
Appendix: Ridge Rider

A Related Work

The common approach to finding a specific type of solution to a DNN optimization problem is to
modify SGD via a range of algorithmic approaches to initialization, update rules, learning rate, and
so forth [8, 28, 37, 38]. By contrast, RR does not follow the gradient at all - instead of pursuing the
locally greedy direction that SGD seeks, we follow an eigenvector of the Hessian which allows us
to directly control for curvature. Wang* et al. [52] also adjusts the solutions found when training
neural networks by taking advantage of the Hessian to stay on ‘ridges’. However, they focus on
minimax optimization such as in the GAN [20] setting. This difference in motivation leads them to an
algorithm that looks like Gradient Descent Ascent but with a correction term using the Hessian that
keeps the minimax problem from veering into problematic areas with respect to convergence. This is
different from our approach, which moves in the direction of the Hessian’s eigenvectors instead of
gradients. Eigen Vector Descent (EVD, [46]) proposes to update neural network parameters in the
direction of an eigenvector of the Hessian, by doing line search on each individual eigenvector at each
step and taking the best value. This can be seen as a myopic version of our method, which greedily
updates a single policy. By contrast, we do deep exploration of each eigenvector and maintain a set
of candidate solutions.

Finally, there are also other optimization approaches that do not rely on gradients such as BFGS
and Quasi-Newton. They efficiently optimize towards the nearest solution, sometimes by using the
Hessian, but do not do what we are proposing of using the eigenvectors as directions to follow. Rather,
they use variants of line search with constraints that include the Hessian.

Motivation for RR stems from a number of different directions. One is in games and specifically the
zero-shot coordination setting. Hu et al. [26] presents an algorithm that achieves strong results on the
Hanabi benchmark [4] including human-AI coordination, but require problem specific knowledge
of the game’s symmetries. These symmetries correspond to the arbitrary labelings of the particular
state/action space that leave trajectories unchanged up to those labelings. In contrast, RR discovers
these symmetries automatically by exploiting the connection between equivalent solutions and
repeated Eigenvalues, as we demonstrate empirically in Sec 4.

Another motivating direction is avoiding the ‘shortcut’ solutions often found by DNNs. These are
often subpar for downstream tasks [16, 17, 5, 11, 22]. Geirhos et al. [18] tries to address this concern
by adjusting the dataset to be less amenable to the texture shortcut and more reliant on shape. In the
causal paradigm, Arjovsky et al. [3] assumes access to differing environments and then adjusts the
SGD loss landscape to account for all environments simultaneously via a gradient norm penalty. We
differ by looking for structured solutions by following the curvature of the Hessian.

In RL, many approaches make use of augmented loss functions to aid exploration, which are
subsequently optimized with SGD. These include having a term boosting diversity with respect to
other agents [32, 33, 10, 25, 40, 36, 44] or measuring ‘surprise’ in the environment [34, 13, 50, 42,
45, 7]. Rather than shifting or augmenting the loss landscape in this way, we gain diversity through
structured exploration with eigenvectors of the Hessian. Finally, maximum entropy objectives are
also a popular way to boost exploration in RL [21, 12]. However, this is typically combined with
SGD rather than used as an initialization for RR as we propose.

14

B Additional Experimental Results

In this section we include some addiitonal results from the diversity in RL experiments.

Intuition and Ablations To illustrate the structured exploration of RR, we include a visualization
of the optimization path from the MIS. On the left hand side of Fig 7 we show the path along two
ridges for the tree shown earlier alongside the main results (Fig 2). Areas of high reward are in dark
blue. The ridges (green and light blue) both correspond to distinct positive solutions. The policies
have six dimensions, but we project them into two dimensions by forming a basis with the two ridges.
Observe that the two ridges are initially orthogonal, following the (x, y) axes. Conversely, we also
show two runs of GD from the same initialization, each of which find the same solution and are
indistinguishable in parameter space.

GD0
GD1
RR1
RR2

Method

0

20

40

60

80

100
P
e
r
c
e
n
t

F
o
u
n
d

Depth 4 Depth 6 Depth 8 Depth 10

Adaptive + UpdateRidge
Fixed + FixedRidge
Fixed + UpdateRidge

Algorithm

Figure 7: Left: Example optimization paths. Dark is higher reward. All methods start at the same saddle. The
deterministic GDs follow the same trajectory while the RRs follow different paths. Right: The percentage of
solutions found per algorithm, collated by tree depth. Trees at each depth are randomly generated 20 times to
produce error estimates shown.

We also must consider whether we need to adapt ↵, the size of the step along the ridge. In larger scale
settings this may not be possible, so we now consider the two following ablations:

1. Fixed + UpdateRidge: Here we continue to update the ridge, but use a fixed ↵.
2. Fixed + FixedRidge: We not only keep a fixed ↵ but also do not update the ridge. Thus, we

take repeated small steps along the original ridge until we meet the EndRide condition.

In both cases we use ↵ = 0.1, the same value used for the Gradient Descent and Random Vector
baselines in Fig. 2. As we see in Fig. 7, as we impose greater rigidity, the performance declines.
However, the results for the fixed ridge are still stronger than any of the baselines from Fig. 2,
showing the power of the original ridges in finding diverse solutions.

Beyond Exact RL Next we open the door to scaling our method to the deep RL paradigm. For on-
policy methods we can compute H accurately via the DiCE operator [15, 14]. As a first demonstration
of this, we consider the same tree problem shown in Fig. 2, with the same tabular/linear policy.
However, instead of computing the loss as an expectation with full knowledge of the tree, we sample
trajectories by taking stochastic actions of the policy in the environment. We use the same maximum
budget of T = 105, but using 100 samples to compute the loss function. For RR we alternate between
updating the policy by stepping along the ridge and updating the value function (with SGD), while
for the baseline we optimize a joint objective. Both RR and the baseline use the Loaded DiCE [14]
loss function for the policy. For RR, we use the adaptive ↵ from the exact setting. The results are
shown in Fig. 8.

