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This supplementary material consists of three parts, including the proofs of all lemmas, theorems and
corollaries (Section A), details of the experiment setting (Section B) and some additional experiment
results (Section C).

A Proofs

A.1 Proof of Lemma 1

Lemma 1. [2] Let R be a representation function R : X — Z, and 755 and Dr be the source and
target distribution over Z, respectively. For h € H.:

1 S
ET(h) < Es(h) + id’HA’H(,DSa,DT) + A, (1)

where X is combined error of the optimum hypothesis h* = argminpey €s(h) + er(h) on both
domains: \ = eg(h*) + ep(h*).

Proof. The proof bases on the triangle inequality for classification error [, 4]: for any labeling

function f1, fo and f5, e(f1, f2) < e(f1, f3)+&(f2, f3). With the definition that eg(h) := Es(h,fs),
for the source domain, we have:

es(h,h*) < es(h, fs) +es(h®, fs) = es(h) +es(h*). 2
For the target domain, we use a slightly different version:
er(h) =er(h, fr) < er(h*, fr) + er(h, h*) = ex(h*) + ex(h, h*). (3)
The symmetric difference .A-distance has the following property:
1
Vh,h' € H, |es(h,h') —er(h,h)| < idHAH(DSaDT)~ “4)
We can have:
er(h) <ep(h*)+er(h,h*) (Applying Eq. 3)
<er(h*)+es(h,h*) + |es(h,h') —er(h,1)]
1
<ep(h*)+es(h,h*)+ idﬂAH(DS, Dr) (Applying Eq. 4)
1
< er(h”) +es(h) +es(h”) + 5duan(Ds, Dr)  (Applying Eq. 2)
1
=eg(h) + id?-LAH(DS,DT) + A,
where A = eg(h*) + er(h*). O
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A.2 Proof of Theorem 2

Theorem 2. Let m be the size of L?s,wlid, d' be the VC-dimension of H', and Z/NIS and Uy be sets of

unlabelled i.i.d. samples drawn from 55 and 5T, each with size m'. With probability at least 1 — 0,
forh e H':

er(h) < ésvatia(h) +

d’ logm — log § n \/Q(d’ logm — log §)
3m m (5)
d’ log(2m’) + log(4/9) i

m/

1 SO
+ §dHAH(Z/{S7uT) + 4\/

Proof. Firstly, we derive the bound between the expected source error eg(h) in Eq. 1 and the
empirical source validation error g ,q1:a(h). Let k;(h) = es(h) — €(h(z:),y;) for h € H' and
2; € Us yalid- Therefore,

1 m
h*Avaih:* zh
es(h) = €s.vatia(h) m;'f() (6)
Because eg(h) € [0,1] and ¢(h(z),y:) € [0,1], we have eg(h) — £(h(2;),y;) € [-1,1] and
E[xk;(h)?] < 1, |xi(h)| < 1. By applying Bernstein inequality,

1 & £2m/2
Pl — i(h) > < — . 7
<m;“() f)exp( 1+§/3) @)
By taking union bound of Eq. 7 over all h € H’ with VC-dimension d’,
1 & , £2m/2
P Upen — J(h < md - ) 8
(heHm;H()>§>_m eXp( 1+€/3> (8)
_ d &m/2 : .
Let § = m® exp (— 1+§/3) and solve the equation for &:
5:d'logrrL—log6:|: d’'logm — log § 2+2(d’10gm—log5). ©)
3m 3m m
Because £ > 0 and va + b < /a+ \/5, Eq. 9 can be simplified as:
! _ 1 _
ggdlogm 10g5+\/2(d logm logé). (10)
3m m
Thus, for any 6 > 0, with probability at least 1 — ¢, for h € H’,
d'logm — log 2(d' logm — log &
£5(h) = Es.atialh) < 202 +\/ (d'logm —logd) (11)
m m

Finally, by applying the bound between the expected domain distance with the empirical domain
distance according to [6], we can have Eq. 5. O

A.3 Proof of Lemma 3

Lemma 3. Let £, (h) be an expected hybrid error weighted by o € [0,1]. For h € H.:
1 -~ o~
er(h) <eq(h) + (QdHAH(D& Dp) + )\) . (12)

Proof. According to the triangle inequality for classification error,

ET(h) < ET(h, h*) + ET(h*) = ET(h) — ET(h, h*) < ET(h*). (13)
Similarly, for the source domain, we have
es(h) —es(h,h*) <es(h®). (14)



Therefore, the bound between the expected target error e (h) and the expected hybrid error &, (h)
can be derived by:

ler(h) — €a(h)| = lex(h) — ags(h) — (1 — a)er(h)]
= aler(h) —es(h)|
= a|(er(h) + er(h,h*) —ep(h,h*)) — (es(h) + es(h, h*) — eg(h, h*))|
< al(er(h) —er(h, h*) + (ex(h, h*) —es(h,h*)) + (es(h, b)) —es(h))]
< a(er(h™) + |er(h,h") —es(h,h*)| +es(h*)) (Applying Egs. 13 and 14)
Sa <;dHA7-L(ESa Dr) + A) ; (Applying Eq. 4)
where A = eg(h*) +ep(h*). O

A.4 Proof of Corollary 4

Corollary 4. Let o € [0, 1] be the weight of the hybrid error, and B € [0, 1] be the ratio of i.i.d.
samples drawn from Dg and D in a held-out validation set. With probability at least 1 — 0, for

heH:
. _ a l-a d'logm — logd \/Q(d’logmflogé)
6T(h) S ea,valzd(h) + (B + 1_ ﬁ) ( 3m + m
(15)
N (;dHAH(aS7gT) +4\/d log(Qm;;i— log(4/6) + /\> .

