2} s_{2}\left\|\mathbf{Q} \mathbf{U}_{2}\right\|_{\infty}=\lambda_{2} s_{2} \max _{j}\left\|\mathbf{Q} \mathbf{U}_{2,: j}\right\|_{\infty}
$$

and

$$
\left\|\mathbf{Q U}_{2,: j}\right\|_{\infty} \leq\left\|\mathbf{Q U}_{2,: j}\right\|_{2}=\left\|\mathbf{U}_{2,: j}\right\|_{2} \leq \sqrt{N}\left\|\mathbf{U}_{2,: j}\right\|_{\infty} \leq \sqrt{N}
$$

Putting it together, we have

$$
R\left(\mathbf{S}^{(l)} \hat{\nabla}_{\mathbf{H}^{(l)}}\right) \leq R\left(\lambda_{1} s_{1} N^{-1 / 2} \mathbf{1} \mathbf{u}_{1}\right)+R\left(\frac{1}{2} \lambda_{2} s_{2} \mathbf{Q} \mathbf{U}_{2}\right) \leq \lambda_{1} s_{1} N^{-1 / 2}+\lambda_{2} s_{2} N^{1 / 2}
$$

Therefore, problem (12) can be rewritten as

$$
\min _{s_{1}, s_{2}} s_{1}^{-2}+(N-1) s_{2}^{-2}, \quad \text { s.t. } \lambda_{1} s_{1} N^{-1 / 2}+\lambda_{2} s_{2} N^{1 / 2}=B
$$

We minimize an upper bound instead

$$
\min _{s_{1}, s_{2}} s_{1}^{-2}+N s_{2}^{-2}, \quad \text { s.t. } \lambda_{1} s_{1} N^{-1 / 2}+\lambda_{2} s_{2} N^{1 / 2}=B
$$

Introducing the multiplier τ, and define the Lagrangian

$$
f\left(s_{1}, s_{2}, \tau\right)=s_{1}^{-2}+N s_{2}^{-2}+\tau\left(\lambda_{1} s_{1} N^{-1 / 2}+\lambda_{2} s_{2} N^{1 / 2}-B\right)
$$

Letting $\partial f / \partial s_{1}=\partial f / \partial s_{2}=0$, we have

$$
\begin{aligned}
& -2 s_{1}^{-3}+\tau \lambda_{1} N^{-1 / 2}=0 \Rightarrow s_{1} \propto \lambda_{1}^{-1 / 3} N^{1 / 6} \\
& -2 N s_{2}^{-3}+\tau \lambda_{2} N^{1 / 2}=0 \Rightarrow s_{2} \propto \lambda_{2}^{-1 / 3} N^{1 / 6}
\end{aligned}
$$

utilizing the equality constraint $\lambda_{1} s_{1} N^{-1 / 2}+\lambda_{2} s_{2} N^{1 / 2}=B$, we have

$$
s_{1}=B \frac{\lambda_{1}^{-1 / 3} N^{1 / 6}}{\lambda_{1}^{2 / 3} N^{-1 / 3}+\lambda_{2}^{2 / 3} N^{2 / 3}}, \quad s_{2}=B \frac{\lambda_{2}^{-1 / 3} N^{1 / 6}}{\lambda_{1}^{2 / 3} N^{-1 / 3}+\lambda_{2}^{2 / 3} N^{2 / 3}}
$$

Therefore, we have

$$
\left\|\left(\mathbf{S}^{(l)}\right)^{-1}\right\|_{F}^{2}=s_{1}^{-2}+(N-1) s_{2}^{-2}<s_{1}^{-2}+N s_{2}^{-2}=\frac{1}{B^{2}}\left(\lambda_{1}^{2 / 3} N^{-1 / 3}+\lambda_{2}^{2 / 3} N^{2 / 3}\right)^{3}
$$

plugging it to Eq. (13), we have

$$
\operatorname{Var}\left[Q_{b}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right)\right] \leq \frac{D^{(l)}}{4 B^{2}}\left(\lambda_{1}^{2 / 3} N^{-1 / 3}+\lambda_{2}^{2 / 3} N^{2 / 3}\right)^{3} \approx \frac{D^{(l)}}{4 B^{2}} \lambda_{1}^{2} N^{-1}=O\left(\lambda_{1}^{2} / N\right)
$$

D. 5 Details of Block Householder Quantizer

We construct the block Householder quantizer as follows.