0

50

100

Pe
rc

en
t F

ou
nd

Depth 4 Depth 6 Depth 8

Ridge Rider
SGD

Algorithm

Figure 8: The percentage of solutions found per
algorithm, collated by tree depth. Trees at each
depth are randomly generated 10 times to produce
error estimates shown.

For tree depths of four and six, RR significantly out-
performs the vanilla actor critic baseline, with gains
also coming on larger trees. It is important to caveat
that these results remain only indicative of larger
scale performance, given the toy nature of the prob-
lem. However, it does show it is possible to follow
ridges when the Hessian is computed with samples,
thus, we believe it demonstrates the potential to scale
RR to the problems we ultimately wish to solve. G

15

C Implementation Details

In the following subsections, we provide implementation details along with pseudo code for the ap-
proximate version of RR (used in MNIST experiments) and the extensions to Zero-Shot coordination
and Colored MNIST, respectively.

C.1 Approximate RR

Algorithm 2 Scalable RR
1: Input: N number of ridges; R maximum index of ridge considered; T max iterations per ridge; S inner steps; LRe/�, learning rate for

EVec and EVal
2: Initialize: Sample neural network ✓ ⇠ N(0, ✏) small value, i.e. near saddle.
3: // Find a ridge.
4: e,�, r = GetRidges(✓): Sample random integer r 2 [1, R] and mini-batch (x,y),
5: then use the power method to find the r-th most negative Eval � and its EVec e.
6: Optionally: Compute gradient g = @

@✓L (y, f✓(x)) and set ridge e = sign(e · g)e.
7: archive = [{✓[r], e,�}]
8: for 1 to N do
9: ✓ ,�, e = archive.pop(0) // ChooseFromArchive is trivial - there is only one entry
10: // Follow the ridge.
11: while True do
12: ✓old = ✓

13: ✓ = ✓ � lr✓ e
14: � = � + eT (H(✓) � H(✓old))e
15: UpdateRidge // Update eigenvalue and eigenvector.
16: Sample a mini-batch x,y.
17: // Starting from �,e use gradient descent to obtain updated values:
18: for 1 to S do
19: L(e,�|✓) = (k(1/�)H(✓)e/kek2 � e/kek2k

2
2)

20: � = � � LR�
@
@�L(e,�|✓)

21: e = e � LRe
@
@eL(e,�|✓)

22: end for
23: if EndRide(✓ , e,�) then
24: break
25: end if
26: end while
27: e,�, r = GetRidges(✓)

28: archive =[{✓ .append(r), e,�}]
29: end for
30: return ✓

C.2 Multi-Agent Zero-Shot Coordination

Algorithm 3 Zero-Shot Coordination
1: Input: N independent runs; List = { 1, ... N} fingerprints considered; T max iterations per ridge; Learning rate ↵.
2: Initialize: Array solutions = [][], best_score = -1.
3: for i 2 1 to N do
4: Initialize: Policy ✓ ⇠ N(0, ✏).

// Get the Maximally Invariant Saddle (min gradient norm, max entropy).
5: MIS = GetMIS(✓)
6: s = RidgeRiding(MIS, , T, ↵) //Run exact version of RR

// For each , select ✓ with highest reward in self-play. Note, multiple ✓ per correspond to ± EVec directions.
7: for k 2 1 to len() do
8: solutions[i][k] = argmax

✓ s.t. ✓ == [k]J(✓)

9: end for
10: end for
11: for k 2 1 to len() do
12: Initialize: average_score = 0 // Average cross-play score for fingerprint
13: for i 2 {1, . . . , N} do
14: for j 2 {1, . . . , N} do
15: average_score += J(solutions[i][k]1, solutions[j][k]2)/N2

16: end for
17: end for
18: if average_score > best_score then
19: best_score = average_score
20: ✓⇤ = solutions[0][k]
21: end if
22: end for
23: return ✓⇤

16

C.3 Colored MNIST

Algorithm 4 Colored MNIST
1: Input: Training Environments ⇠1, ⇠2; Inner steps S; Ridge steps N; Pre-Training Steps H; Loss hyperparameters �; Number of featurizer

weights f ; Learning rate for featurizer and EVec LRf/x; Learning rate for RR ↵; Learning rates for finding MIS in pre-training �.
2: Initialize: Neural network ✓ ⇠ N(0, ✏)n to small random values, ie. near saddle; candidate common EVec er ⇠ N(0, ✏)r where

r = n � f .
// Split weights into featurizer and RR space.

3: ✓f = ✓[0 : f]
4: ✓r = ✓[f : n]
5: // Find the Maximally Invariant Saddle and initial common EVec.
6: for 1 to H do
7: L1(✓f , er|✓r) =

P
i21,2

�
� �1C(Hi

rer, er) � �2erH
i
rer + �3L⇠i

(✓f |✓r)
�
+

|er(H1
r�H

2
r)er|

|er|2

8: L2(✓f |✓r) = Eur⇠⇥r�4
|C(H1

rur,ur)2�C(H2
rur,ur)2|

C(H1
rur,ur)2+�5C(H1

rur,ur)2
+

|ur(H1
r�H

2
r)ur|

|urH1
rur|+|urH2

rur|

9: // H⇠
r = r

2
✓L⇠ and C is the correlation (normalized dot product)

10: ✓f = ✓f � �0
@

@✓f
(L1 + L2)

11: er = er � �1
@

@er
(L1)

12: end for
13: for 1 to N do
14: // Follow the ridge.
15: ✓r = ✓r � ↵x

// Update EVec and featurizer.
16: for 1 to S do
17: ✓f = ✓f � LRf

@
@✓f

(L1 + L2)