Proof. By combining Theorem 2 and Lemma 3, we can derive the proof of Corollary 4. Let Ug valid

be a hybrid validation set with z; € U,g valid for ¢ € [1, Bm] from source domain and z; € Ug valid
for i € [fm + 1, m] from target domain. Let x;(h) = (a/8)(es(h) — €(h(z),y:)) fori € [1, Bm)],
and k;(h) = (1 —a)/(1 — B)(es(h) — €(h(z),y;)) for i € [Bm + 1,m]. Therefore,

Ea,valid(h) - éa,valid(h)
=a(es vatia(h) — €svatia(h)) + (1 — &) (e vatia(h) — érwatia(R))

Bm 1—a m
6 Z ES *[ Zz)ayz)) (1 ﬁ)ml ﬁzm+1(55(h) *g(h(zz)ayl)) (16)

m y—

The rest of the proof is similar to the proof of Theorem 2, but with E[x;(h)?] < (a/B+ (1 —a)/(1 —
B))? and |k;(h)] < a/B + (1 — a)/(1 — B). We can have: for any § > 0, with probability at least
1—6,forh € H,

o) — Eosataalh) < (g+ 1—a) (d logm — log § +\/2(d logm—log§)> an

s 1-p 3m m
Finally, by applying the bound between the expected domain distance with the empirical domain
distance according to [0], we can have Eq. 15. O

B Experiment Details

B.1 NAS Search Space

Following many previous works [3, 5, 7, 9, 10], we use the NASNet search space [10]. There are
2 kinds of cells in the search space, including normal cells and reduction cells. Normal cells use
stride 1 and maintain the size of feature maps. Reduction cells use stride 2 and reduce the height and
width of feature maps to a half. After a reduction cell, the channel number is doubled. Each cell has 7
nodes, including 2 input nodes, 1 output node and 4 computation nodes. The connection pattern of



cells in the NASNet search space is illustrated in .
Figure 1, where h;_5 and h;_; are input nodes : —~ ) \
connected to the previous two cells, h; is an out- i ‘ By h;
put node concatenating all computation nodes J u‘

of the current cell, and (9 to 2(3) are compu- ——————

tation nodes taking outputs of previous nodes

as their inputs and applying some operations on  Figure 1: The connection pattern of cells in the
them. Cells are stacked sequentially to build NASNet search space.

a network. In the network, cells located at the

1/3 and 2/3 are reduction cells, while others are
normal cells.

We use a set of 8 different candidate operations, including:

e 3 x 3 separable convolution; e 3 X 3 max pooling;

e 5 X b separable convolution; e 3 x 3 average pooling;

e 3 x 3 dilated separable convolution; e identity (i.e. skip-connection);
e 5 x 5 dilated separable convolution; e zero (i.e. not connected).

All the operations follow the ReLU-Conv/Pooling-BN pattern except identity and zero.

B.2 Search and Evaluation on Digits

For searching on digits datasets, we use a network with 5 cells, where the 2nd and 3rd cells are
reduction cells. The first cell has 16 initial channels. We search for 100 epochs. After searching, we
use the same network size for evaluation. The network is trained for 100 epochs.

B.3 Search and Evaluation on CIFAR-10 and ImageNet

For searching on CIFAR-10 and ImageNet, we use a network with 8 cells, where the 3rd and 6th cells
are reduction cell. The first cell has 16 initial channels. We search for 200 epochs. For evaluation on
CIFAR-10, we use a network with 20 cells and 36 initial channels. The network is trained for 600
epochs with cutout. The network for ImageNet generalization is relatively shallow but wide, which
has 14 cells and 48 initial channels. The network is trained for 250 epochs. Auxiliary heads are used
for evaluation on both datasets, which is inserted after the 2nd reduction cell. We follow DARTS
[7] and PC-DARTS [8] and train networks for 600 and 250 epochs on CIFAR-10 and ImageNet,
respectively.

C More Results

C.1 Latent Space Visualization (on Digits)

We visualize the latent space learned during search. The setting with MNIST as the source domain
and SVHN as the target domain, which has the maximum generalization gap (5.3% test error by
searching in the source domain versus 4.4% test error by searching in the target domain), is selected
for demonstration. 500 random samples from each domain are chosen. Figure 2 shows the latent
space learned by different searching methods, including searching in the source domain only and
searching with AdaptNAS-S. The origin latent representation is 256-dimension and is reduced to
2-dimension with t-distributed Stochastic Neighbor Embedding (t-SNE). Figure 2(a) shows the latent
space learned by searching in the source domain only. As can be seen, samples from MNIST clusters
by their labels, while samples from SVHN distributes almost randomly. When they are mixed
together, there are more than one cluster for each label. Figure 2(b) shows the latent space learned by
AdaptNAS-S. Samples from both domains clusters well. When they are mixed together, there are
only one major cluster for each label with several outliers.

C.2 Architectures of Reported Results (on CIFAR-10 and ImageNet)

Figure 3 shows architectures of the reported results compared with SOTAs in the paper. Both normal
and reduction cells found by different AdaptNAS settings are provided.
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(b) Search with AdaptNAS-S.

Figure 2: Latent spaces learned by different searching methods with MNIST as the source domain

and SVHN as the target domain. The dimension is reduced with t-SNE. Different colors stand for

different categories. There are 10 categories for different digits from O to 9.
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Figure 3: Architectures found by different settings of AdaptNAS
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