1. Sort the magnitude $M_{i}:=\left\|\hat{\nabla}_{\mathbf{h}_{i}^{(l)}}\right\|_{\infty}$ of each row in descending order.
2. Loop over the number of groups G. Assume that $\left\{M_{i}\right\}$ is already sorted, we consider the first G rows as "large" and all the other $N-G$ rows as "small". The i-th group contains the i-th largest row and a number of small rows. Furthermore, we heuristically set the size of the i-th group to $(N-G) \frac{M_{i}}{\sum_{i=1}^{G} M_{i}}$, i.e., proportional to the magnitude of the large row in this group. Finally, we approximate the variance $\left\|\left(\mathbf{S}^{(l)}\right)^{-1}\right\|_{F}^{2} \approx \sum_{i=1}^{G} M_{i}^{2} /\left[(N-G) \frac{M_{i}}{\sum_{i=1}^{G} M_{i}}\right]$ and select the best G with minimal variance.
3. Use the grouping of rows described in Step 2 to construct the block Householder quantizer.

E Experimental Setup

Model: Our ResNet56-v2 model for CIFAR10 directly follows the original paper [40]. For the ResNet18/50 model, we adopt a slightly modified version, ResNetv1.5 [45]. The difference between v 1.5 and v 1 is, in the bottleneck blocks which requires downsampling, v 1 has stride $=2$ in the first 1 x 1 convolution, whereas $v 1.5$ has stride $=2$ in the 3×3 convolution. According to the authors, this difference makes v1.5 slightly more accurate ($\sim 0.5 \%$) than $v 1$, but comes with a small performance drawback ($\sim 5 \%$ images-per-second).

Model hyperparameter: For CIFAR10, we follow the hyperparameter settings from the original papers [29, 40], with weight decay of 10^{-4}.
For ImageNet, we keep all hyperparameters unchanged from [45], which has label smoothing=0.1, and weight decay=1/32768.

Optimizer hyperparameter: For CIFAR10, we follow the original paper [29], with a batch size of 128 , initial learning rate of 0.1 , and momentum 0.9 . We train for 200 epochs.
For ImageNet, we follow [45], which has a momentum of 0.875 . Due to limited device memory, we set the batch size to 50 per GPU with 8 GPUs in total, the initial learning rate is 0.4 . We train for 90 epochs, and the first 4 epochs has linear warmup of the learning rate.
For both datasets, we use a cosine learning rate schedule, following [45].
Quantization: We follow the settings in [20]. All the linear layers are quantized, where the forward propagation is

$$
\mathbf{F}^{(l)}\left(\tilde{\mathbf{H}}^{(l-1)} ; \tilde{\boldsymbol{\Theta}}^{(l)}\right)=\tilde{\mathbf{H}}^{(l-1)} \tilde{\boldsymbol{\Theta}}^{(l)}, \text { where } \tilde{\mathbf{H}}^{(l-1)}=Q_{f}\left(\mathbf{H}^{(l-1)}\right), \quad \tilde{\boldsymbol{\Theta}}^{(l)}=Q_{\theta}\left(\boldsymbol{\Theta}^{(l)}\right),
$$

both $Q_{f}(\cdot)$ and $Q_{\theta}(\cdot)$ are deterministic PTQs that quantizes to 8 -bit. The back propagation is

$$
\hat{\nabla}_{\boldsymbol{\Theta}^{(l)}}=\tilde{\mathbf{H}}^{(l-1)^{\top}} Q_{b 1}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right), \quad \hat{\nabla}_{\mathbf{H}^{(l-1)}}=Q_{b 2}\left(\hat{\nabla}_{\mathbf{H}^{(l)}}\right) \tilde{\boldsymbol{\Theta}}^{(l)^{\top}},
$$

with gradient bifurcation [20]. We set $Q_{b 1}$ to a 8-bit stochastic PTQ, and $Q_{b 2}$ to PTQ, PSQ, or BHQ with 4-8 bits. The original paper [20] set $Q_{b 1}$ as an identity mapping (i.e., not quantized), and $Q_{b 2}$ to be 8 -bit stochastic PTQ.

We quantize the inputs and gradients of batch normalization layers, as described in our framework.
Number of training / evaluation runs: Due to the limited amount of computation resources, we train on each setting for only once.
Runtime \& Computing Infrastructure: Following [20], we simulate the training with FP32. Our simulator runs approximately 3 times slower than FP32 counterparts. We utilize a machine with 8 RTX 2080Ti GPUs for training.

F Additional Experimental Results

Figure 6: CIFAR10 convergence curves.

Figure 7: ResNet18 on ImageNet convergence curves.

Figure 8: ResNet50 convergence curves.