18: er = er � LRx
@

@er
(L1)

19: end for
20: end for

0 50 100 150 200 250 300 350 400 450 500 550 600

ERM/IRM Steps

0 1 2 3 4 5 6 7 8 9 10 11 12
RR Ridges

0 50 100 150 200 250 300 350 400 450 500 550 600

ERM/IRM Steps

0 1 2 3 4 5 6 7 8 9 10 11 12
RR Ridges

0 50 100 150 200 250 300 350 400 450 500 550 600

ERM/IRM Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
r
a
c
y

Chance

ERM Test

ERM Train

IRM Test

IRM Train

Optimal

Test

Train

Data

Figure 9: Curves showing the training and test accuracy of IRM (Invariant Risk Minimization), ERM (Empirical
Risk Minimization), and RR on Colored MNIST. Note that the bottom x-axis is steps for ERM/IRM and the top
x-axis is steps for RR.

17

D Theoretical Results

D.1 Behavior of gradient descent near a saddle point

We will illustrate how gradient descent dynamics near a saddle point moves towards the most negative
eigenvector of the Hessian via two different derivations. These are not novel results but provided as
an illustration of a well known fact.

First, let ✓0 be a saddle point of L(✓), and consider T steps of gradient descent ✓1, ..., ✓T . Let H(✓0)
be the Hessian of L at ✓0. We will use the first-order Taylor expansion, r✓L(✓t) = H(✓t�✓0)+o(✏2)
ignoring the error term to approximate the gradient close to ✓0.

We can decompose ✓t � ✓0 into the basis of eigenvectors of H(✓0): ✓t � ✓0 =
P

i ai,tei(✓0) where
{ei(✓0)} are the eigenvectors of H(✓0). After one step of gradient descent with learning rate ↵,

✓t+1 = ✓0 +
X

i

ai,tei(✓0)� ↵

X

i

�iai,tei(✓0) (1)

= x0 +
X

i

(1� ↵�i(✓0))ai,tei(✓0) (2)

i.e. ai,t+1 = (1� ↵�i(✓0))ai,t

It follows by simple induction that if T isn’t too large so the displacement ✓T � ✓0 is still small,
ai,T = (1 � ↵�i)T . In other words, the component of ✓1 � ✓0 corresponding to more negative
eigenvalues of H(✓0) will be amplified relative to less negative eigenvalues by a ratio that grows
exponentially in T .

In the limit of small step sizes, we can also consider the differential limit of approximate (up to first
order terms as defined above) gradient descent dynamics

d✓

dt
= �↵H(✓0)✓,

assuming the saddle is at ✓0 = 0 wlog. The solution to this system of equations is ✓(t) =
✓(0) exp(�↵H(✓0)t). If we write the eigendecomposition of H(✓0), H(✓0) = Q⇤Q�1, then
exp(�H(✓0)) = �Q exp(⇤)Q�1. So if ✓(0) =

P
i aiei(✓0), then ✓(t) =

P
i e

�↵�i(✓0)taiei(✓0).

D.2 Structural properties of the eigenvalues and eigenvectors of Smooth functions

Definition 1. We say a function f : Rd ! R is ��smooth if for all pairs of points ✓, ✓0 2 Rd:
|r2

✓f(✓)�r2
✓f(✓

0)| �k✓ � ✓
0k

We show that for ��smooth functions f , the i�th eigenvalue function:

�i(✓) = i� th largest eigenvalue of r2
✓f(✓) (3)

And (an appropriate definition of) the i�th eigenvector function:

ei(✓) = i� th largest normalized eigenvector of r2
✓f(✓) (4)

are continuous functions of ✓.
Lemma 1. If f is ��smooth‘ �i(✓) is continuous.

Proof. We show the result for the case i = 1, the proof for i 6= 1 follows the same structure, albeit
making use of the more complex variational characterization of the i�th eigenvalue / eigenvector
pair. Recall the variational formulation of �1:

�1(✓) = max
v2Sd(1)

v
>r2

✓f(✓)v (5)

18

Let ✓0 = ✓ +�✓. It is enough to show that:

lim
�✓!0

�1(✓
0) = �1(✓)

Let v1 be a unit vector achieving the max in Equation 5 and let v01 be the maximizer for the
corresponding variational equation for ✓0, then:

|�1(✓)� v
>

1 r2
✓f(✓

0)v1| = |v>1
�
r2

✓f(✓)�r2
✓f(✓

0)
�
v1|

(i)
 �k�✓k

Inequality (i) follows by ��smoothness. Similarly:

|�1(✓
0)� (v01)r2

✓f(✓)v
0

1| �k�✓k
Since by definition:

�1(✓) � (v01)
>r2

✓f(✓)v
0

1

And:
�1(✓

0) � v
>

1 r2
✓f(✓

0)v1
We conclude that:

�1(✓
0) � �1(✓)� �k�✓k

And:
�1(✓) � �1(✓

0)� �k�✓k
Consequently:

�1(✓) + �k�✓k � �1(✓
0) � �1(✓)� �k�✓k

The result follows by taking the limit as �✓ ! 0.

In fact the proof above shows even more:
Proposition 1. If L is ��smooth and ✓, ✓

0 2 Rd then the eigenvalue function is �-Lipschitz:

|�i(✓
0)� �i(✓)| �k✓ � ✓

0k
And therefore:

kr✓�i(✓)k �

Proof. With the exact same sequence of steps as in the proof of Lemma 1, we conclude:

�i(✓) + �k�✓k � �i(✓
0) � �i(✓)� �k�✓k

And:
�i(✓

0) + �k�✓k � �i(✓) � �i(✓
0)� �k�✓k

The result follows. The gradient bound is an immediate consequence of the Lipschitz property of
�1(·).

Let’s define a canonical i�th eigenvector path ` : [0,1) ! R starting at ✓ as follows:

`(0) = ✓

@`(t)

@t
=

(
ei(✓) if liml!thei(✓), @`(l)

@l `(l)i > 0
�ei(✓) o.w.

We proceed to show that the curve traced by ` is continuous.
Lemma 2. Let ✓ be such that �i�1(✓)� �i(✓) = �i�1 > 0 and �i(✓)� �i+1(✓) = �i > 0. Then:

min(kei(✓)� ei(✓
0)k, kei(✓) + ei(✓

0)k)

s
4�k✓ � ✓0k

min(�i,�i�1)
(6)

For all ✓0 such that k✓0 � ✓k min(�i�1,�i)
4�

19

Proof. By Proposition 1, for all ✓0 such that k✓0 � ✓k min(�i�1,�i)
4� :

max(|�i(✓
0)� �i(✓)|, |�i�1(✓

0)� �i�1(✓)|, |�i+1(✓
0)� �i+1(✓)|) �k✓0 � ✓k (7)

In other words, it follows that:

�i+1(✓),�i+1(✓
0) < �i(✓),�i(✓

0) < �i�1(✓),�i�1(✓
0)

Where this sequence of inequalities implies for example that �i+1(✓0) < �i(✓).

Let H = r2
✓f(✓) and H

0 = r2
✓f(✓

0). Let � = H � H
0. By ��smoothness we know that

k�k �k✓ � ✓
0k.

Again for simplicity we restrict ourselves to the case i = 1. The argument for i 6= 1 uses the same
basic ingredients, but takes into account the more complex variational characterization of the i�th
eigenvector.

W.l.o.g. define e1(✓) and e1(✓0) such that he1(✓), e1(✓0)i = ↵ � 0. We can write e1(✓0) =
↵e1(✓) +

�p
1� ↵2

�
v with kvk2 = 1 and hv, e1(✓)i = 0. Notice that ke1(✓) � e1(✓0)k = k(1 �

↵)e1(✓)�
�p

1� ↵2
�
vk (1� ↵) +

p
1� ↵2. We now show ↵ is close to 1. Recall:

e1(✓) = argmax
v2Sd

v
>
Hv

and
e1(✓

0) = arg max
v02Sd

(v0)>H 0
v
0

Equation 7 implies �1(✓) � �2(✓0) +�1 � �k✓ � ✓
0k and �1(✓0) � �2(✓) +�1 � �k✓ � ✓

0k. The
following inequalities hold:

�1(✓
0) � e1(✓)

>
H

0
e1(✓) (8)

= e1(✓)
>[H ��]e1(✓)

= e1(✓)
>
He1(✓)� e1(✓)

>�e1(✓)

= �1(✓)� e1(✓)
>�e1(✓)

� �1(✓)� k�k
� �1(✓)� �k✓ � ✓

0k (9)

Write e1(✓) =
P

i ↵iei(✓0) with
P

i ↵
2
i = 1. Notice that:

e1(✓)
>
H

0
e1(✓) =

X

i

↵
2
i�i(✓

0)

Since �i(✓0) < �1(✓)� 3�1
4 for all i > 1:

X

i

↵
2
i�i(✓

0) ↵
2
1�1(✓

0) +

dX

i=2

↵
2
i

!
(�1(✓)��1 + �k✓ � ✓

0k)

 ↵
2
1(�1(✓) + �k✓ � ✓

0k) + (
dX

i=2

↵
2
i)(�1(✓)��1 + �k✓ � ✓

0k)

 �1(✓) + �k✓ � ✓
0k ��1(1� ↵

2
1) (10)

And therefore, combining Equation 9 and 10:

�1(✓)� �k✓ � ✓
0k e1(✓)

>
H

0
e1(✓) �1(✓) + �k✓ � ✓

0k ��1(1� ↵
2
1)

Therefore:

↵
2
1 � �1 � 2�k✓ � ✓

0k
�1

= 1� 2�k✓ � ✓
0k

�1

20

This in turn implies that
Pd

i=2 ↵
2
i 2�k✓�✓0

k

�1
and that 1� ↵ 1� ↵

2 2�k✓�✓0
k

�1
. Therefore:

ke1(✓)� e1(✓
0)k2 = (1� ↵1)

2 +
dX

i=2

↵
2
2

 (1� ↵1)
2 +

2�k✓ � ✓
0k

�1

 4�2k✓ � ✓
0k2

�2
1

+
2�k✓ � ✓

0k
�1

 4�k✓ � ✓
0k

�1

The result follows.

As a direct implication of Lemma 2, we conclude the eigenvector function is continuous.

D.3 Convergence rates for finding a new eigenvector, eigenvalue pair

Let ✓0 = ✓+�✓, ridge riding minimizes the following loss w.r.t e and � to find a candidate e0 and �
0:

L(e,�; ✓0) = k(1/�)H(✓0)e/kek � e/kekk2 (11)

Notice that:

L(e,�; ✓0) =
1

�2kek2 e
>H(✓0)2e+ 1� 2

1

�kek2 e
>H(✓0)e

Therefore:

reL(e,�; ✓
0) =

1

�2
re

✓
1

kek2 e
>H(✓0)2e

◆
� 2

1

�
re

✓
1

kek2 e
>H(✓0)e

◆

=
2

�2kek
�
H2(✓0)� ẽ

>H2(✓0)ẽI
�
ẽ� 4

�kek
�
H(✓0)� ẽ

>H(✓0)ẽI
�
ẽ

=

✓
2

�2kekH
2(✓0)� 4

�kekH(✓0)

◆
ẽ+

✓
4

�kek ẽ
>H(✓0)ẽI � 2

�2kek ẽ
>H2(✓0)ẽI

◆
ẽ

Where ẽ = e
kek .

Now let’s compute the following gradient:

r�L(e,�; ✓
0) = � 2

�3kek2 e
>H(✓0)2e+

2

�2kek2 e
>H(✓0)e =

2

�2kek

✓
e
>H(✓0)e� e

>H(✓0)2e

�

◆

We consider the following algorithm:

1. Start at (e,�).
2. Take a gradient step e ! e� ↵ereL(e,�; ✓0).
3. Take a gradient step � ! �� ↵�r�L(e,�; ✓0).
4. Normalize e ! e

kek .

It is easy to see that the update for e takes the form:

e !
✓✓

1 + ↵e

✓
2e>H(✓0)2e

�2
� 4e>H(✓0)e

�

◆◆
I + ↵e

✓
4H(✓0)

�
� 2H(✓0)2

�2

◆◆

| {z }
U

e

e ! e

kek

21

Where we think of U as an operator acting on the vector e. In fact if we consider T consecutive steps
of this algorithm, yielding normalized eigenvector candidates e0, · · · , eT and eigenvalue candidates
�0, · · · ,�T , and name the corresponding U�operators as U1, · · · , UT it is easy to see that:

eT =
ET

kET k

Where ET =
⇣QT

i=1 UT

⌘
e0. In other words, the normalization steps can be obviated as long as we

normalize at the very end. This observation will prove useful in the analysis.

Let’s assume L is ��smooth and let’s say we are trying to find the i�th eigenvalue eigenvector pair
for ✓0: (ei(✓0),�i(✓0)). Furthermore let’s assume we start our optimizaation at the (ei(✓),�i(✓)) pair.
Furthermore, assume that ✓0 is such that:

kei(✓)� ei(✓
0)k min(

�i

4
,
�i�1

4
) and k�i(✓)� �i(✓

0)k min(
�i

4
,
�i�1

4
) (12)

Where �i(✓)� �i(✓) = �i�1 > 0 and �i(✓)� �i+1(✓) = �i > 0. The existence of such ✓
0 as in

12 can be guaranteed by virtue of Lemmas 1 and 2.

Notice that as long as ↵e = min(1/4,�i,�i�1) is small enough the operator U attains the form:

U = AI + ↵e

✓
4H(✓0)

�
� 2H(✓0)2

�2

◆

Where ↵e/A is small.

Notice that the operator
⇣

4H(✓0)
� � 2H(✓0)2

�2

⌘
has the following properties:

1.
⇣

4H(✓0)
� � 2H(✓0)2

�2

⌘
has the exact same eigenvectors set {ej(✓0)}Tj=1 as H(✓0).

2. The eigenvalues of
⇣

4H(✓0)
� � 2H(✓0)2

�2

⌘
equal { 4�j(✓

0)
� � 2�j(✓

02

�2 }dj=1.

Consequently, if |� � �i(✓0)| < min(�
0

i
4 ,

�0

i�1

4)) we conclude that the maximum eigenvalue of⇣
4H(✓0)

� � 2H(✓0)2

�2

⌘
equals 4�i(✓

0)
� � 2�i(✓

0)2

�2 with eigenvector ei(✓0).

Furthermore, the eigen-gap between the maximum eigenvalue and any other one is lower bounded by
min(�i,�i�1)

2 . Therefore, after taking a gradient step on e, the dot product hei(✓0), eti = �t satsifies

�
2
t+1 ! �

2
t + �

2
t ⇤ (1� ↵

2
e
min(�i,�

2
i�1)

4)

If |�t � �i(✓0)| < min(�
0

i
4 ,

�0

i�1

4)), and the eigenvalue update satisfied the properties above, then
�t+1 is closer to �i(✓0) than �t, thus maintaining the invariance. We conclude that the convergence
rate is the rate at which �t ! 1, which is captured by the following theorem:

Theorem 3. If L is ��smooth, ↵e = min(1/4,�i,�i�1), and k✓ � ✓
0k min(1/4,�i,�i�1)

� then

|het, ei(✓0)i| � 1�
⇣
1� min(1/4,�i,�i�1)

4

⌘t

D.4 Staying on the ridge

In this section, we show that under the right assumptions on the step sizes, Ridge Riding stays along
a descent direction.

We analyze the following setup. Starting at ✓, we move along negative eigenvector ei(✓) to ✓
0 =

✓� ↵ei(✓). Once there we move to ✓
00 = ✓

0 � ↵ei(✓0). Let L : ⇥ ! R be the function we are trying
to optimize. We show that:
Theorem 4. Let L : ⇥ ! R have ��smooth Hessian, let ↵ be the step size. If at ✓ RR satisfies:
hrL(✓), ei(✓)i � krL(✓)k�, and ↵ min(�i,�i�1)�

2

16� then after two steps of RR:

L(✓00) L(✓)� �↵krL(✓)k

22

Proof. Since L is ��smooth, the third order derivatives of L are uniformly bounded. Let’s write
L(✓0) using a Taylor expansion:

L(✓0) = L(✓ � ↵ei(✓))

(i)
 L(✓) + hrL(✓),�↵ei(✓)i+

1

2
(�↵ei(✓)

>H(✓)(�↵ei(✓)) + c
0
↵
3
�

= L(✓)� ↵hrL(✓), ei(✓)i+ ↵
2�i(✓)

2
+ c

0
↵
3
�

Inequality (i) follows by Hessian smoothness.

Let’s expand L(✓00):

L(✓00) = L(✓0 � ↵ei(✓
0))

 L(✓0)� ↵hrL(✓0), ei(✓
0)i+ ↵

2

2
�i(✓

0) + c
00
↵
3
�

 L(✓)� ↵hrL(✓), ei(✓)i � ↵hrL(✓0), ei(✓
0)i+ ↵

2
�i(✓)

2
+

↵
2
�i(✓0)

2
+ (c0 + c

00)↵3
�

Notice that for any v 2 Rd it follows that hrL(✓0), vi hrL(✓), vi�↵v
>r2

L(✓)ei(✓)+c
000
�↵

2 =
hrL(✓), vi � ↵�i(✓)v>ei(✓) + c

000
�↵

2. Plugging this in the sequence of inequalities above:

L(✓00) L(✓)� ↵hrL(✓), ei(✓)i � ↵hrL(✓0), ei(✓
0)i+ ↵

2
�i(✓)

2
+

↵
2
�i(✓0)

2
+ (c0 + c

00)↵3
�

 L(✓)� ↵hrL(✓), ei(✓)i � ↵hrL(✓), ei(✓
0)i+ 3↵2

�i(✓) + ↵
2
�i(✓0)

2
+ (c0 + c

00 + c
000)↵3

�

= L(✓)� 2↵hrL(✓), ei(✓)i+ ↵hrL(✓), ei(✓)� ei(✓
0)i+ 3↵2

�i(✓) + ↵
2
�i(✓0)

2
+ (c0 + c

00 + c
000)↵3

�

 L(✓)� 2↵hrL(✓), ei(✓)i+ ↵hrL(✓), ei(✓)� ei(✓
0)i+ 3↵2

�i(✓) + ↵
2
�i(✓0)

2
+ (c0 + c

00 + c
000)↵3

�

(i)
 L(✓)� 2↵hrL(✓), ei(✓)i+ ↵krL(✓k

s
4�k✓ � ✓0k

min(�i,�i�1)
+

3↵2
�i(✓) + ↵

2
�i(✓0)

2
+ (c0 + c

00 + c
000)↵3

�

(13)

Where inequality (i) follows from Cauchy-Schwarz and Lemma 2 since:

kei(✓)� ei(✓0)k
q

4�k✓�✓0k

min(�i,�i�1)
=
q

4�↵
min(�i,�i�1)

Recall that by assumption hrL(✓), ei(✓)i � krL(✓)k� and � 2 (0, 1) and that ↵ min(�i,�i�1)�
2

16� .
Applying this to inequality 13 :

L(✓00) L(✓)� 2↵hrL(✓), ei(✓)i+ ↵krL(✓k

s
4�↵

min(�i,�i�1)
+

3↵2
�i(✓) + ↵

2
�i(✓0)

2
+ (c0 + c

00 + c
000)↵3

�

 L(✓)� 2↵hrL(✓), ei(✓)i+
�↵

2
krL(✓k+ 3↵2

�i(✓) + ↵
2
�i(✓0)

2
+ (c0 + c

00 + c
000)↵3

�

 L(✓)� �↵krL(✓)k+ 3↵2
�i(✓) + ↵

2
�i(✓0)

2
+ (c0 + c

00 + c
000)↵3

�

 L(✓)� �↵krL(✓)k

The last inequality follows because term 3↵2�i(✓)+↵2�i(✓
0)

2 0 and of order less than the third degree
terms at the end.

23

D.5 Behavior of RR near a saddle point

The discussion in this section is intended to be informal and has deliberately been written in this
way. First, let ✓0 be a saddle point of L(✓), and consider the steps of RR ✓1, ..., ✓t, · · · . Let H
be the Hessian of L at ✓0. We will start by using the first-order Taylor expansion, r✓L(✓t) =
H(✓t�1)(✓t � ✓t�1) + o(✏2) ignoring the error term to approximate the gradient close to ✓t�1.

We will see that r✓L(✓t) = ↵
Pt�1

l=0 �i(✓l)ei(✓l)+ o(t✏2) for all t. We proceed by induction. Notice
that for t = 1, this is true since r✓L(✓1) = H(✓0)(✓1 � ✓0) + o(✏2) = ↵�i(✓0))ei(✓0) + o(✏2) for
some lower order error term ✏.

Now suppose that for some t � 1 we have r✓L(✓t) = ↵
Pt�1

l=0 �i(✓l)ei(✓l) + o(t✏2), this holds for
t = 0. By a simple Taylor expansion around ✓t:

r✓L(✓t+1) = r✓L(✓t) +H(✓t)(✓t+1 � ✓t) + o(✏2)

(i)
= ↵

t�1X

l=0

�i(✓l)ei(✓l) + o(t✏2) +H(✓t)(✓t+1 � ✓t) + o(✏2)

= ↵

tX

l=0

�i(✓l)ei(✓l) + o((t+ 1)✏2)

Equality (i) follows from the inductive assumption. The last inequality follows because by definition
H(✓t)(✓t+1 � ✓t) = ↵�i(✓t)ei(✓t). The result follows.

D.6 Symmetries lead to repeated eigenvalues

Let L : Rd ! Rd be a twice-differentiable loss function and write [n] = {1, . . . , n} for n 2 N. For
any permutation � 2 Sd (the symmetric group on d elements), consider the group action

�(✓1, . . . , ✓d) =
�
✓�(1), . . . , ✓�(d)

�

and abuse notation by also writing � : Rd ! Rd for the corresponding linear map. For any N,m 2 N,
define the group of permutations

�m
N =

(
mY

i=1

(i, i+mk) | k 2 [N � 1]

)
2
.

Now assume there are N non-overlapping sets

{✓k1
i
, . . . , ✓km

i
}

of m parameters each, with i 2 [N], which we can reindex (by reordering parameters) to

{✓1+m(i�1), . . . , ✓mi}

for convenience. Assume the loss function is invariant under all permutations of these N sets, namely,
L � � = L for all � 2 �m

N . Our main result is that such parameter symmetries reduce the number of
distinct Hessian eigenvalues, cutting down the number of directions to explore by ridge riding.
Theorem 5. Assume that for some N,m we have L � � = L and �(✓) = ✓ for all � 2 �m

N . Then
r2L(✓) has at most d�m(N � 2) distinct eigenvalues.

We first simplify notation and prove a few lemmata.
Definition 2. Write � = �m

N and H = r2L(✓). We define an eigenvector v of H to be trivial if
�(v) = v for all � 2 �. We call an eigenvalue trivial if all corresponding eigenvectors are trivial.
Lemma 3. Assume L � � = L for some � 2 � and �(✓) = ✓. If (v,�) is an eigenpair of H then so
is (�(v),�).

2For m = 1 we have �1
N = {(1, 2), . . . , (1, N)}, which together generate all N ! permutations

on N elements. For larger m, �m
N also generates N ! permutations, but the m elements within each

set are tied to each other. For instance, �2
3 = {(1, 3)(2, 4), (1, 5)(2, 6)} which together generate

{(1), (1, 3)(2, 4), (1, 5)(2, 6), (3, 5)(4, 6), (1, 3, 5)(2, 4, 6), (1, 5, 3)(2, 6, 4)} .

24

Proof. First notice that D� (also written r�) is constant by linearity of �, and orthogonal since

(D�
T
D�)ij =

X

k

D�kiD�kj =
X

k

��(k)i��(k)j = �ij

X

k

��(k)i = �ij = Iij .

Now applying the chain rule to L = L � � we have

DL = DL|� �D�

and applying the product rule and chain rule again,

D
2L = D(DL|� �D�) = D�

T
D

2L|�D�+ 0

since D
2
� = 0. If �(✓) = ✓ then we obtain

H = D�
T
HD� , or equivalently, H = D�HD�

T

by orthogonality of D�. Now notice that � acts linearly as a matrix-vector product

�(v) = D� · v ,
so any eigenpair (v,�) of H must induce

H�(v) = (D�HD�
T)(D�v) = D�Hv = D��v = �D�v = ��(v)

as required.

Lemma 4. Assume v is a non-trivial eigenvector of H with eigenvalue �. Then � has multiplicity at
least N � 1.

Proof. Since v is non-trivial, there exists � 2 � such that �(v)i 6= vi for some i 2 [d]. Without
loss of generality, by reordering the parameters, assume i = 1. Since � =

Qm
i=1(i, i + mk) for

some k 2 [N � 1], we can set k to N � 1 after reindexing of the N sets. Now u = v � �(v) is
an eigenvector of H with u1 6= 0 and zeros everywhere except the first and last m entries, since
k = N � 1 implies that � keeps other entries fixed. We claim that

(
mY

i=1

(i, i+mk)u

)N�2

k=0

are N � 1 linearly independent vectors. Assume there are real numbers a0, . . . , aN�2 such that
N�2X

k=0

ak

mY

i=1

(i, i+mk)u = 0 .

In particular, noticing that u1+mj = 0 for all 1 j N � 2 and considering the (1 +mj)th entry
for each such j yields

0 =
N�2X

k=0

ak

mY

i=1

(i, i+mk)u

!

1+mj

=
N�2X

k=0

ak�jku1 = aju1 .

This implies aj = 1 for all 1 j N � 2. Finally we are left with

0 = a0

mY

i=1

(i, i)u = a0u

which implies a0 = 0, so the vectors are linearly independent. By the previous lemma, each vector is
an eigenvector with eigenvalue �, so the eigenspace has dimension at least N � 1 as required.

Lemma 5. There are at most d�m(N � 1) linearly independent trivial eigenvectors.

Proof. Assume v is a trivial eigenvector, namely, �(v) = v for all � 2 �. Then vi = vi+mk for
all 1 i m and 1 k N � 1, so v is fully determined by its first m entries v1, . . . , vm

and its last d � mN entries vmN+1, . . . , vd. This implies that trivial eigenvectors have at most
m+ d�mN = d�m(N � 1) degrees of freedom, so there can be at most d�m(N � 1) linearly
independent such vectors.

25

The theorem now follows easily.

Proof. Let k and l respectively be the number of distinct trivial and non-trivial eigenvalues. Eigen-
vectors with distinct eigenvalues are linearly independent, so k d �m(N � 1) by the previous
lemma. Now assuming for contradiction that k + l > d�m(N � 2) implies

d�m(N � 2) < k + l d�m(N � 1) + l =) l > m .

On the other hand, each non-trivial eigenvalue has multiplicity at least N�1, giving k+ l(N�1) d

linearly independent eigenvectors. We obtain the contradiction

d � k + l(N � 1) = k + l + l(N � 2) > d�m(N � 2) + l(N � 2) > d

and conclude that k + l d�m(N � 2), as required.

D.7 Maximally Invariant Saddle

In this section we show that for the case of tabular RL problems, the Maximally Invariant Saddle
(MIS) corresponds to the parameter achieving the optimal reward and having the largest entropy.

We consider ✓ 2 R|S|⇥|A| the parametrization of a policy ⇡✓ over an MDP with states S and actions
A. We assume ✓ = {✓s}s2S with ✓s 2 R|A| and (for simplicity) satisfying3 P

a2A ✓s,a = 1 and
✓s,a � 0.

Let � denote the set of symmetries over parameter space. In other words, � 2 � if � is a permutation
over |S|⇥ |A| and for all ✓ a valid policy parametrization, we have that J(✓) = J(�(✓)) such that
�(✓) = {�(✓s)}s2S acting per state.

We also assume the MDP is episodic in its state space, meaning the MDP has a horizon length of H
and each state s 2 S is indexed by a horizon position h. No state is visited twice during an episode.

We show the following theorem:
Theorem 6. Let ⇥b be the set of parameters that induce policies satisfying J(✓) = b for all ✓ 2 ⇥b.
Let ✓⇤ 2 ⇥b be the parameter satisfying ✓

⇤ = argmax✓2⇥b

P
s H(⇡✓(a|s)). Then for all � 2 � it

follows that �(✓⇤) = ✓⇤.

Proof. Let ✓ 2 ⇥b and let’s assume there is a ✓
0 2 ⇥b such that �(✓0) 6= ✓. We will show there must

exist ✓00 2 ⇥b such that
P

s H(⇡✓00(a|s)) > max (
P

s H(⇡✓(a|s)),
P

s H(⇡✓0(a|s))).
Let s be a state such that ✓s 6= ✓

0

s and having maximal horizon position index h. In this case, all
states s0 with a horizon index larger than h satisfy ✓s0 = �(✓s0). Therefore for any s

0 having index
h+1 (if any) it follows that the value function V✓(s0) = V✓0(s0). Since the symmetries hold over any
policy and specifically for delta policies, it must be the case that at state s and for any a, a

0 2 A such
that there is a �0 2 � with (abusing notation) �0(s, a) ! s, a

0 it must hold that Q✓(s, a) = Q✓(s, a0).
Therefore the whole orbit of a under �0 for any �

0 2 A has the same Q value under ✓ and ✓
0. Since

the entropy is maximized when all the probabilities of these actions are the same, this implies that if
✓ does not correspond to a policy acting uniformly over the orbit of a at state s we can increase its
entropy by turning it into a policy that acts uniformly over it. Applying this argument recursively
down the different layers of the episodic MDP implies that for any a 2 A, the maximum entropy
✓ 2 ⇥b assigns a uniform probability over all the actions on a

0s orbit. It is now easy to see that such
a policy must satisfy �(✓) = ✓ for all � 2 �.

We now show a result relating the entropy regularized gradient-norm objective:

argmin
✓

|r✓J(✓)|� �H(⇡✓(a)),� > 0

In this discussion we will consider a softmax parametrization for the policies. Let’s start with the
following lemma:

3A similar argument follows for a softmax parametrization.

26

Lemma 6. Let pi(✓) =
exp(✓i)P
j exp(✓j))

parametrize a policy over K reward values {ri}Ki=1. The value
function’s gradient satisfies:

0

@r
KX

j=1

pj(✓)

1

A

i

= p✓(i)(ri � r̄)

Where r̄ =
PK

j=1 pi(✓)ri.

Proof. Let Z(✓) =
PK

j=1 exp(✓j). The following equalities hold:
0

@r
KX

j=1

pj(✓)

1

A

i

=
Z(✓) exp(✓i)ri � exp2(✓i)ri

Z2(✓)
+
X

j 6=i

� exp(✓j)rj exp(✓i)

Z2(✓)

=
Z(✓) exp(✓i)ri

Z2(✓)
�
X

j

exp(✓i)
exp(✓j)

Z2(✓)

=
exp(✓i)ri
Z(✓)

� exp(✓i)

Z(✓)

0

@
X

j

exp(✓j)rj
Z(✓)

1

A

= pi(✓) (ri � r̄) .

The result follows.

We again consider an episodic MDP with horizon length of H and such that each state s 2 S is
indexed by a horizon position h. No state is visited twice during an episode. Recall the set of
symmetries is defined as � 2 � if for any policy ⇡ : S ! �A, with Q�function Q⇡ : S ⇥A ! R,
it follows that:

Q⇡(�(s),�(a)) = Q⇡(s, a). (14)

We abuse notation and for any policy parameter ✓ 2 R|S|⇥|A| we denote the parameter vector
resulting of the action of a permutation on � on the indices of a parameter vector ✓ by �(✓).

We show the following theorem:
Theorem 7. Let ⇥b be the set of parameters that induce policies satisfying krJ(✓)k = b for all
✓ 2 ⇥b. Let ✓⇤ 2 ⇥b be a parameter satisfying ✓

⇤ = argmax✓2⇥b

P
s H(⇡✓(a|s)) (there could be

multiple optima). Then for all � 2 � it follows that �(✓⇤) = ✓⇤.

Proof. Let ✓ 2 ⇥b and let’s assume there is a � 2 � such that ✓0 = �(✓) 6= ✓.

We will show there must exist ✓
00 2 ⇥b such that

P
s H(⇡✓00(a|s)) >

max (
P

s H(⇡✓(a|s)),
P

s H(⇡✓0(a|s))).
Since we are assuming a softmax parametrization and � is a symmetry of the MDP, it must hold that
for any two states s and s

0 with (abusing notation) s0 = �(s):

Ea⇠⇡✓ [Q⇡(✓)(s, a)] = Ea⇠⇡�(✓)
[Q⇡(�(✓))(s, a)]

We conclude that the gradient norm krJ(�(✓))k must equal that of krJ(✓)k. This implies that if
�(s) 6= �(s0) and wlog H(⇡✓(a|s)) > H(⇡✓(a|�(s))) , then we can achieve the same gradient norm
but larger entropy by substituting ✓�(s) with ✓s. Where ✓s denotes the |A|-dimensional vector of the
policy parametrization for state s. The gradient norm would be preserved and the total entropy of the
resulting policy would be larger of that achieved by ✓ and ✓

0. This finalizes the proof.

27

	Introduction
	Background
	Method
	Experiments
	Discussion
	Related Work
	Additional Experimental Results
	Implementation Details
	Approximate RR
	Multi-Agent Zero-Shot Coordination
	Colored MNIST

	Theoretical Results
	Behavior of gradient descent near a saddle point
	Structural properties of the eigenvalues and eigenvectors of Smooth functions
	Convergence rates for finding a new eigenvector, eigenvalue pair
	Staying on the ridge
	Behavior of RR near a saddle point
	Symmetries lead to repeated eigenvalues
	 Maximally Invariant Saddle

